ir 800 basie
- [EFERENGE MIANUAL
WERSION 4.1

allafr 8500 basfe

, E%EFEE%EWE IANUAT
WERSION 4.1

PREFACE

The Altair BASIC lanquage is a high-level ©o»rogramming
language specifically designed for interactive computing
systems. Its simple English-like instructions are easily
understood and «quickly 1learned and its interactive nature
allows instant feedback of results and diagnostics. Despite
its simplicity, however, Altair BASIC has evolved into a
powerful language with wnprovisions for editing and string
processing as well as nuwmerical computation.

_ The Altair BASIC interoreter reads the instructions of
the BASIC language and directs the ALTAIR 88049 series

microcomputer to execute them. Altair BASIC includes manv
useful diagnostic and editing features in all versions. The
extended versions vprovide additicnal features including

comprehensive file input/output ovrocedures in the disk
versiocon.

This manual will explain the features of the BASIC
language and the special vrovisions of the 4K, 8K, Extended
and Disk Extended 2Altair BASIC interpreters, release 4.1. For
quick referenca, a table of Altair BASIC instructions,
diagnostics and functions are oprovided 1in Section 4. A
complete index is at the end of the manual.

N

‘l'

2=-2

2-3

CONTENTS

Some Introductory Remarks.

Introduction to this manual

a. Conventions

b. Definitions
Modes of Operation
Formats

a. Lines-AUTO and RENUM

b. REMarks
c. Error Messages

Editing - elementary »rovisions
a. Correcting Single Characters

b. Correcting Lines

c. Correcting.Whole Programs

Expressions and Statements

Expressions
a. Constants
k. Variables

10
10

c. Array Variables - the DIM Statement

d. Operators and Precedence
e. Logiczl Overations
f. The LET Statement

Branching and Loovs
a. Branching
1) GOTO

2) IF...THEN...[ELSE]

3) ON...GOTO

b. Loops - FOR and NEXT Statements
c. Subroutines - GOSUB and RETURN Statements
d. Memory Limitations

Input/Output
a. INPUT
o. PRINT

c. DATA, READ, RESTOPR

d. CSAVE, CLOAD
a, Miscellaneous
1) WAIT
2) PEEKX,POKE
3) CUT, INP

19

23

BASIC 4.1

April, 1977

3. Functions 28
3-1 Intrinsic Functions 28
3-2 User-Defined Functions - the DEF Statement 28
3-3 Errors 29
4. Strings - 30
4-1 String Data 30
4-2 String Operations - 30

a. Comparison Operators

b. String Expressions

c. Input/Output
4-3 String Functions 31
5. Extended Versions 32
5-1 Extended Statements 32
5-2 Extended Operators 38
5-3 Extended Functions 39
5-4 The EDIT Command 41
5-5 PRINT USING Statement 46
5-6 Disk File Operations 51
6. Lists and Directories 69
-1 Commands 69
6-2 Statements 72
6=-3 Intrinsic Functions 77
-4 Svecial Characters 82
6-5 Error Messages 84
6-6 Reserved Words 91
Appendices
A, ASCII Character Codes 93
B. Loading Altair BASIC 95
C. Soeed and Space Hints 106
D. Mathematical Functions 109
E. Altair BASIC and Machine Language 112
F. Using the ACR Interface 114
G. Converting BASIC Programs Not Written for the Altai
H. Disk Information 118
I. The PIP Utility Program 124
J. RSTLESS Versions of BASIC 128
K. Using Altair BASIC on the

Intellec* 8/Mod 8% and MDS Systems 129
L. Patching Altair BASIC's I/0 Routines 132
‘M. Using Disk Altair BASIC: An Example - 137
Index 145

BASIC 4.1

April, 1977

r Comouter 116

w

1l. SOME INTRODUCTORY REMARKS

1-1 Introduction to this Manual.

a. Conventions. For the sake of simplicitv, some
conventions will be followed in discussing the features of the
Altair BASIC language. ‘

1. Words printed in cavital letters must be written exactly
as shown. These are mostly names of instructions and
commands. .

2. Items enclosed in angle brackets (<>) must be supplied as
explained in the text. Items 1in sguare brackets ([]) are
optional. Items in both kinds o¢f brackets, [<KW>], for
example, are to be supplied if the optional feature is used.
Items followed by dots (...) may be reveated or deleted as
necessary.

3. Shift/ or Control/ followed by a 1letter means the
character 1is typed by holding down the Shift or Control key
and typing the indicated letter.

4. All indicated ounctuation must be supplied.

b. Definitions. Some terms which will become important
are as follows: :

Alphanumeric character: all letters and numerals taken
together are called alvhanumeric characters.

Carriage Return: Refers both to the key on the terminal
which causes the carriage, print head or cursor to move to the
beginning of the next 1line and to the command that the
carriage return key issues which terminates a BASIC line.

Command Level: After Altair BASIC vrints OK, it 1is in
the command level. This means it is ready to accept commands.

Commands and Statements: Instructions in Altair 3BASIC
are loosely divided into two classes, Commands and Statements.
Commands are instructions normally used only in direct mode
(see Modes of Operation, section 1-2). Some commands, such as
CONT, may only be used in direct mode since thev have no
meaning as vrogram statements. Some commands, such as DELETE,
are not normally used as program sStatements because they cause
a return to command level. But most commands will find
occasional wuse as wnrogran statements. Statements are
instructions that are normallv used in indirect mode. Some
statements, such as DEF, mav onlv be used in indirect mode.

Edit: The orocess of deleting, adding zand substituting
lines in &a worogram and that of preparing data for output
according to a predetermined format will both be referred to
as "editing." The varticular meaning in use will be clear from
the context.

BASIC 4.1

April, 1977

Integer Expression: An expression whose value is
truncated to an integer. The components of the expression
need not be of integer type.

Reserved Words: Some words are reserved by BASIC for use
as statements and commands. These are called reserved words
and they may not be used in variable or function names.

Special Characters: Some characters appear differentlv
on different terminals. Some of the most important of these
are the following:

(carat) 2ppoears on some terminals as f {up—arrow)
~ (tilde) does not apvear on some terminals and orints
as a blank
(underline) avpears on some terminals as -—(back-arrow)

String Literal: A string of characters enclosed by
quotation marks (") which is to be inout or output exactly as
it appears. The quotation marks are not part of the string
literal, nor mav a string literal contain quotation marks.
(*"HI, THERE""is not legal.)

Type: While the actual device used to enter information
into the computer differs from svstem to system, this manual
will use the word "type" to refer to the wvrocess of entry.
The wuser types, the computer prints. Type also refers to the
classifications of numbers and strings. The meaning will be
clear from the context. ‘

1-2 Modes of Operation,

s

Altair BASIC provides for operation of the computer in
two different modes. In the direct mode, the statements or
commands are executed as they are entered into the computer.
Results of arithmetic and logical operations are disvlaved and
stored for later use, but the instructions themselves are lost
after execution. This mode is useful for debugging and for
using Altair BASIC in a “"calculator" mode for guick
computations which do not Jjustify the design and codina of
complete programs. '

In the indirect mode, the computer executes instructions
from a orogram stored in memory. Program lines are entered
into memory if they are preceded bv a line number. Execution
.0f the program is usually initiated bv the RUN command.

ut

BASIC 4.1

April, 1977

1-3 Formats.

a. Lines - AUTQ and RENUM. The line is the fundamental
unit of an . Altair BASIC vrogram The format for ah Altair
BASIC line is as follows: : '

nnnnn <BASIC statement>[:<BASIC statement>...]

Each Altair BASIC line begins with a number. The number
corresponds to the address of the line in memory and indicates
the order in which the statements in the line will be executed
in the ©program. It also provides for branching linkages and
for editing. Line numbers must be in the range § to 65529. A
good nwrogramming practice is to use an increment of 5 or 10
between successive line numbers to allow for insertions.

1) Line numbers mayv be generated automatically .in the
Extended and Disk versions of Altair BASIC by use of the AUTO
and RENUM commands. The AUTO command provides for automatic
insertion of 1line numbers when entering program lines. The
format of the AUTO command is as follows:

AUTO[<initial line>[, [Kincrement>]]
Examnle;

AUTO 160,10

196 INPUT X,Y

119 PRINT SQR(X™2+Y"2)

129 °C

OK

AUTO will number every input line until Control/C 1is typed.
If the <initial line> is omitted, it is assumed to be 19 and
an increment of 10 is assumed if <increment> is omitted. If
the <initial line> is followed by a comma but no increment is
specified, the increment last used in an AUTO statement Iis
assumed.

If AUTO generates a line number that alreadvy exists in
the program currently in memory, it prints the number followed
by an asterisk. This is to warn the user that any input will
replace the existing line.

2) The RENUM command allows program lines to be ‘“spread
out" so that a new 1line or lines mayv be inserted between
existing lines. The format of the RENUM command 1is as
follows:

'RENUM [<NN>[,<MM>[,<II>]]]

where NN is the new number of the first 1line to be
reseqguencead. If omitted, NN is assumed to be 10. Lines less

\

BASIC 4.1

April, 1977

than MM will not be renumbered. If MM is omitted, the whole
program will be resequenced. II is the increment between the
lines to be reseguenced. 1If II is omitted, it is assumed to
be 1@d. Exammnles:

RENUM ~ Renumbers the whole program to start at line 18
with an increment of 19 between the new line numbers. .

RENUM 1006,,100 Renumbers the whole program to start
at line 100 with an increment of 194.

RENUM 606900,5000,1000 Renumbers the lines from 5200 up
so they start at 69¢0 with an increment of 12g4.

NOTE

RENUM cannot be used to change the order of program
lines (for examole, RENUM 15,39 when the program has
three lines numbered 14, 20 and 38) nor to create line
numbers greater than 65529. An ILLEGAL FUNCTION CALL
error will result.

All line numbers appearing after a GOTO, GOSUSB, THEN,
ON...GOTO, ON...GCSUB and ERL<relational operator> will be
properly changed by RENUM to reference the new 1line numbers.
If a line number appears after one of the statements above but
does not exist in the program, the message “UNDEFINED LINE
XXXXX IN YYYYY* will be printed. This line reference (XXXXX)
will not be changed by RENUM, but line number YYYYY may be
changed.

3) In the Extended and Disk versions, the current line
number may be designated by a period (.) anvwhers a line
number reference is reguired. This is particularly useful in
the use of the EDIT command. See section 5-4.

4) Following the 1line number, one or more BASIC
Statements are written. The first word of a statement
identifies the operations to be performed. The 1list of
arguments which follows the identifving word serves several
ourposes. It can contain (or refer symbolically to) the data
which 1is to be operated umon by the statement. In some
important instructions, the operation to be verformed depends
upon conditions or options specified in the list.

Each type of statement will be considered in detail in
sections 2, 3 and 4.

BASIC 4.1 7

April, 1977

More than one statement can be written on one 1line if
they are separated by colons (:). Any number of statements
can be joined this way provided that the line is no more than
72 characters long in the 4K and 8K versions or 255 characters
in the Extended and Disk versions. 1In the Extended and Disk
versions, lines may be broken with the LINE FEED key.
Example:

186 IF X<Y¥+37<line feed>
THEN 5 <line feed>
ELSE PRINT(X)<carriage return> -

The line is shown broken intc three lines, but it is input as
one BASIC line.

b. REMarks. In many cases, a program can be more easily
understood if it contains remarks and explanations as well as
the statements of the program vroper. In Altair BASIC, the
REM statement allows such comments to be included without
affecting execution of the program. The format of the REM
statement is as follows:

REM <remarks>
A REM statement 1is not executed by BASIC, but branching
statements may link into it. REM statements are terminated by
the carriage return or the end of the line but not bv a colen.
Example: :

198 REM DO THIS LOOP:FOR I=1TO1l% -the FOR statement
will not be executed

161 FOR I=1 TO 18: REM DO THIS LOCP -this FOR state-
ment will be execu-
ted.

In Extended and Disk versions, remarks may be added to the end
of a ovrogram line sevarated from the rest of the line bv a
single cuotation mark ('). Evervthing after the single guote
will be ignored. ’

c. Errors. When the BASIC interpreter detects an error
that .will cause the ©vrogram to be terminated, it prints an
error message. The error message formats in Altair BASIC are
as follows:

Direct statement ?¥XX ERROR
Indirect statement ?2XX ERROR IN nnnnn

XX 1is the error code or message (see section 6-5 for a list of
error codes and messages) and nnnnn is the line number where
the error occurred. Each statement has its own ©varticular
voossible errors in addition to the general errors in svntax.

BASIC 4.1

April, 1977

These errors will be discussed in the description of the
individual statements. :

1-4. Editing - Elementary provisions.

Editing features are provided in Altair BASIC so that
mistakes can be <corrected and features can be added and
deleted without affecting the remainder of the ©vrogram. If
necessary, the whole program may be deleted. Extended and
Disk Altair BASIC have expanded editing facilities which will
be discussed in section 5.

a. - Correcting Single Characters. If an incorrect
character 1is detected in a line as it is being tywmed, it can
be corrected immediately with the backarrow (, underline on
some terminals) or ,except in 4K, the RUBOUT key. Each stroke
of the key deletes the immediately opreceding character. If
there 1is no preceding character, a carriage return is issued
and a new line is begun. Once the unwanted characters are
removed, they can be revlaced simply bv typing the rest of the
line as desired.

When RUBOUT is typed, a backslash (\) is printed and then
the character to be deleted. Each successive RUBOUT orints
the next character to be deleted. Typing a new character
prints another backslash and the new character. All
characters between the backslashes are deletad.

Example:

108 X=\=xX\¥=14 Typing two RUBOQUTS deleted the '='
and 'X' which were subsegquentlv
replaced by Y= .

b. Correcting Lines. A line being tyved may be deleted
by typing an at-sign (@) instead of typing a carriage return.
A carriage return is printed automaticallv after the 1line 1is
deleted. Except in 4K, typoing Control/U has the same effect.

In the Extended and Disk versions, typing <Control/a
instead of the carriage return will a2llow all the features of
the EDIT command (except the A command) to be used on the line
currently being tyved. See section 5-4.

c. Correcting Whole Programs. The NEW command causes
the entire current program and all variables to be delested.
NEW is generally used to clear memory space preparatory to
entering a new vrodgram.

BASIC 4.1 . °

April, 1977

10

2. EXPRESSIONS AND STATEMENTS.

2-1. Exvpressions.

The simplest BASIC expressions are single constaﬁts,
variables and function calls.

a. Constants. Altair BASIC accepts integers or floating
point real numbers as constants. All but the 4K version of
Altair BASIC accepnt string ccnstants as well. See section

. 4-1. Some examples of accevtable numeric constants follow:

123
3.141
9.2436
1.25E+8@5

Data input from the terminal or numeric constants in a program
may have any number of digits up to the length of a line (see
section 1-3a). In 4K and 8K Altair BASIC, however, only the
first 7 digits of a number are significant and the seventh
digit is rounded up. Therefore, the command

PRINT 1.234567896123
produces the following output:

1.23457
OK

In Extended and Disk versions of Altair BASIC, double
precision format allows 17 significant digits with the 17th
digit rounded up.

The format of a printed number is determined by the
following rules:

1. If the number is negative, a minus sign (=) is printed to
the left of the number. If the number is vositive, a
space is printed.

2. 1If the absolute value of the number is an integer in the
range @ to 999999, it is printed as an inteqer.

3. If the absolute value of the number 1is greater than or
equal to .91 and 1less than or equal to 999999, it is
printed in fixed point notation with no exponent.

4. In Extended and Disk versions, fixed point wvalues up to
9999999999999999 are possible.

BASIC 4.1

pril, 1977

5. 1If the number does not fall into categories 2, 3 or 4
scientific notation is used. :

The formats of scientific notation are as follows:
- SX.XXXXXESTT single precision
SX. XXXXXXXXXXXKXKXXXDSTT double precision

where S stands for the signs of the mantissa and the exponent
(they need not be the same, of course), X for the digits of
the mantissa and T for the digits of the exvonent. E and D
may be read "...times ten to the vower...." Non-significant
zeros are suppressed in the mantissa, but two digits are
always printed in the exponent. The sign convention in rule 1
is followed for the mantissa. The exponent must be in the
range =38 to +38. The largest number that may be represented
in Altair BASIC is 1.70141E38; the smallest nositive number
is 2.9387E-38. The following are examples of numbers as inout
and as output by Altair BASIC: -

Number ; Altair BASIC Output
+1 1

-1 -1

6523 6523

1E29 1E29
-12.34567E-19 -1.23456E-29
1.234567E-7 1.23457E-87
10706030 1E+356

1. .1

.01 .41

.000123 1.23E-04
-25.460 -25.46

The Extended and Disk versions of Altair BASIC allow
numbers to be represented in integer, single precision or
double precision form. The type o©of a number constant is
determined according to the following rules:

1. A constant with more than 7 digits or a 'D' instead of 'E'
in the exponent is double precision.

2. A constant outside the range -32768 to 327567, with 7 or
fewer digits and a decimal point or with an 'E' exponent
is single precision. :

3. A constant in the range -32768 to 32767 and no decimal
Doint is integer.

BASIC 4.1 11

April, 1977

12

4, A constant followed by an exclamation point (!) is single
precision; a constant followed by a pound sign (#) is
double precision.

Two additional tyves of constants are allowed in Extended
and Disk versions of Altair BASIC. Hexadecimal (base sixteen)
constants may be explicitly designated by the symbol &H
preceding the number. The constant may not contain any
characters other than the digits 8 - 9 or letters A - F, or a
SYNTAX ERROR will occur. Octal constants may be designated
either by &0 or just the & sign.

In all formats, a space is printed after the number. In
all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the current line. 1If not, it issues
a carriage return and prints the whole number on the next
line.

b. Variables. A variable represents svymbolically any
number which is assigned to it. The value of a variable may
be assigned exwlicitly by the programmer or may be assigned as
the result of calculations in a program. Before a variable is
assigned a2 value, its value is assumed to be zero. 1In 4X , a
variable name consists of one or two characters. The first
character is any letter. The second character must be a
numeral. In other versions of Altair BASIC, the variable name
may be any length, but anvy alphanumeric characters after . the
first two are ignored. The first character must be a letter.
No reserved words may appear as variable names or within
variable names. The following are examples of legal and
illegal Altair BASIC variables:

Legal : Illegal
In 4K and 8X Altair BASIC:
A %A (first character must
be alovhabetic.) _
21 : Z1A (variable name is too

long for 4K)
Other versions:
TP T0 (variable names cannot
be reserved words)

PSTGS

COUNT RGOTO (variable names can-
not contain reserved
words.)

In all but 4X Altair BASIC, a variable may alsc represent
a string. Use of this feature is discussed in section 4.

BASIC 4.1

April, 1977

1) Extended and Disk versions of Altair BASIC allow the
use of Integer and Double Precision variables as well as
Single Precision and Strings. The type of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name.

Type 7 Symbol

Strings (0 to 255 characters) $
Integers (-32768 to 327567) %

Single Precision (up to 7 digits, exponent between
-33 and +38) !

Double Precision (up to 16 digits, exvonent between
-38 and +38) #

Internally, BASIC handles all numbers in binary. Therefore,
some 8 digit single precision and 17 digit double precision
numbers may be handled correctly. If no type 1is explicitly
declared, type is determined by the first 1letter of the
variable name according to the type table. The table of tynes
may be modified with the following statements: .

DEFINT r Integer
DEFSTR r String
DEFSNG r Single Precision
DEFDBL r Double Precision

where r is a letter or range of letters to be designated.
Examples: :

15 DEFINT I-HW Variable names beginning with the let-
, ters I-N are to be of integer type.
29 DEFDBL D Variable names beginning with D are to
be of double vrecision tyne.

If no type definition statements are encountered, BASIC
proceeds as if it had executed a DEFSNG A-Z statement.

2) Inteqger variables should be used wherever ©vossible
since they take the 1least amount of space in memory and
integer arithmetic 1is much faster than single nprecision
arithmetic.

- Care must be exercised when single orecision and double
precision numbers are mixed. Since single precision numbers
can have more significant digits than will be oprinted, a
double precision variable set to a single vrecision value may
-not orint the same as the single precision variable.

13 A=1.61 single precision wvalue
20 B#=A*10:C#=CDBL(A) *10% convert to double precision
BASIC 4.1 13-

April, 1977

14

30 PRINTA;B#:C#;:;CDBL(A) in various ways
RUN

OK

In order to assure that double precision numbers will pfint
the same as single ovrecision, the VAL and STRS$ functions
should be used. For example:

19 A=1.01
20 B#=VAL(STRS (A)) :C#=B#*10+#
30 PRINT A;B#;C#
RUN
1.1 1.1 19.1
CK :

c. Array Variables - The DIM Statement. It 1is often
advantageous to refer to several variables by the same name.
In matrix calculations, for example, the computer handles each
element of the matrix separately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC provides subscrinted variables, or
arrays. The form of an array variable is as follows:

VV(<subscript>[,<subscript>...])

where VV is a variable name and the subscripts are integer

exoressions. Subscripts may be enclosed in parentheses or .

square brackets. An array variable may have only one

dimension in 4K, but in all other versions of Altair BASIC it
may have as many dimensions as will fit on a single line. The

smallest subscript is zero. Examples: .

A(5) The sixth element of array A. The first
element is A(3).

ARRAY(I,2*J) The address of this element in a two-
dimensional array is determined bv
evaluating the expressions in parenthe-
ses at the time of the reference to the
array and truncating to integers. If
I=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
sets all array elements to zero. The form of the DIM

" statement is as follows:

DIM VV(<subscriot>[,<subscriot>...])

where VV is a legal variable name. Subscript is an integer
expression which specifies the largest vossible subscript for
that dimension. Each DIM statement may acoly to more than one
array variable. Some examples follow:

BASIC 4.1

April, 1977

1.91 Jlé.l@ﬂ@ﬂﬂ38146973 16.09999990463257 1.409999996463257

BASIC

April,

113 DIM A(3), DS(2,2,2)
. 114 DIM R2%(4), B(1l9)

115 DIM Ql(N), Z#(2+1I) Arrays may be dimensioned dy-
namically during program
execution. At the time the
DIM is executed, the expression
within the parentheses is e-
valuated and the results trun-
cated to integer.

If no DIM statement has been exescuted before an arrav variable
is found in a program, BASIC assumes the variable to have a
maximum subscript of 16 (11 elements) for each dimension in
the reference. A BS or SUBSCRIPT OUT OF RANGE error message
will be issued if an attempt is made to reference .an array
element which is outside the space allocated in its associated
DIM statement. This «can occur when the wrong number of
dimensions is wused 1in an array element reference. For
example:

30 LET A(1,2,3)=X when A has been dimensioned by
19 DIM A (2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM statement
for an array is found after that arrav has been dimensioned.
This often occurs when a DIM statement appears after an array
has been given its default dimension of 14.

d. Operators and Precedence. Altair B3BASIC provides a
full range of arithmetic and (exceot in 4X) logical ovperators.
The order of execution of owverations in an expression is
always according to their ©oprecedence 25 shown in the table
below. The order can be specified exnlicitly bv the use of
parentheses in the normal algebraic fashion.

Table gg Precedence

Operators are shown here in decreasing order of oprecedence.
Overators 1listed in the same entrv in the table have the same
precedence and are executed in order from left to right in an
expression.

1.” Expressions enclosed in varentheses ()
2. " exponentiation (not in 4K). Any number to the zero
power 1is 1. - Zero to a negative power causes a /f§ or

DIVISION BY ZERQO error.

3. - negation, the unary minus operator

1.1 ; 15

“ 4, *,/ multiplication and division

5. \ integer division (available in Extended and Disk
versions, see section 5-2) '

6. MOD (available in Extended and Disk versions. See
section 5-2)

7. +,- addition and subtraction

8. relational operators
= equal
<> not equal
< less than
> greater than
<=,=< less than or equal to
>=,=> greater than or ecqual to

(the logical operators below are not available in 4K)

9. NOT logical, bitwise negation
14. AND logical, bitwise disjunction
11. OR logical, bitwise conjunction

(The logical operators below are available only in
Extended and Disk versions.)

12. XOR logical, bitwise exclusive OR
13. EQV logical, bitwise eguivalence
14. IMP logical, bitwise implication

In 4X Altair BASIC, relational operators may be used only once
in an IF statement. In &all other versions, relational
overators may be used in any expressions. Relational
expressions have the value either of True (-1) or False (8).

. e. Logical Operations. Logical operators may be used
for bit manipulation and Boolean algebraic functions. The
AND, OR, NOT, XOR, EQV and 1IMP operators convert their
arquments into sixteen bit, signed, two's complement integers
in the range =32768 to 32767. After the operations are
verformed, the result is returned in the same form and range.
If the arguments are not in this range, an FC or ILLEGAL
FUNCTION CALL error message will be printed and execution will
be terminated. Truth tables for the logical ovperators apvear
below. The overations are verformed bitwise, that is,

BASIC 4.1

April, 1977

corresponding bits of

result comouted one bit at a time. In binary operations, bit

each argument are examined and the

7 is the most significant bit of a bvte and bit @ is the least
significant.

AND

OR

S
+3

X0OR

EQV

Some
work:

BASIC 4.1

April, 1977

SIS o
QS

[SESEEEEE @ (SIS N b
ISR DS S o
=

DS X
SN

Y e
S

X IMP Y

—t

g
1
1

examples will serve to show how the 1logical overations

63 AND 16=16
15 AND 14=14
-1 AND 8=8

4 OR 2=6

12 OR 10=19

63=binary 111111 and lé=binary 13904,
so 63 AND 146=16

15=binary 1111 and l4=binary 1119,

so 15 AND l4=binary 1110=14.

-l=binary 1111111111111111 and 8=binary
1206, so -1 AND 8=3.

4=binary 108 and 2=binary 19, so

4 OR 2=binary 119=6. -

binary 1519 OR'd with itself is 1014=

17

18

19.

-1 OR -2=-1 ~1= blnary 1111111111111111 and -2=
1111111111111119, so -1 OR =-2=-1.
NOT g=-1 the bit complement. of sixteen zeros

is sixteen ones, which is the two's .
complement revresentation of -1.

NOT X=-(X+1) the two's comvlement of any number is
the bit complement plus one.

A typical use of loq1cal operations is ‘'‘masking’ testing a
binary number for some nredeterﬂlnad vattern of bits. Such
numbers might come from the computer's input ports and would
then reflect the condition of some external device. Further
applications of logical operations will be considered 1in the
discussion of the IF statement.

f. The LET statement. The LET statement 1is wused to
assign a value to a variable. The form is as follows:

LET <KVV>=<expression>

where VV is a variable name and the expression is any valid
Altair BASIC arithmetic or, exceot in 4X, logical or string
expression. Examples: ;

1069 LET V=X
118 LET I=I+1 the '=' sign here means 'is revlaced
by ...

The word LET in a LET statement 1is optional, so algebraic

~eguations such as:

120 V=,5% (X+2)
are legal assignment statements.

A SN or SYNTAX ERROR message 1s worinted when BASIC
detects incorrect form, 1illegal characters in a line,

incorrect punctuation or missing parentheses. An OV or
OVERFLOW error occurs when the result of a calculation is too
large to be represented by Altair BASIC's number formats all

numbers must be within the range 1E-38 to 1.78141E38 or -lE 38
to -1.78141E38. An attemnt to divide by zero results in the
/3 or DIVISION BY ZERO error messagde.

For a discussion of strings, string variables and string
overations, see section 4. '

BASIC 4.1

April, 1977

2-2. Branching, Loovs and Subroutines.

a. Branching. In addition to the segquential execution
of vprogram lines, BASIC vrovides for changing the order of
execution. This orovision is <called branching and 1is the
basis of programmed decision making and loovs. The statements
in Altair BASIC which provide fcor branching are the GOTO,
IF...THEN and ON...GOTO statements. .

1) GOTO is an wunconditional branch. Its form 1is as
follows:

GOTO<mmmmm>

After the GOTO statement is executed, execution continues at
line number mmmmm.

2) IF...THEN is a conditional branch. Its form 1is ‘as
follows:

IF<expression>THEN<mmmmm>

where the expression is a wvalid arithmetic, relational or,
except in 4K, logical exoression and mmmmm is a line number.
If the expression is evaluated as non-zero, BASIC continues at
line mmmmm. Otherwise, execution resumes at the next line
after the IF...THEN statement.

An alternate form of the IF...THEN statement 1is as
follows:

IF<expression>THEN<statement>
where the statement is any Altair BASIC statement. Examples:

19 IF A=10 THEN 497 If the expression A=10 is
true, BASIC branches to line 40. Otherwise, =xecution
oroceeds at the next line.

15 IF A<B+C OR X THEN 1049 The expression after IF is
evaluated and if the wvalue of the expression 1is
non-zero, the statement branches to 1line 1§43.
Otherwise, execution continues on the next line.

20 IF X THEN 25 If X is not zero, the statement
branches to line 25.

39 IF X=Y THEN PRINT X 1If the expression ¥X=Y is true
(its value 1is non-zero), the PRINT statement 1is
executed. Otherwise, the PRINT statement 1is not
executed. 1In either case, execution c¢ontinues with
the line after the IF...THEN statement.

35 IF X=Y+3 GOTO 39 Egquivalent to the corresvonding
IF...THEN statement, excent that GOTO must be followed
bv a line number and not by another statement.

o
[¥e)

BASIC 4.1

April, 1977

Extended and Disk versions of Altair BASIC vrovide an expanded
IF...THEN statement of the form

IF<expression>THENKYY>ELSE<KZZ>

where YY and 27 are valid 1line numbers or Altair BASIC
statements. Examples: '

IF X>Y THEN PRINT “GREATER" ELSE PRINT "NOT GREATER"

If the expression X>Y is true, the statement after THEN 1is
executed. Otherwise, the statement after ELSE is executed.

IF X=2*Y THEN 5 ELSE PRINT “ERROR"

If the expression X=2*Y is true, BASIC branches to line 5.
Otherwise, the PRINT statement is executed. Extended and Disk
Altair BASIC allow a comma before THEN.

IF statements méy be nested in the Extended and Disk
versions. Nesting is limited only by the length of the line.
Thus, for example:

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X<line feed>
THEN PRINT “LESS THAN" ELSE PRINT "“EQUAL"

and _

IF X=Y THEN IF Y>Z THEN PRINT “X>2Z" ELSE PRINT "Y<=2" <line feed>
ELSE PRINT "X<>Y"

are legal statements. If a line does not <contain the same
number of ELSE and THEN clauses, sach ELSE is matched with the
closest unmatched THEN. Example:

IF A=8 THEN IF 3=C THEN PRINT "A=C" ELSE PRINT "ALC"
will not orint "A<K>C" when A<>B,

3) ON...GOTO (not in 4K) provides for another tvoe of
conditional branch. 1Its form is as follows:

ON<expression>GOTO<list of line numbers>

After the value of the expression is truncated to an integer,
say I, the statement causes BASIC to branch to the line whose
number is Ith in the list. The statement may be followed by
as many line numbers as will fit on one line. 1If I=2 or is
greater than the number of lines in the list, execution will
continue at the next line after the ON...GOTO statement. I
must not be less than zero or greater than 255, or an FC or
ILLEGAL FUNCTION CALL error will result. ‘

BASIC 4.1

April, 1977

b. Loops - FOR and NEXT. It 1is often desirable to
verform the same calculations on different data or
repetitively on the same data. For this ourvose, Altair BASIC
provides the FOR and NEXT statements. The form of the FOR
statement is as follows:

FOR<variable>=<X>TOKY> [STEP <Z>]

where X,Y and 2 are expressions. When the FOR statement 1is
encountered for the first time, the expressions are evaluated.
The variable is set to the value of X which 1is called the
initial wvalue. BASIC then executes the statements which
follow the FOR statement in the usual manner. When a NEXT
statement 1s encountered, the step Z is added to the variable
which is then tested against the final value Y. If 2, the
step, 1is ©positive and the variable is less than or ecual to
the final value, or if the step is negative and the variable
is greater than or equal to the final value, then BASIC
branches back to the statement immediately followinag the FOR
statement. Otherwise, execution oroceeds with the statement
following the NEXT. 1If the step is not specified, it is
assumed to be 1. Examples:

10 FOR I=2 TO 11 The loop is executed 19 times with
: the variable I taking on each in-

tegral value from 2 to 1ll.

28 FOR V=1 TO 9.3 This loop will execute 9 times un-

. til V is greater than 9.3

380 FOR V=10A*N TO 3.4/Z STEP SQR(R) The initial, final
and step expressions need not be
integral, but thev will be eval-
uated only once before loop-
ing begins.

40 FOR V=9 TO 1 STEP -1 This loop will be executed 9
times.

FCR...NEXT loops may be nested. That is, BASIC will execute a
FOR...NEXT 1loop within the context of another 1loon. An
examole of two nested loops follows:

168 FCR I=1 TOC 19
120 FOR J=1 TO I
139 PRINT A(I,J)

140 NEXT J

159 NEXT I
Line 139 will print 1 element of A for I=1, 2 for I=2 - and so
on. If loopbps are nested, they must have different loop
variable names. The NEXT statement for the inside 1loop

variable - (J in the example) must avnear before that for the
outside variable (I). Any number of 1levels of nesting is
allowed uv to the limit of available memorv.

BASIC 4.1

April, 1977

22

The NEXT statement is of the form:
NEXT[<variable>[,<variable>...]]

where each variable is the loop variable of a FOR 1loor for
which the NEXT statement is the end point. 1In the 4K version,
the only form allowed is NEXT with one variable. 1In all other
versions, NEXT without a variable will match the most recent
FOR statement. In the case of nested 1loops which have the
same end point, a single NEXT statement may be used for all of
them, except in 4K. The first variable in the 1list must be
that of the most recent 1loop, the second of the next most
recent, and so on. If BASIC encounters a NEXT statement
before its <corresponding FOR statement has been executed, an
NF or NEXT WITHOUT FOR error message is issued and execution
is terminated.

C. Subroutines - GOSUB and RETURN Statements. If the
same . operation or series of omerations are to be verformed in
several places in a program, storage space reguirements and
programming time will be minimized by the use of subroutines.
A subroutine is a series of statements which are executed in
the normal fashion wupon being branched to by a GOSUB
statement. Execution of the subroutine is terminated by the
RETURN, statement which branches back to the statement zfter
the most recent GOSUB. The format of the GOSUB statement 1is
as follows:

GOSUB<Kline number>

where the line number is that of the first 1line of the
subroutine. A subroutine may be called from more than one
place in a program, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

Except in the 4K version, subroutines may be branched to
conditionally by use of the ON...GOSURB statement, whose form
is as follows:

ON <expression> GOSUB <list of line numbers>

The execution is the same as ON...GOTO except that the line
numbers are those of the first 1lines of subroutines.
Execution continues at the next statement after the ON...GOSUB
upon return from one of the subroutines.

d. Memory Limitations. While nesting in loops,
subroutines and branching is not limited by BASIC, memory size
limitations restrict the size and complexity of programs. The
OM or OUT OF MEMORY error message is issued when a program
requires more memory than is available. See Apvendix C for an

BASIC 4.1

April, 1977

explanation of the amount of memorvy required to run programs.

2-3. Input/OQutput

a. INPUT. The INPUT statement causes data input to be
reguested from the terminal. The format of the INPUT
statement is as follows:

INPUT<K1list of variables>

The effect of the INPUT statement is to cause the values typed
on the terminal to be assigned to the variables in the list.
When an INPUT statement is executed, a cuestion mark (?) 1is
printed on the terminal signalling a request for information.
The operator types the required numbers or strings (or, in 4X,
expressions) separated by commas and types a carriage return.
If the data entered is 1invalid (strings were entered. when
numpbers were requested, etc.) BASIC prints 'REDO FROM START?'
and waits for the correct data to be entered. If more data
was requested by the INPUT statement than was typed, ?? is
printed on the terminal and execution awaits the needed data.
If more data was typed than was requested, the warning 'EXTRA
IGNORED' is printed and exscution proceeds. After all the
requested data 1is input, execution continues normally at the
statement following the INPUT. Except 1in 4K, an optional
prempt string may be added to an INPUT statement.

INPUT["<prompt string>"“;]<variable list>

Execution of the statement causes the prompt string to be
printed before the guestion mark. Then all overations ovroceed
as above. The prompt string must be enclcsed in double
guotation marks (") and must be separated from the variable
list by a semiceclon (;). Example:

1990 INPUT “WHAT'S THE VALUE";X,Y causes the following
output:

WHAT'S THE VALUE?

The requested values of X and Y are tyved after the ? Excent
in 4K, a <carriage return in resv»onse to an INPUT stztement
will cause execution to continue with the wvalues of the
variables in the variable list unchanged. 1In 4X, a SN error
results.

b. PRINT. The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT

BASIC 4.1 , 23

April, 1977

24

which prints a carriage return. The effect is to skip a line.
The more usual PRINT statement has the following form:

PRINT<list of expressions>

which causes the values of the expressions in the list to . be
printed. String literals may be vrinted if they are enclosed
in quotation marks (").

The position of printing is determined by the punctuation
used to separate the entries in the 1list. Altair BASIC
divides the printing line into zones of 14 spaces each. 3
comma causes printing of the value of the next expression to

begin at the beginning of the next 14 column 2zone. A
semicolon (;) causes the next printing to begin immediately
after the 1last wvalue printed. If a comma or semicolon

terminates the 1list of expressions, the next PRINT statement
begins printing on the same line according to the conditions
above. Otherwise, a carriage return is printed.

c. DATA, READ, RE3STORE

1) The DATA statement. Numerical or string data needed
in a program may be written into the proqram statements
themselves, input from pericheral devices or read from DATA
statements. The format of the DATA statement is as follows:

DATA<Llist>

where the wentries in the 1list are numerical or string
constants separated by commas. In 4K, expressions may also
appear in the list. The effect of the statement is to store
the 1list of values in memory in coded form for access by the
READ statement. Examples:

19 paTa 1,2,-1E3,.04

28 DATA " LOO", MITS Leading and trailing svaces in
string values are suporessed unless the string is
enclosed by double quotation marks.

2) The READ statement. The data stored by DATA
statements 1is accessed by READ statements which have the
following form:

READ<K1list of wvariables>

where the entries in the list are variable names separated by
commas. The effect o0f the READ statement is to assign the
values in the DATA lists to the corresvonding variables in the
READ statement 1list. This 1is done one by one from left to
right until the READ list is exhausted. If there are nmnore
names in the READ list than values in the DATA lists, an OD or

BASIC 4.1

April, 1977

OUT OF DATA error message is issued. 1If there are more values
stored in DATA statements than are read by a READ statement,
the next READ statement to be executed will begin with the
next wunread DATA list entry. A single READ statement may
access more than one DATA statement, and more than one READ
statement may access the data in a single DATA statement.

An SN or SYNTAX ERROR message can result £from an
improperly formatted DATA list. In 4K Altair BASIC, the error
message will refer to the READ statement which attempted to
access the incorrect data. 1In other versions, the line number
in the error message will refer to the actual line of the DATA
statement in which the error occurred.

3) The RESTORE statement. After the RESTORE statement is
executed, the next piece of data accessed by a READ statement
will be the first entry of the first DATA list in the v»rogram.
This allows re-READing the data.

d. CSAVE and CLOAD (8K cassette, Extended and Disk
versions only). Numeric arrays may be saved on cassette or
loaded from cassette using CSAVE* and CLOAD*, The formats of
the statements are:

CSAVE*<array name>
and
CLOAD*<array name>

The array is written out in binary with four octal 214 header
bytes to indicate the start of data. These bytes are searched

for when CLOADing the array. The number of bytes written is
four plus:

8*<{number of elements> for a dcuble vnrecision arrav
4*<{number of elements> for a single precision arrav
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript varving most
quickly, the next leftmost second, etc:

DIM A(19)
CSAVE*A

‘writes out A(8),A(Ll),...A(1D)

DIM A(19,10)
CSAVE*A

BASIC 4.1 ‘ - 25

April, 1977

writes out A(6,90), A(1,90)...A(19,0),A(10,1)...A(10,18)

Using this fact, it is vossible to write a two dimensional
array and read it back in as a single dimensional array, etc.

NOTE

Writing out a double precision array and reading it
back in as a single precision or integer array is not
recommended. Useless values will undoubtedlv be
returned.

e. Miscellaneous Input/Output

1) WAIT (not in 4K). The status of input ports can be
monitored by .the WAIT command which has the following format:

WAITKI,JI>[,<X>]

where I is the number of the port being monitored and J and K
are 1integer expressions. The port status is exclusive ORd
with K and the result is ANDed with J. Execution is suspended
until a non-zero value results. J picks the bits of port I to
be tested and exscution is suspended until those bits differ
from the corresrvonding bits of K. Execution resumes at the
next statement after the WAIT. If X is omitted, it is assumed
to be zero. I, J and XK mwmust be in the range 8 to 255.
Examples:

WAIT 24,6 Execution stops until either bit 1 or bit
2 of pvort 29 are ecqual to 1. (Bit @ is
least significant bit, 7 is the most sig-
nificant.) Execution resumes at the next
statement. :

WAIT 19,255,7 Execution stops until any of the most
significant 5 bits of cort 10 are cne or
any of the least significant 3 bits are

Zero. Execution resumes at the next statement.

2) POKE, PEEK (not in 4K). Data may be entered into
memory 1in binary form with the POKE statement whose format is
as follows:

PCKE <I,J>

BASIC 4.1

April, 1877

where I and J are integer expressions. POKE stores the byte J
into the location specified by the value of I. 1In 8K, I must
be less than 32769. 1In Extended and Disk versions, I may be
in the range @ to 65535. J must be in the range 8 to 255. 1In
8K, data may be POKEd into memory above location 32768 by
making I a negative number. 1In that case, I is computed by
subtracting 65536 from the desired address. To POKE data into
location 45009, for example, I is 45000-65536=-20536. Care
must be taken not to POKE data into the storage area occupied
by Altair BASIC or the svstem may be PCKE4d to death, and BASIC
will have to be loaded again.

The complementarvy function to POKE is PEEK. The format
for a PEEK call is as follows:

PEEK (<KI>)
where I is an integer expression specifying the address fronm
which a byte is read. I is chosen in the same way as in the
POKE statement. The value returned is an integer between g
and 255. A major use of PEEK and POKE is to pass arguments
and results to and from machine langquage subroutines.

3)0UT, INP (not in 4K). The format of the QUT statement
is as follows:

ouT <I1,J3>
where I and J are integer expressions. OUT sends the Abvte
signified by J to output port I. I and J must be in the range
4 to 255.

The INP function is called as follows:

INP (KI>)

INP reads a byte from port I where I is an integer expression
in the range § to 255. Example:

23 IF INP(J)=16 THEN PRINT "ON"

BASIC 4.1

April, 1977

28

3. FUNCTIONS.

Altair BASIC allows functions to be referenced in
mathematical function notation. The format of a function call
is as follows: 2

<name> (<argument>[,<argument>...])
where the name is that of a previously defined function and
the arguments are one or more expressions separated by commas.
Only one argument is allowed in 4K and 8K. Function calls may
be components of expressions, so statements like

19 LET T=(F*SIN(T))/P and
20 C=SQR(A"2+B"2+2*A*B*COS(T))

are legal.

3-1. Intrinsic Functions

Altair BASIC provides several frequently used functions which
may be called from any program without further definition. 2
procedure is provided, however, whereby unneeded functions may
be deleted to save memory space. See Appendix B. For a list
of intrinsic functions, see section 6-3.

3-2. User-Defined Functions = the DEF Statement (not in 4X).

a. The DEF statement. The programmer may define
functions which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the DEF
statement is as follows:

DEF<function name>(<variable list>)=<expression>

where the function name must be FN followed by a legal
variable name and the entries in the variable list are 'dummy’
variable names. The dummy variables represent the argument
variables or values in the function call. 1In 8K Altair BASIC,
only one argument is allowed for a user-defined function, but
in the Extended and Disk versions, any number of arguments is
allowed. Any expression may appear on the right side of the

equation, but it must be limited to one line. User-defined

functions may be of any type in Extended and Disk versions,
but user-defined string functions are not allowed in 8K. If a
type 1s specified for the <function, the value of the
expression is forced to that typve before it is returned to the
calling statement. Examples:

3ASIC 4.1

April, 1977

10 DEF FNAVE(V,W)=(V+W)/2

11 DEF FNCONS (VS,W$)=RIGHTS (VS+WS$,5) Returns the right
most 5 characters of ‘the concat-
enation of VS and WS.

12 DEF FNRAD(DEG)-3 14159/184*DEG When called with the
measure of an angle in degrees,’
returns the radian equivalent.

A function may be redefined by executing another DEF statement
with the same name. A DEF statement must be executed before
the function it defines may be called.

b. USR. The USR function allows calls to assembly
language subroutines. See appendix E.

3-3. Errors.

a. An FC or ILLEGAL FUNCTION CALL error results when an
improper call is made to a function. Some places this might
occur are the following:

1. a negative array subscript. LET A(~1)=0, for example.
2. an array subscript that is too large (>32767)

3. negative or zero arqgument for LOG

4, Negative argument for SQR

5. A"B with A negative and B not an integer

6. a call to USR with no address wpatched for the machine
language subroutine

7. improper arguments to MIDS, LEFT$,RIGHTS, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, INSTR, STRINGS, SPACES or
ON...GOTO.

b. An attemot to call a user-defined function which has
not previously avpeared in a DEF statement will cause a UF or
UNDEFINED USER FUNCTION error.

cC. A T or TYPE MISMATCH error will occur if a function

‘which expects a string argqument is given a numeric value or

vice-versa.

BASIC 4.1 29

April,

1977

4. STRINGS

In all Altair BASIC versions except 4K, expressions may
either have numeric value or may be strings of characters.
Altair BASIC provides a complete complement of statements and
functions for manioulating string data. Many of " the
statements have already been discussed; so ,only their
particular apvlication to strings will be treated in this
section.

4-1, String Data.

A string is a list of characters which may be from @ to
255 characters in length. Strings mav be stated explicitly as
constants or referred to symbolically by wvariables. String
constants are delimited by quotation marks at the beginning
and end. A string variable name ends with a dollar sign (§).
Examples: :

AS="ABCD" Sets the variable AS$ to the four character
string "ARBRCD"

B9$S="14A/56" Sets the variable B9S to the six character
string "14A/56" ,

FOOFO0S$S="ES$" Sets the variable FOOFO0$ to the two charac-
ter string "ES*

Strings input to an INPUT statement need not be surrounded by
guotation marks.

String arrays may be dimensioned exactly as any other
kind of array by use of the DIM statement. Each element of a
string array is a string which may be wup to 255 characters
long. The total number of string characters in use at any
point in the execution of a2 pvrogram must not exceed the total
allocaticn of string space, or an OS or OUT OF STRING SPACE
error will result. String space is allocated by the CLEAR
command which is explained in secticn 6-2.

4-2. Strina Operations.

a. Comparison Operators. The comparison operators for
strings are the same as those for numbers:

= equal

<> not equal

< less than

> agreater than

=< ,<= less than or egqual to
=>,>= greater than or equal to

Comparison is made character by character on th pasis of

D

BASIC 4.1

April, 1977

ASCII codes until a difference is found. If, while comparison
is oroceedlng, the end of one strlnq is reached, the shorter
string 1is considered to be smaller. ASCII codes may be found
in Appendix A. Examples:

A<Z ASCII A is 065, Z is 0949

1<Aa ASCII 1 is @49

" A">"A" Leading and trailing blanks are significant
in string literals.

b. String Expressions. String expressions are composed
of string literals, string variables and string function calls
connected by the concatenation operator (+). The effect of
the catenation operator is to add the string on the right side
of the operator to the end of the string on the left. If the
result of concatenation is a string more than 255 characters
long, an LS or STRING TOO LONG error meSDaae will ©be issued
and execution will be terminatad.

¢. Input/Output. The same statements used for inout and
output of normal numeric data mav also be used for strina
data.

1) INPUT, PRINT. The INPUT and PRINT statements read and
write strings on the terminal. Strings need not be enclosed
in gquotation marks, but if they are not, leading blanks will
be ignored and the string will be terminated when the first
comma or colon is encountered. Examples:

1% INPUT Z0OS,FOOS Reads two strings

20 INPUT XS Reads one string and assiagns
it to the variable XS.

39 PRINT XS$S,“HI, THERE" Prints two strings, including

all spaces and vpunctuation
in the second.

2) DATA, READ. DATA and READ statements for string data
are the same as for numeric data. For format conventions, see
the explanation of INPUT and PRINT above.

4-3. String Functions.

The format for intrinsic string function calls is the
.same as that for numeric functions. For the list of string
functions, see section 6-3. Special user-defined string
functions are 2llowed in Extended and Disk versions and may be
defined by the use of the DEF statement (see section 3-2).
String function names must end with a dollar sign?’ '

BASIC 4.1 31

April, 1977

32

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC vprovide
several statements, operators, functions and commands which
are not available either in the 4K or 8K versions. -For
clarity, these features are grouped together in this section.
Some modifications to existing 4K and 8K features, such as the
IF...THEN...ELSE statement and number typing facilities, have
been discussed in conjunction with the other versions. Check
the index for references to those features.

5-1. Extended Statements

a. ERASE. The ERASE statement eliminates arrays from a
program and allows their space in memory to be used for other
purposes. The format of the ERASE statement is as follows:

ERASE<array variable list>

where the entries in the list are valid array variable names
sevarated by conmnmas. ERASE will only operate on arravs and
not arrav elements. If a name appears in the 1list which 1is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement may be
dimensioned again, but the 0ld values are lost.

Example:

19 DIM A(5,5) etc.

60 ERASE A
790 DIM A(199)

b. LINE INPUT. It is often desirable to input a whole
line to a string variable without use of gquotation marks and
other delimiters. LINE INPUT oprovides this facility. The
format of the LINE INPUT statement is as follows: ’

LINE INPUT [“<prompt string>"];<string variable name>
The orompt string is a string literal that is printed on the

terminal before inout 1is accepted. A question mark is not
printed unless it is contained in the ©vorompt strina. All

‘input from the end of the vrompt string to the carriage return

is assigned to the string variable. A LINE INPUT may be
escaped by tyving Control/C. At that point, BASIC returns to
command level and orints OK. Execution may be resumed at the
LINE INPUT by typing CONT. LINE INPUT destrovys the inout
buffer, so the command may not be edited by Control/A for

BASIC 4,1

april, 1977

re-execution.

c. SWAP. The SWAP statement allows the values of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>

The value of the second variable is assigned to the first
variable and vice-versa. Either or both of the variables may
be elements cf arrays. If one or both of the variables are
non-array variables which have not had values assigned to
them, an ILLEGAL FUNCTION CALL error will result. Both
variables must be of the same type or a TYPE MISMATCE error
will result. Example:

16 INPUT FS$,LS
20 SWAP F$,LS
3¢ PRINT FS$,LS

RUN
?FIRST,LAST Data input
LAST FIRST Computer prints

d. TRON, TROFF. As a debugging aid, two statements are
provided to trace the execution of program instructicns. When
the trace flag is turned on by the TRON statement, the number
of each line in the proaram is printed as it is executed. - The
numbers appear enclosed in sguare brackets ([]). The function
is disabled by execution of the TROFF statesment. Example:

TRCN executed in direct mode

OK printed by computer

19 PRINT 1:PRINT “A" typed bv programmer

29 STOP '

RUN

(1] 1 line numbers and outout printed by
A comouter.

[20]

BREAK IN 20
The NEW command will also turn off the trace flag.

e. IF...THEN...ELSE. See section 2-2.

f. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1

g. CONSOLE, WIDTH. CONSOLE azallows the console terminal
to be switched from one I/0 port to another. The format of

the statement is:

CONSOLE <I/0 port number>,<switch register setting>

BASIC 4,1 33

April, 1977

The <KI/0 port number> is the hardware port number of the low
order (status) port of the new I/0 board. This value must be
a nuneric expression between @ and 255 inclusive. If it is
not in this range, an ILLEGAL FUNCTION CALL error will occur.
The <switch register setting> is also a value between 4 and
255 inclusive which svecifies the type of I/0 port (SI0, PIO,
4PI0 etc) being selected. Avporopriate values of the <switch
register setting> may be found in Appendix B in the table of

‘sense switch settings or in the table below.

Table of values for <switch register setting>:

I/0 Board Sense Switch
Setting
2SI0 with 2 stop bits)
2SI0 with 1 stoo bit 1
SIO 2
ACR 3
4PIO 4
PIO 5
HSR 5
non-standard terminal 14
no terminal 15

WIDTH Statement

The WIDTH statement sets the width in characters of the
printing terminal line. The format of the WIDTH statement is
as follows:

WIDTH <integer expression>
Example:

WIDTH 8@
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inclusive, or an ILLEGAL FUNCTION CALL error will occur.

h. Error Trapwving. Extended and Disk Altair BASIC make
it possible for the user to write error detection and handling
routines which can attemot to recover from errors or ©provide
more complete exvlanation of the cause of errors than the
simple error messages. This facility has been added to Altair
BASIC through the use of the ON ERROR GOTO, RESUME and ERROR

BASIC 4.1

April, 1377

statements and with the ERR aﬁd ERL variables.

1) Enabling Error Trapving. The ON ERROR GOTO statement
specifies the 1line of the Altair BASIC program on which the
error handling subroutine starts. The format is as follows:

ON ERROR GOTO <line number>

The ON ERROR GOTO statement should be executed before the user
expects any errors to cccur. Once an ON ERROR GOTO statement
has been executed, all errors detected will cause BASIC to
start execution of the spvecified error handling routine. If
the <line number> specified in the ON ERROR GOTO statement
does not exist, an UNDEFINED LINE error will occur.

Example:

10 ON ERROR GOTO 1009

2) Disabling the Error Routine. ON ERROR GOTO 4 disables
trapping of errors so any subsequent error will cause BASIC to
print an error message and stop program execution. If an
ON ERROR GOTO @& statement appears in an error travoing
subroutine, it will cause BASIC to stoo and vprint the error
message which caused the trap. It is recommended that all
error trapping subroutines execute an ON ERROR GOTO 9
subroutine 1if an error is encountered for which thev have no
recovery action.

NOTE

If an error occurs during the execution of an error
trap routine, the system error message will be printed
and execution will be terminated. Error trapping does
not trap errors within the error trac routine.

3) The ERR and ERL Variables. When the error handling
subroutine 1is entered, the variable ERR contains the error
code for the error. The error codes and their meanings are
listed below. See section 6-5 for a detailed discussion of
each of the errors and error messages.

Code Error

,d .
1 NEXT WITHOUT FOR
2 SYNTAX ERROR

BASIC 4.1 35

April, 1977

36

3 RETURN WITHOUT GOSUB

4 OUT OF DATA

5 ILLEGAL FUNCTION CALL
6 OVERFLOW

7 OUT OF MEMORY

8 UNDEFINED LINE

9 SUBSCRIPT OUT OF RANGE

19 REDIMENSIONED ARRAY

11 DIVISION BY ZERO

12 ILLEGAL DIRECT

13 TYPE MISMATCH

14 OUT OF STRING SPACE

15 STRING TOO LONG

16 STRING FORMULA TOO COMPLEX
17 CAN'T CONTINUE

18 UNDEFINED USER FUNCTION
19 NO RESUME

20 MISSING OPERAND

21 RESUME WITHOUT EPRROR

22 UNPRINTABLE ERROR

23 LINE BUFFER OVERFLOW

Disk Errors

50 FIELD OVERFLOW

51 INTERNAL ERROR

52 BAD FILE NUMBER

53 FILE NOT FOUND

54 BAD FILE MODE

55 FILE ALREADY OPEN

56 DISK NOT MOUNTED

57 DISK I/0 ERROR

58 FILE ALREADY EXISTS

59 SET TO NON-DISK STRING
60 DISK ALREADY MOUNTED
61 DISK FULL

62 INPUT PAST END

63 BAD RECORD NUMBER

64 B8AD FILE NAME

65 MODE-MISMATCH

66 DIRECT STATEMENT IN FILE
67 TOO MANY FILES

68 OUT OF RANDOM BLOCKS

The ERL variable contains the line number of the 1line
where the error was detected. For instance, if the error
occured in line 1068, ERL will be ecqual to 1404. If the
statement which caused the error was a direct mode statement,
ERL will be egual to 65535 decimal. To test 1f an error

BASIC 4.1

April, 1977

occurred in a direct statement; use
IF 65535=ERL THEN ...

In all other cases, use
IF ERL=<line number> THEN...

If the line number is on the left of the eguation, it cannot
be renumbered by RENUM (see secticn 1l-la).

4) Disk Error Values - The ERR function. The ERR
function returns the parameters of a DISK I/O ERROR. ERR(%)
returns the number of the disk, ERR(1l) returns the track
number (8-76) and ERR(2) returns the sector number (8-31).
ERR(3) and ERR(4) contain the 1low and high order bytes,
respectively, of the cumulative error count since BASIC was
loaded. S

NOTE

Neither ERL nor ERR may apvear to the left of the =
sign in a LET or assignment statement.

5) The RESUME statement. The RESUME statement is used to
continue execution of the BASIC vprogram after the error
recovery procedure has been performed. The user has three
options. The user may RESUME execution at the statement that
caused the error, at the statement after the one that caused
the error or at some other line. To RESUME execution at the
statement which caused the error, the user should use:

RESUME
or
RESUME 9

To RESUME execution at the statement immediatelv after the one
which caused the error, the user should use: :

RESUME NEXT

To RESUME execution at a line dfferent than the one where the
2rror occurred, use:

BASIC 4.1 . 37

april, 1977

38

RESUME <line number>
Where <line number> is not egqual to =zero.

6) Error Routine Example. The following example shows
how a simple error trapping subroutine operates. -

199 ON ERROR GOTO 500

200 INPUT "WHAT ARE THE NUMBERS TO DIVIDE";X,Y
219 2=X/Y '

220 PRINT "QUOTIENT IS";Z

238 GOTO 209

509 IF ERR=11 AND ERL=21¢ THEN 520

519 ON ERROR GOTO @

529 PRINT “YOU CANT HAVE A DIVISOR OF ZERO!"
530 RESUME 200

7) The ERROR statement. In order to force branching to
an error trapping routine, an ERROR statement has been
provided. The primary use of the ERROR statement is to allow
the user to define his own error codes which can then
conveniently be handled by a centralized error trap routine as
described above. The format of the ERROR statement is:

ERROR <integer expression>

When defining error codes, values should be vicked which are
greater than the ones used by Altair BASIC. Since more error
messages may be added to Altair BASIC, user-defined error
codes should be assigned the highest available numbers to
assure future compatibility. If the <numeric expression> used
in an ERROR statement is less than zero or gareater than 255
decimal, an ILLEGAL FUNCTION CALL error will occur. Of
course, the ERROR statement may also be used to £force SYNTAX

~or other standard Altazir BASIC errors. Use of an ERROR

statement to force printout of an error message for which no
error text is defined will cause an UNPRINTABLE ERROR message
to be printed out.

5-2. Extended Operators.

Two operators are provided that are exclusive to the
Extended and Disk versions.

a. Integer Division. 1Integer division, denoted by \
(backslash), forces its arguments to integer form and
truncates the quotient to an integer. More precisely:

A\B= FIX(INT(A)/INT(B))

BASIC 4.1

-April, 1977

Its precedence is just after multiplication and floating point
divison. Integer division is aonrox1mately elght times as
fast as standard floating point division.

b. Modulus Arithmetic - the MOD operator. A MOD B gives
the 'remainder' as A is divided by B. More precisely:

A MOD B=INT(A)-(INT(B)*(A\B))
If B=0, a DIVISION BY ZERO error cccurs. The ©precedence of

MOD is just below that of integer division.

5-3. Extended Functions.

a. Intrinsic Functions. Extended and Disk Altair BASIC
orovide several intrinsic functions which are not available in
the other versions. For a 1list of these functions and a
description of their use, see section 6-3.

b. The DEFUSR statement. Up to ten assembly language
subroutines may be defined by means of the DEFUSR statement
whose form is as follows:

DEFUSR[<digit @ through 9>]=<integer exprescsion>
Example:

DEFUSR1=&100900
DEFUSR2=31996
DEFUSR9=ADR

The <integer expression> is the starting address of the USR
routine specified. When the USR subroutine is entered, the A
register contains the type of the argument which was given to
the USR function. This is also the length of the descriptor
for that argument type: .

Value in A Meaning

2 Two bvte signed two's complement integer.

3 String.

4 ' Single vprecision four byte floating voint number.
8 Double vprecision floating pcint number.

When the USR subroutine.is entered, the [H,L] reaister pair
contains a pointer to the floating point accumulator (FAC).
‘The [H,L] registers contain the address of FAC-3.

If the value in the FAC is a single precision £floating point
number, it is stored as follows:

FAC-3: Lowest 8 bits of mantissa.
FAC=2: Middle 8 bits of mantissa.

BASIC 4.1 39

April, 1677

FAC-1l: Highest 7 bits of mantissa with hidden (implied)
leading one. Bit 7 is the sign of the number (9@
positive, 1 negative).

FAC: Exponent excess 200 octal. If the contents of FAC is 2449,
the exponent is 4. If contents of FAC is 9,the number is
Zero. -

If the argument is double precision floating point, the FAC-7
to FAC-4 contain four more bytes of mantissa, low order byte
in FAC-7, etc. If the argument is an integer, FAC-3 ' contains
" the 1low order byte and FAC-2 contains the high order byte of
the sianed two's complement value. If the argument 1is a
string, |[D,E] ©points to a string descrintor of the araument,
whose form is:

Byte Use

g Length of string 9-255 decimal.

1-2 Sixteen bit address pointer to first byte of
strings text in memory (Caution - may point into
program text if argument is a string literal).

The string returned by a call to USR with a string argument is
the string the user's routine sets up 1in the descriptor.
Modifying |[D,E] does not affect the returned string. For
example, CS=USR(AS) results in C$ and AS$ being set to the same
string. The statement CS$=USR(AS+" ") avoids modifying AS
since the user's routine modifies the descriptor of the
temporary string As+" ". -

A string returned by the wuser's routine should 1lie
withing the storage area occupied by the argument string.
Increasing the length of a string in a user's routine 1is
guaranteed to cause trouble.

Normally, the value returned by a USR function will be
the same -type (integer, string, single or double precision
floating point) as the argument which was passed to it.
However, calling the MAKINT routine whose address is stored in
location 6 will return the integer in [H,L] as the value of
the function, forcing the value returned by the function to be
integer. Execute the following sequence to return from the
function:

PUSH H ; SAVE VALUE TO BE RETURNED
LHLD 6 ;GET ADDRESS OF MAKINT ROUTINE
XTHL s SAVE RETURN ON STACK &
;GET BACK [H,L]
RET s RETURN
& :

The argument of the function may be forced to an integer, no
matter what 1its tyove by calling the FRCINT routine whose

BASIC 4,1

April, 1877

address is located in location 4 to get the integer value of
the argument in ([H,L]:

LXI . H,SUB1 ;GET ADDRESS OF SUBROUTINE
; CONTINUATION

PUSH H sPLACE ON STACK

LHLD 4 ;GET ADDRESS OF FRCINT

PCHL ' ; CALL FRCINT

SUBI: * o e 00

5-4. The EDIT Command.

The EDIT command allows modifications and additions to be
made to existing program lines without having to retype the
entire line each time. Commands typed in the EDIT mode are,
as a rule, not echoed. That is, they usually do not appear on
the terminal screen or printout as they are typed. Mcst
commands may be preceded by an optional numeric repetition
factor which may be used to repeat the command a number of
times. This repetition factor should be in the range 6 to 255
(0 is equivalent to 1). If the repetition factor is omitted,
it is assumed to be 1. 1In the following examples, a lower
case "“n" before the command stands for the repetition factor.
In the following description of the EDIT commands, the
“cursor" refers to a pointer which 1is vpositioned at a
character in the line being edited. ,

To EDIT a line, tyve EDIT followed by the number of the
line and hit the carriage return. The line number of the line
being EDITed will be printed followed by a space. The cursor
will now be positioned to the left of the first character in
the line.

" NOTE

The best way of getting the "feel" of the EDIT command
is to try EDITing a few lines yourself.

If a command not recognized as an EDIT command is entered, the
computer prints a bell (control/G) and the command is ignored.

In the following examoles, the lines labelled *“computer
prints" show the avoearance of the line after each command.

a. Moving the Cursor. Typina a space moves the cursor
to the right and causes the character npassed over to be
printed. A number preceding the space (n<space>) will cause

BASIC 4.1 4l

April, 1977

42

the cursor to pvass over and print out n characters. Typing a
Rubout causes the immediately previous character to be printed
effectively backspacing the cursor.

b. 1Inserting Characters

WARNINGS:

Character insertion is stopped by tyving Escape
(or Altmode on some terminals). Control/C will not
interrupt the EDIT command while it is in Insert mode,
but will be inserted into the edited line. Therefore,
Control/C should not be used in the EDIT command.

It is possible using EDIT to create a line which,
when 1listed with its line number, is longer than 72
characters. Punched paper tapes containing such lines
will not read ©proverly. However, such lines may be
CSAVEd and CLOADed without error.

I Inserts new characters into the line being edited.
Each character typed after the I is inserted at the
current cursor ©position and vrinted on the terminal.
Typing Escape (or Altmode on some terminals) stops
character insertion. TIf an attempt is made to insert
a character that will make the line 1longer than 255
characters, a Control/G (bell) is sent to the terminal
and the character is not vrinted.

A backarrow (or Rubout) typed during an insert command
(or-) will delete the character to the left of the cursor.
Characters up to the beginning of the line may be deleted 1in

. this manner, and a backarrow will be echoed for each character

deleted. However, if there are no characters to the 1left of
the cursor, a bell 1is echoed instead of a backarrow. If a
carriage return is typed during an insert command, it is as if
an escape and then carriage return were typed. That is, all
characters to the right of the cursor will be printed and the
EDITed line will replace the original line.

X X is similar to I, except that all characters to

the right of the cursor are printed, and the cursor
moves to the end of the line. At this point, it will
automatically enter the insert mode (see I command).
X is most useful whén new statements are to be added

to the end of an existing line. For example:

BASIC 4.1

April, 1977

User types EDIT 59 (carriage return)

Computer prints 50

User tvypes ‘ X

Computer prints 58 X=X+1

User types :¥=Y+1 (CR)
Computer prints 50 X=X+1:¥Y=Y+1

In the above example, the original line #50 was:
50 X=X+1 o
The new line #50 now reads:

50 X=X+1l:Y=Y+1

H is the same as X, except that all characters to

the right of the cursor are deleted (they will not be
printed). The insert mode (see I command) will +hen
automatically be entered. H is most useful when the
last statements on a line are to be replaced with new
ones.

Deleting Characters

nD deletes n characters to the right of the cursor.
If n is ommitted, it defaults to 1. If there are less
than n characters to the right of the cursor,
characters will be deleted only to the end of . the
line. The <cursor 1is positioned to the right of the
last character deleted. The characters deleted are
enclosed in backslashes (\). For example:

User types 280 X=X+1:REM JUST INCREMENT X
User tyves - EDIT 29 (carriage return)
Computer prints 20

User types 6D (carriage return)

Computer prints 20 \X=X+1:\REM JUST INCREMENT X

The new line 20 will no longer contain the characters which
are enclosed by tHe backslashes. ’

BASIC 4.1

April, 1977

d.

Searching.

The nSy command searches for the nth occurrence of
the character v in the line. N defaults to 1. The
search skips over the first character to the riaht of
the cursor and begins with the second character to the
right of the cursor. 211 characters mnassed over
during the search are orinted. If the character 1is
not found, the cursor will be at the end of the line.
If it is found, the cursor will stoo to the right of
the character and all of the characters to its left

43

will have been printed. For example:

User types . 5¢ REM INCREMENT X
User types EDIT 5@
Computer prints 59 -
User types 2SE
Computer prints 50 REM INCR
K nKy is egquivalent to S except that all of the char-

acters passed over during the search are deleted. The
deleted characters are enclosed in backslashes. For

example:
User types 19 TEST LINE
User types EDIT 14
Computer vrints 10
User tyves KL
Computer prints 14 \TEST \

e. Text Replacement.

C A character in a line may be changed bv the use of
the command Cy which changes the character to the
right of the cursor to the character y. Y is orinted
on the terminal and the cursor is advanced one
position. nCy may be used to change n characters in a
line as they are typed in from the terminal. (See
example below.) TIf an attempt is made to change a
character which does not exist, the change mode will
be exited. Example:

User types 19 FOR I=1 TO 144
User types - EDIT 190

Computer orints . 12

User types 281

Computer orints 18 FOR I=1 TO :
User types 3C256
Computer prints 13 FOR I=1 TO 256

. £f. Ending and Restarting

Carriage Return Terminates editing and porints the re-
mainder of the line. The edited 1line revlaces the
original line.

E E is the same as a carriage return except the
remainder of the line is not printed.

Q Q restores the original line and causes BASIC to
return to command level. Changes do nof take effect
until an E or carriage return is tyved, so Q allows
the user to restore the original 1line without any

BASIC 4.1

April, 1977

changes which may have been made.

L L causes the remainder of the line to be printed,
and then prints the line number and restarts editing
at the beginning of the 1line. The cursor will be
positioned to the left of the first character in the
line. L allows monitoring the effect of changes on a
line. Example:

User types 50 REM INCREMENT X

User types EDIT 5¢
Computer prints 59
User tvypes 23M
Comouter prints 54 REM INCRE
User types L
Computer vrints 50 REM INCREMENT X
58
A A causes the original line to be restored

and editing to be restarted at the beginning of the
line. For example:

User types 19 TEST LINE
User types EDIT 19

Computer prints 19

User tvpes 14D

Computer prints 19 \TEST LINE\
User types A
Computer prints 12 \TEST LINE\

' 18

Suppose in the above example, that the user made a
mistake when he deleted TEST LINE. As a result of the
A command, the original line 19 is reentered and is
ready for further editing.

IMPORTANT
Whenever a SYNTAX ERROR is discovered during the execution of
‘a source program , BASIC will automatically begin EDITing the
line that caused the error as if an EDIT command had been
typed. Example:

10 APPLE

RUN

SYNTAX ERROR IN 19
19

Complete editing of a 1line causes the 1line edited to be
reinserted. Reinserting a line causes all variable values to
be deleted. To ©vreserve those values for examination, the
EDIT command mode may be exited with the Q command after the

159
(8;]

BASIC 4.1

April, 1977

46

line number is printed. 1If this is done, BASIC will return to
command level and all variable values will be preserved.

The features of the EDIT command may be used on the line
currently being typed. To do this, type Control/A instead of
Carriage Return. The computer will respond with a carriage
return, an exclamation point (!) and a space. The cursor will
be positioned at the first character of the 1line. At this
point, any of the EDIT subcommands except Control/A may be
used to correct the line. Example:

User types 19 IF X GOTO #"/A

Computer prints !

User types S% 2C12
~ Computer prints ! 13 IF X GOTO 12

The current line number mav be designated by a veriod (.)
in any command requiring a line number. Examples:

User tyves 18 FOR I= 1 TO 14
User types EDIT .
Computer prints 19

5-5. PBRINT USING Statement.

The PRINT USING statement can be emplovyed 1in situations
where a spvecific output format is desired. This situation
might be encountered in such applications as printing payroll
checks or accounting reports. The general format for the
PRINT USING statement is as follows:

PRINT USING <string>;<value list>

The <string> may be a string variable , string expression or a
string constant which 1is @a ©precise copy of the line to be
printed. All of the characters in the string will be ©orinted
just as they appear with the exception of the formatting
characters. The <value list> is a list of the items to be
vrinted. The string will be repeatedly scanned until: 1) the
string ends and there are no values in the value list or, 2) a

field 1is scanned in the string, but the wvalue 1list is

exhausted. The string is constructed according to the
following rules: ,

BASIC 4.1

April, 1977

47

a. String Fields.

! specifies a single character string field. The string itself

is specified in the value list.

\n spaces\ specifies a string field consisting of 2+n char-
acters. Backslashes with no 'spaces between them
indicates a field 2 characters wide, one space between
them indicates a field 3 characters wide, etc.

In both cases, if the string has more characters than the
field width, the -extra characters will be ignored. If the
string has fewer characters than the field width, extra spaces
will be printed to £ill out the entire field. Trying to orint
a number in a string field will cause a TYPE MISMATCH error to
occur. Example:

19 A$S="ABCDE":BS="FGH"

20 PRINT USING "!“;A$;BS

38 PRINT USING "\ \";BS;AS
RUN

(the above prints out)

AF
FGH ABCD

Note that where the "1!" was used only the first letter of each
string was printed. Where the backslashes enclosed two
spaces, four letters from each string were printed (an extra
space was vprinted for BS which has only three characters).

‘The extra characters in the first case and for AS in the

second case were ignored.

b. Numeric Fields. With the PRINT USING statement,
numeric printouts may be altered to suit almost anvy
application. Strings for formatting numeric fields are
constructed from the following characters:

Numeric fields are specified by the # sian, sach of
which represents a digit position. These digit
rositions are always £filled. The numeric field is
right justified; that is, if the number ©printed 1is
too small to £fill all of the digit vpositions
specified, leading svaces are printed as necessary to
fill the entire field.

The decimal point mav be svecified in any vposition

in the field. Rounding is performed as necessary. If
the field format specifies that a digit is to precede
the decimal point, the digit is always printed (as @
if necessarvy).

The following program will help illustrate these rules:

* %

$S

48

14 INPUT AS,A
29 PRINT USING AS$:A
30 GOTGC 19
RUN
? ##,12
12
? ###,12
12
? #HHHRR,12
12
R#.H%,12
12.99
? ###.,12
12.
? H.%44,.02
2.020
2#%.%,2.36
2.4
?###1“12
-12
?#o## l-olz
-012
243 ,-12
-12

The + sign may be used at either the beginning or:

end of the numeric field. If the number is positive,
the + sign 1is printed at the specified end of the
number. If the number 1is negative, a - sign 1is
printed at the specified end of the number.

The - sign, when used to the right of the numeric
field designation, forces the minus sign to be printed
to the right of the number if it is negative. If the
number is vositive, a space is printed.

The ** placed at the beginning of a numeric field
designation causes any unused spaces in the leading
portion of ‘the number printed out to be filled with
asterisks. The ** also svecifies positions for 2 more
digits. (Termed “asterisk fill")

When the $$ is used at the beginning of a numeric
field designation, a $ sign is orinted in the space
immediately preceding the number printed. ©Note that
$§$ also specifies positions for two more digits, but
that the § itself takes up one of these spaces.
Exponential format cannot be used with leadinag §
signs.

BASIC 4.1

April, 1977

**s

N~

BASIC 4.1

April, 1977
April, 197

The **S used at the beginning of a numeric field
designation causes both of the above (** and $$) to be
performed on the number being printed out. All of the
orevious conditions apply, except that **$ allows for
3 additional digit positions, one of which is the $
sign. -

A comma appearing to the left of the decimal point

in a numeric field designation causes a comma to be
erinted to the left of every third digit to the left
of the decimal point in the number being mrinted. The
comma also specifies another digit position. A comma
to the right of the decimal point in a numeric field
designation is considered a part of the string itself
and is treated as a printing character.

(4444 on some terminals) Exponential Format.

If exponential format is desired in the printout, the
numeric field designation should be followed by "7
(allows space for E+XX) . Any decimal point
arrangement is allowed. The significant digits are
left justified and the exponent is adjusted. Unless a
leading + or a trailing + or - is used, one position
to the left of the decimal point is used to orint a
space or minus sign. Examples:

PRINT USING “[#4°"""1*"; 13,17,-8
[1E+811[2E+01] [-8E+08]
OK

PRINT USING “[.4#4444""" -7,
[.123450GE+85]1[.123456E+06-]

OK

PRINT USING " [+.$4""""1"; 123,-126
[+.12E+03] [-.13E+03]

OK

12345,-12345%6

If the number to be printed out is larger than the
specified numeric field, a % character 1is oprinted
followed by the number itself in standard Altair BASIC
format. (The entire number is printed.) If rounding a
number causes it to exceed the specified field, the %
character is printed followed by the rounded number.
If, for example, A=.999, then

PRINT USING “.##%",A
prints
$1.90.

If the number of digits specified exceeds 24, an
ILLEGAL FUNCTION CALL error will occur,.

The following orogram will help illustrate the preceding
rules. o

Program: 10 INPUT AS$,A
20 PRINT USING AS$:;A
30 GOTO 19
RUN

The computer will start by typing a ?. The numeric field
designator and value 1list are entered and the output is
disvlayed as follows:

? +%,9
+9
? +#,10
%+10
? ##1-2'
-2
? +#,-2
-2
? #,-2
$-2
?2 +.%%#%,.02
+.020
? #4%#.%,100
100.9
? ##+,2
2+
- ? THIS IS A NUMBER #%,2
THIS IS A NUMBER 2
? BEFORE ## AFTER,12.
BEFORE 12 AFTER
? #4##,44444
$44444
? *xgd,1
***l
? X%44 12
**12
? k%44, 123
*123
? *%&Ei 1234
1234
? *x44 12345
%$12345
? kx]
*]1
? ** 22
22
? OF* 44,12
12.08
? OFELLLE,

*hkk k]

BASIC 4.1

april, 1977

(note: not floating $)

? SH#EFRFLEH,12.34
$ 12.34 .
(note: floating §) ? SSHEFE.EE,12.56
$12.56
? $S.#%,1.23
$1.23
? $S.%#%,12.34
$$12.34
? SS##4,0.23
Y/ o
? SSHERRLEE,0
$@.00
? OFASHEEE44,1.23
****$1.23
S0P R*S 4% 1,23
*¥31.23
? O*FShtg, 1
****Sl
? #,6.9
5
? #.%,6.99
7.9
? #%?"l 2
2
? ##-;-2
2..
? $4+,2
2+
? ##'!""2
2-
? #$7777,2
2E+98
? #37777,12
15+81
? OBEEEELEEETT77,2.45678
2456,78GE-33
2 ELEE47777,123
2.123E+83
? E.#%77°77,-123
~-.12E+43
? O“hEHEE $43 .47 ,1234567.89
1,234,579.0

Tyeing Control/C will stop the program.

5-6. Disk File Overations.

As many as sixteen floppv disks may be connected to a
single ALTAIR disk controller. These disks have been assigned
the physical disk numbers # through 15. Users with one drive
cshould address the drive at zero, and users with two drives

ul
[

BASIC 4.1

April, 1977

32

should qddress them at zero and one, etc.

In the following descriptions, <disk number> is an
integer expression whose value is the physical number of one
of the disks in the system. If the <disk number> 1is omitted
from a statement other than MOUNT or UNLOAD, the <disk number>
defaults to 8. If the <disk number> is omitted from a MOUNT
or UNLOAD statement, disks @ throuah the highest disk number
specified at initialization are affected.

a. Opening, Closing and Naming Files. To initialize
disks for reading and writing, the the MOUNT command is issued

as follows:

MOUNT [<disk number>[,<disk number>...1]
Example:

MOUNT 9
mounts the disk on drive zero, and

MOUNT 4,1 |

mounts the disks on drives zero and one. If there is already
a disk MOUNTed on the specified drive(s) a
DISX ALREADY MOUNTED message will be printed. Before removing
a disk which has been used for reading and writing by Disk
Altair BASIC, the user should give an UNLOAD command:

UNLOAL [<disk number>[,<disk number>...]]

UNLOAD closes all the files open on a disk, and marks the disk
as not mounted. Before any further I/0 is done on an UNLOADed
disk, a MOUNT command must be given.

NOTE

MOUNT, UNLOAD or anv other disk command may be used as
a program statement,

All data and program files on the disk have an associated file
name. This name 1is the. result of evaluating a string
expression and must be one to eight characters in lenath. The
first character of the file name cannot be a null . (9) byte or
a byte of 255 decimal. An attempt to use a null file name
(zero characters in length) , a file name over 8 characters in
length or containing a @ or 2553 in the first character

BASIC 4.1

april, 1977

positionh will cause a BAD FILE NAME error. Any other sequence
of one to eight characters is acceptable.

Examples of valid file names:

ABC

abc (Not the same as ABC)
filename

file.ext

12345678

INVNTORY

FILE##22

NOTE

Commands that require a file name will use <file name>
in the appropriate position. Remember that a <file
name> can be any string expression as 1long as the
resulting string follows the rules given above.

b. The FILES Command. The FILES command 1is used to
print out the names of the files residing on a particular
disk. The format of the FILES command is:

FILES <disk number>
Example:

FILES (prints directory of files on disk 9)

STRTRK PIP CURFIT CISASM
Execution of the FILES command may be interrupted bv typing
Control/C. A more complete listing of the information stored

in a particular file may be obtained by running the PIP
utility orogram (see Apvendix I).

c. SAVEing and LOADing progqrams. Once & program has
been written, it is often desirable to save it on a disk for
use at a later time. This is accomplished by issuing a SAVE
command:

SAVE <file name>[,<disk number>[,2]]
Example:

SAVE “TEST",9

3ASIC 4,1 : 53

April, 1977

or

SAVE "TEST"
would save the program TEST on disk zero. Whenever a program
is SAVEd, any existing copy of the program ©vpreviously SAVEd
will be deleted, and the disk space used by the previous

program is made available. See section 5-6d for a discussion
of saving with the 'A‘' option.

The LOAD statement reads a file from disk and loads it
into memory. The syntax of the LOAD statement is:

LOAD <file name>([,<disk number>[,R]]
Correspondingly:

LOAD "TEST",0 or LOAD “TEST"

loads the ©program TEST from disk zero. If the file does not
exist, a FILE NOT FOUND error will occur.

LOAD “TEST",0,R
104

LOADs _the ©program TEST from disk zero and runs it. The -LOAD
command with the "R" option may be used to chain or segment

-programs into small pvieces if the whole program is too large

to fit in the computer's memory. All variables and vprogram
lines are deleted by LOAD, but all data files are kept
OPEN(see below) 1if the "R" owvtion 1is used. Therefore,
information may be passed between programs through the use of
disk data files. If the “R" ootion is not used, all files are
automatically CLOSEd (see below) by a LOAD.

Example:

NEW
1§ PRINT “FOO1":LOAD "F0OO2",%,R
SAVE “FOOL1",0

CK -
1¢ PRINT “FOO2":LOAD "FOCO1",4,R
SAVE "F002",40

OK
RUN
FOO2
FOO1
FO02

BASIC 4.1

April, 1977

FOO1
- .O'etCQ

(Control/C may be used to stop execution at this point)

In this example, program FO002 is RUN. FO02 ©orints the
message “FOO2" and then calls the program FOOl on disk. FOOl
prints "FOOl" and calls the program FO0O2 which prints “FOO2*"
and so on indefinitely.

RUN may also be used with a file name to load and run a
program. The format of the command is as follows:

RUN<Kfile name>[,<disk number>[,R]]

All files are closed unless ,R is svecified after the disk
number.

d. SAVEing and LOADing Program Files in ASCII. Often it
is desirable to save a program in a form that allows the
program text to be read as data by another program, such as a
text editor or resequencing program. Unless otherwise
specified, Altair BASIC saves its oprograms in a compressed
binary format which takes a minimum of disk space and locads
very quickly. To save a program in ASCII, svecifvy the "A"
option on the SAVE command: ' :

SAVE “TEST",4,A
OK
LOAD “TEST",9

OK

Information in. the file tells the LOAD command the format
in which the file is to be locaded. The first character of an
ASCII file is never 255, and a binary vrogram file always
starts with 255 (377 octal). Remember, loading an ASCII file
is much slower than loading a binarv file.

e. The MERGE Command. Sometimes it is wvery wuseful to
put parts of two programs together to form a new program
combining elements of both programs. The MERGE command 1is
provided for this purpose. As soon as the MERGE command has
been executed, BASIC returns to command level. Therefore, it
is more 1likely that MERGE would be used as a direct command
than as a statement in a program. The format of the MERGE

BASIC 4.1 55

April, 1977

56

statement is és follows:
MERGE <file name>[,<disk number>]
Example:

MERGE "PRINTSUB",1
OK

The <file name> specified is merged into the ©proaram already
in memory. The <file name> must spvecify an ASCII format saved
program or a BAD FILE MODE error will occur. If there are
lines 1in the program on disk which have the same line numbers
as lines in the program in memory, the lines from the file on
disk will revlace the corresvonding program lines in memory.
It is as if the program lines of the file on disk were typed
on the user terminal.

f. Deleting Disk Files. The XILL statement deletes a
file from disk and returns disk space used by the file to free
disk space. The format of the KILL statement is as follows:

KILL <file name>[,<disk number>]
If the file does not exist, a FILE NOT FOUND error will occur.
If a KILL statement is given for a file that is currently OPPN
(see below), a FILE ALREADY OPEN error occurs. .

g. Renaming Files - the NAME Statement. The NAME
statement is used to change the name of a file:

NAME <o0ld file name> AS <new file name>[,<disk number>]
Example:
NAME "“OLDFILE" AS “NEWFILE"®

The <o0ld file name> must exist, or a FILE NOT FOUND error will
occur. A file with the same name as <new file name> must not
exist or a FILE ALREADY EXISTS error will occur. After the
NAME statement is executed, the file exists on the same disk
in the same area of disk space. Onlyv the name is changed.

h. OPENing Data Files. Refore a ©vrogram can read or

write data to a disk file, it must first OPEN the file on the

apvprovriate disk in one of several modes. The general form of
the OPEN statement is:

OPEN <mode>, [#]<file number>,<file name>[,<disk number>]

BASIC 4.1

April, 1977

<mode> 1is a string expression whose first character is one of
the following:

0 - Specifies sequential output mode
I Svecifies sequential input mode
R Specifies random Input/Output mode

A sequential file is a stream of characters that 1is read or
written in order much 1like INPUT and PRINT statements read
from and write to the terminal. Random files are divided into
grours of 128 characters called records. The nth record of a
file may be read or written at any time. Random files have
other attributes that will be discussed later in more detail.

<file number> 1is an integer expression between one and
fifteen. The number is associated with the file being OPENed
and is used to refer to the file in later I/O operations.

Examples:

OPEN "O",2,"0QUTPUT",0

OPEN "I",1,"INPUT"
The above two statements oven the file OQUTPUT for sequential
output and the file INPUT for sequential input on disk zero.
The following statement ovens the file whose name 1is in the
string F$ in mode M$ as file number N on disk D.

OPEN MS,N,FS,D

i. Seguential ASCII file I/0 Sequential input and output
files are the simplest form of disk input and output since
they involve the use of the INPUT and PRINT statements with a
file that has been vreviouslvy OPENed.

1) INPUT is used to read data from a disk file as
follows: :

INPUT #<file number>,<variable list>

where <file number> represents the number of the file that was
OPENed for input and <variable 1list> 1is a 1list of the
variables to be read, as in a normal INPUT statement. When
data is read from a sequential input file wusing an INPUT
statement, no guestion mark (?) is printed on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the terminal.

BASIC 4.1 57

April, 1977

58

When reading numeric values, leading spaces, carriage returns
and line feeds are ignored. When a non-space, ncon-carriage
return, non-line-feed character is found, it is assumed to be
part of a - number 1in Altair BASIC format. The number
terminates on a space, a carriage return, 1line-feed or a
comma. .

Leading blanks, carriage returns and line-feeds are also
ignored when scanning for string items. When a character
which is not a leading blank, carriage return or line-feed is
found, it is assumed to be the start of a string item.If this
first character is a quotation mark ("), the item is taken as
being a gquoted string, and all characters between the first
quotation mark (") and a matching gquotation mark are returned
as characters in the string wvalue. This means that a quoted
string in a file may contain anv characters except double
guote. If the £first <character of a string item is not a
guotation mark, then it is assumed to be an unquoted string
constant. The string returned will terminate on a comma,
carriage return or line feed. The string is immediately
terminated after 255 characters have been read.

_ For both numeric and string items, if end of file (EOF)
is reached when the item 1is being INPUT, the item 1is
terminated regardless of whether or not a closing quote was
seen.

Sequential I/0 commands destroy the input buffer so .they
may not be edited by Control/A for re-execution.

Example of sequential I/0 (numeric items):

506 OPEN "O",1,"FILE",0
519 PRINT #1,X,Y,%

520 CLOSE 1

53¢ OPEN "I",l,“FILE",0
549 INPUT #1",X,Y¥,2

Note that CLOSE is used so that a file which has Jjust been
written may be read. When FILE is re-OPENed, the data pointer
for that file is set back to the beginning of the file so that
the first INPUT on the file will read data from the start of

the file.

2) PRINT and PRINT USING statements are wused to write
data 1into a sequential output £file. Their formats are as
follows:

PRINT #<file number>,<expression list>

BASIC 4.1

April, 1977

or

PRINT #<file number>, <line feed>
USING <string expression>;<expression list>

Example of sequential I/0 (guoted string items) :

50@¢ OPEN "O",1,"FILE"

519 PRINT #1,CHRS (34);X$;CHRS(34);

515 PRINT #1,CHRS (34);Y$;CHRS$ (34);CHRS (34);2S$;CHRS (34)
528 CLOSE 1

530 OPEN "I",1,"FILE",0

549 INPUT #1,X$,Y$,ZS$

In this example, the strings beinag output (XS, ¥$, Z$) are
surrounded with double gquotes through the use of the CHRS
function to generate the ASCII value for a doubls gquote. This
technique must be used if a string which is being output to a
sequential data file contains commas, carriage returns,
line-feeds or 1leading bklanks that are significant. When
leading blanks are not significant and there are no commas,
carriage returns or line-feeds in the strings to be output, it
is sufficient to 1insert commas between the strings being
output as in the fecllowing example:

564 OPEN "O%,1,"FILE"

513 PRINT #1,X$;",";¥S;",";2$
529 CLOSE 1

539 OPEN "“I",1,'FILE",0Q

549 INPUT #1,X$,Y$,ZS

3) CLOSE. The format of the CLOSE statement 1is as
follows:

CLOSE [<file number>[,<file number>...]]

CLOSE 1is used tc finish I/0 to a varticular Altair BASIC data
file. After CLOSE has been executed for a file, the file nmay.
be reOPENed for input or output on the same or different <file
number>. A CLOSE for a secuential outpnut file writes the
final buffer of output. A CLOSE to any CPEN file finishes the
connection between the <file number> and the <file name> given
in the OPEN for that file. It allcows the <file number> to be
used again in another OPEN statement.

A CLOSE with no argument CLOSEs all OPEN files.

BASIC 4.1

April, 1577

60

NOTE

A FILE can be OPENed for sequential input or random
access on more than one <file number> at a time but
may be OPEN for output on only one <file number> at a
time.

END and NEW always CLOSE all disk files automatically. STOP
does not CLOSE disk files.

4) LINE INPUT. It is often desirable to read a whole
line of a file into a string without using guotes, commas or
other characters as delimiters. This is especially true 1if
certain fields of each 1line are being used to contain data
items, or if a BASIC program saved in ASCII mode is being read
as data by another program. The facility provided to perform
this function is the LINE INPUT statement:

LINE INPUT #<file number>,<string variable>

A LINE INPUT from a data file will return all characters up to
a carriage return in <string variable>. LINE INPUT then skips
over the following carriage return/line-feed sequence so that
a subsequent LINE INPUT from the file will return the next
line.

5) End of File (EOF) Detection, When reading a
sequential data file with INPUT statements, it is usually
desirable to detect when there is no more data in the disk
file. The mechanism for detecting this condition is the' EOF
function:

X=EOF (<file number>)

EOF returns TRUE (-1) when there is no more data in the file
and FALSE (@) otherwise. If an attempt is made to INPUT past
the end of a data file, an INPUT PAST END error will occur.

Example:

198 OPEN "I",1,"DATA",0
119 I=90 '
1290 IF EOF(l) THEN 160
130 INPUT #1,A(I)

149 I=I+1

156 GOTO 129

166

In this example, numeric data from the seguential input file

DATA is read into the array A. When end of file is detected,
the 1IF statement at 1line 120 branches to line 168, and the
variable I “points" one beyond the last element of A that was
INPUT from the file.

BASIC 4.1

April, 1977

The following is a program that will calculate the number
of 1lines in a BASIC program file that has been SAVEd in ASCII
mode:

19 INPUT "WHAT IS THE NAME OF THE PROGRAM";PS$S
20 OPENA"I",].’PSIQ

30 I=0

49 IF EOF(l) THEN 70

50 I=I+1:LINE INPUT #1,LS

60 GOTO 49

7@ PRINT "PROGRAM ";PS$;" IS “;I;" LINES LONG"
84 END

This example uses the LINE INPUT statement to read each 1line
of the program intc the “dummy" string L$ which is used just
to INPUT and ignore that part of the file.

6) Finding the Amount of Free Disk Space (DSKF). It 1is
sometimes necessary to determine the amount of free disk space
remaining on a varticular disk before writing a file. The
DSKF function provides the user with the number of free groups
left on a given disk after the disk has been MOUNTed. A group
is the fundamental wunit of file allocation. That is, files
are always allocated in groups of eight sectors at a time.
Each sector <contains 128 characters (bvtes). Therefore, the
minimum size for a file is 1024 bytes.

Syntax for the DSXF function:
DSKF (<disk number>)
Example:

PRINT DSKF (9)
200

The above example shows that there are 208*1024=204300
characters (bvtes) that can still be stored on disk zero.

j. RANDOM FILE I/0. Previously, we have discussed how
data may be PRINTed or INPUT from seguential data files.
However, it is often desirable to access data in a random
fashion, for instance, to retrieve information on a particular
part number or customer from a large data base storad on a
floppy disk. If sequential files were used, the whole file
‘'would have to be scanned from the start until the mwarticular
item was found. Random files remove this restriction and
allow a program to access any record from the first to the
last in a speedy fashion. Also, random files transfer data
from variables to the disk ouput records and vice versa in a
much faster, more efficient fashion than segquential files.

[0))
]

BASIC 4.1

April, 1977

62

Random file I/O is more complex than seguential I/0, and it is
recommended that beginners try sequential I/0 first.

1) OPENing a FILE for Random I/O. Random I/0 files “are’
OPENed just like sequential files.

OPEN "R",1,"RANDOM",0

When a file 1is OPENed for random I/0, it is always OPEN for
both input and output simultaneously.

2) CLOSING Random Files. Like sequential files, random
files must be <closed when I/0 overations are finished. To
CLOSE a random file use the CLOSE command as described
previously. :

CLOSE <file number>[,<file number>...]

3) Reading and writing data to a random file - GET and
PUT. Each random file has associated with it a "random
buffer" of 128 bvtes. When a GET or PUT operation is
performed, data is transferred directly from the buffer to the
data file or from the data file to the buffer.
The syntax of GET and PUT is as follows:

PUT [#]<file number>[,<record number>]
GET [#]<file number>[,<record number>]

If <record number> is omitted from a GET or PUT statement, the
record number that is one higher than the previous GET or PUT
is read into the random buffer. Initiallv a GET or PUT
without a record number will read or write the first record.
The largest possible record number is 2046. If an attempt is
made to GET a record which has never been PUT, all zerces are
read into the record, and no error occurs.

4) LOC and LOF. LOC 1is used to determine what the
current record number is for random files. In other words, it
returns the record number that will be used if a GET or PUT is
executed with the <record number> parameter omitted.

BASIC 4.1

April, 1977

LOC(<Kfile number>)

PRINT LOC(1)
15 '

LOC is also valid for sequential files, and gives the number
of sectors (128 byte blocks) read or written since the OPEN
statement was executed.

LOF is used to determine the last record number written to a
random file:

LOF(<file number>)

PRINT LOF (2)
200 :

An attempt to use LOF on a sequential file will cause a BAD
FILE MODE error.

The value returned by LOF is always 5 MOD 8. That is , when
the value LOF returns is divided by 8, the remainder is always
5. Therefore,the values returned bv LOF are 5, 13, 21, 29
etc. This is due to the wavy random files are allocated.

NQOTE

It is important to note that the value returned by LOF
may be a record that has never been written in by a
user program. This is because of the way random files
are pre-extended.

5) Moving Data In and Out of the Random Buffer. So far
we have described techniques for writing (PUT) and reading
(GET) data from a file into its asscciated random buffer. Now
we will describe how data from string variables is moved to
and from the random buffer itself. This 1is accomplished
through the use of the FIELD, LSET and RSET statements.

6) FIELD. The FIELD statement associates some or all of
a file's random buffer with a particular string variable.
Then, when the file buffer is read with GET or written with
PUT, string variables which have been FIELDed into the buffer
will automaetically have their contents read or written. The

BASIC 4.1 63

April, 1877

64

format of the FIELD statement is:
FIELD [#] <file number>,<field size> AS <string variable>[...]

<file number> 1is used to specify the file number of the file
whose random buffer is being referenced. If the file is not a
random file, a BAD FILE MODE error will occur. <field size>
sets the length of the string in the random buffer. <string
variable> 1is the string variable which is associated with a
certain number of characters (bytes) in the buffer. Multiple
fields may be associated with string variables in a given
FIELD statement. Each successive string variable is assigned
a successive field in the random buffer. Examole:

FIELD 18 AS AS$, 20 AS BS$, 30 AS Cs

The statement above would assign the first 18 characters of
the random buffer to the string wvariable AS$, the next 29
characters to BS$ and the next 30 characters to the variable
C$. It is important to note that the FIELD statement does not
cause any data to be transferred to or from the random buffer.
It only causes the string variables given as arguments to
"point" into the random buffer.

Often, it is necessary to divide the random buffer into a
number of sub-records to make more efficient use of disk
space. For instance, it might be desirable to divide the 128
character record into two identical subrecords. To accomplish
this a "dummy variable" would be vlaced in the FIELD statement
to represent one of the subrecords. One of the following
statements would be executed, depending on whether the first
or second subrecord were needed:

FIELD #1,64 AS D$, 20 AS NAMES,
20 AS ADDRESSES, 24 AS OCCUPATIONS

or

FIELD #1,29 AS NAMES, 24 AS ADDRESSES,
24 AS OCCUPATIONS, 64 AS DS .

where the dummy variable DS is used to skip over one of the
subrecords. Another way to do the same thing would bhe to set
a variable I that would select the first or second subrecord:

FIELD #1,64*(I-1) AS DS,
2@ AS NAMES, 20 AS ADDRESSS$, 24 AS OCCUPATIONS

Here, if the variable I is one, I-1 *64 =8 characters will be
skipped over, selecting the first subrecord. If I is two, 64
characters will be skipoed over, selecting the second

BASIC 4.1

April, 1977

subrecord. Another wuseful technigque is to use a FOR...NEXT
loop and an array to set up subrecords in the random buffer:

1006 FOR I=1 TO 15

1010 FIELD #1, (I-1)*8 AS DS, 4 AS AS(I),
4 AS BS$(I)

1020 NEXT I

In this example, we have divided the random buffer into 16
subrecords composed of two fields each. The first 4-character
field is in A$(X) X is the subrecord number.

NOTE

The FIELD statement may be executed any number of
times on a given file. It does not cause any
allocation of string space. The only svace allocation
that occurs 1is for the string variables mentioned in
the PIELD statement. These string variables have a
one Dbyte count and two byte wvpointer set up which
points into the random buffer for the specified file.

7) Using Numweric Values in Random Files: MKIS, MKSS,
MKD$S and CVI, CVS, CVD. - As we have seen, data is alwavys
stored in the random buffer through the wuse of string
variables. In order to convert between strings and numbers
and vice versa, a number of special functions have been
provided.

To convert between numbers and strings:

MKIS (<integer value>) Returns a two bvte string
(FC error if value is not
>==32768 and <=+32767.
Fractional part is lost)

MKSS (<single precision value>) Returns a four byte string

MRKDS (<double vrecision value>) Returns an eight byte string

To convert between strings and numbers:

-CVI(<two byte string>) Returns an integer value

CVS (<four byte string>) Returns a single precision value
CVD(<eight byte string>) Returns a double vrecision value

Cvi, CVS, and CVD all give an ILLEGAL FUNCTICN CALL error if

(82}

BASIC 4.1 . . 6

Apzil, 1877

66

the string given as the argument is shorter than required. 1If
the string argument 1is longer than necessary, the extra
characters are ignored. These functions are extremely fast
since they convert between Altair BASIC's internal
representations of integers, single and double precision
values and strings. Conventional sequential I/0 must verform
time-consuming character scanning algorithms when converting
between numbers and strings.

8) LSET and RSET. When a GET operation is performed, all
string variables which have been FIELDed into the random
buffer for that file automatically have values assigned to
them. The CVI, CVS and CVD functions may be used to convert
any numeric fields in the —trecord to their numeric values.
When going the other way, i.e. inserting strings into the
random buffer before performing a PUT statement, a ©problem
arises. This is because of the wav string assignments usually
take place. For example:

LET AS$=BS

When a LET statement 1is executed, BS$ is copied into string
space, AS$ is vpointed to the new string and the string length
of AS 1is modified. However, for assignments into the random
buffers we do not want this to happen. Instead, we want the
string being assigned to be stored where the string variable
was FIELDed. 1In order to do this, two special assignment
statements have been provided, LSET and RSET: ’ :

LSET <string variable>=<string expression>
RSET <string variable>=<string expressicn>

Examples:
LSET A$=MKSS (V)
RSET BS="TEST"
LSET CS(I)=MXDS (D#)

The difference between LSET and RSET concerns what happens 1if
the string value being assigned is shorter than the length
svecified for the string variable in the FIELD statement.
LSET left Jjustifies the string, adding blanks (octal 49,
decimal 32) to vad out the right side of the string if it 1is
too short. RSET right justifies the string, padding on the
left. If the string value is too long, the extra characters

at the end of the string are ignorad.

BASIC 4.1

April, 1977

b3

NOTE
Do not use LSET or RSET on string variables which have”™

not been mentioned in a FIELD statement, or a SET TO
NON DISK STRING error will occur.

k. The DSKIS and DSKO$S Primitives. Often it is
necessary for the user to verform disk I/0 operations directly
without using anv of the normal file structure features of
Altair BASIC. To allow this, two special functions have been
provided. These are the DSKI$S function and the DSKOS
statement. First, examples will be vprovided on how to perform
simole disk I/O commands using Altair BASIC statements.

To Enable disk 0:

ouT 8,9
To Enable disk N:

oUT 8,N
TO step the disk head out one track:

WAIT 8,2,2:0U0T 9,2
To step the disk head in one track:

WwaIT 8,2,2:0U0T 9,1
To test for track g:

IF (INP(8) AND 64)=0 THEN <statements or line number>
The above will execute the statements or branch to the line

number if the head is positioned at track 4. This 1is the
outermost track on the disk.

To read sector Y (Y may be any expression, minimum sector =4,
maximum = 31):

AS=DSKIS (Y)
The statement

DSKOS <string exnression>,<sector expression>

BASIC 4,1 67

April, 1977

68

writes the string expression on the sector specified. The
high order bit (most signifigant) of the first character
output will always be set to one when the string is written on
the sector and will always be one when the sector is read back
in using DSKIS$. A maximum of 137 characters are written;
giving a string whose length exceeds 137 characters will cause
an ILLEGAL FUNCTION CALL error. If the string argument 1is
less than 137 characters in length, the end of the string will
be padded with zeros to make a string of length 137.

BASIC 4.1

April, 1977

6. LISTS AND DIRECTORIES

6-~1. Commands.

Commands direct Altair BASIC to arrange memory and
input/output facilities, to 1list and edit programs and to
handle other housekeeping details 1in support of program
execution. Altair BASIC accepts commands after it prints ‘'OK°
and is at command level. The table below lists the commands
in alphabetical order. The notation to the right of the
command name indicates the versions to which it applies.

Command Version(s)

CLEAR ©all

Sets all program variables to zero.

CLEAR[<expression>] 8K, Extended, Disk

Same as CLEAR but sets string space to the wvalue of the
expression. .If no argument is given, string space will remain
unchanged. When Altair BASIC is loaded, string space 1s set
to 50 bytes in 8K and 20@ bytes in Extended and Disk.
CLOAD<string expression> - BK{(cassette), Extended, Disk
Causes the program on cassette tape designated by the £first
character of STRING expression> to be loaded into memory. A
NEW command is issued before the program is loaded.

CLOAD>*<array name> 8K (cassette), Disk

Loads the specified array from cassette tape. May be used as
a program statement.

CLOAD?<string expression> 8K (cassette), Extended, TCisk

Compares the program in memory with the corresponding file on
cassette tape. If the files are the same, CLOAD? prints OK.
If not, it prints NO GOOD. The <string expression> must be
given, but it is ignored.

.CONT 8K, Extended, Disk
Continues program execution after a ControlAC has been typed

or a STOP or END statement has been executed. Execution
resumes at the statement after the break occurred unless input

from the terminal was interrupted. 1In that case, execution
resumes with the reprinting of the prompt (? or prompt
string). CONT is wuseful in debugging, especially where an
3ASIC 4,1 . . : , 69

April, 1977

*infinite loop' is suspected. An infinite loop is a series of
statements from which there is no escape. Typing Control/C
causes a break in execution and puts BASIC in command .level.
Direct mode statements can then be used to print intermediate
values, change the values of variables, etc. Execution can be
restarted by typing the .CONT command, or by executing a direct
mode GOTO statement, which causes execution to resume at the
specified line number.

In 4K and 8K Altair BASIC, execution cannot be continued
if a direct mode error has occured during the break. In all
versions, execution cannot «continue if the program was
modified during the break.

CSAVE<string expression> 8K (cassette), Extended, Disk
Causes the program currently in memory to be saved on cassette

tape under the name specified by the £first character of
<{string expression>.

CSAVE*<array name> 8K (cassette), Disk

70

Lauses the array named to be saved on cassette tape. May be
used as a program statement.

DELETE<line number> ~ Extended, Disk

Deletes the line in the current program with the specified

number. .If no such 1line exists, an ILLEGAL FUNCTION CALL
error occurs.

DELETE-<line number> Extended, Disk

Deletes every line of the current program up to and including
the specified 1line. If there 1is no such line, an ILLEGAL
FUNCTION CALL error occurs.

DELETE<line number>-<line number> Extended, Disk

Deletes all lines of the current program from the first line
number t©o the second inclusive. ILLEGAL FUNCTION CALL occurs
if no line has the second number.

DSKINI<Kdrive number> Disk

Initializes diskettes on the specified drives by marking all
sectors in tracks 6 - 77 as free. If no disk number is given,
all disks are initialized beginning with the highest disk
number. CAUTION: DSKINI destroys all files on the disk. Use
with utmost caution.

‘4 .
EDIT<line number> Extended, Disk

BASIC 4.1

-
/

April, 197

Allows editing of the line specified without affecting any
other lines. The EDIT command has a powerful set of
sub-commands which are discussed in detail in section 5-4. -

LIST ' All

Lists the program currently in memory, starting with the
lowest numbered line. Listing is terminated either by the end
of the program or by typing Control/C.

The LIST command may be used to save programs on paper
tape. Simply type LIST and turn on the teletype's paper tape
punch before typing carriage return. Be sure the nulls have
been set (see NULL command) to 3 before punching the program.
To load a program from paper tape, put the tape in the
teletype's reader and turn it on. The program loads as if it
were being typed from the terminal. The NEW command may be
used to <clear old program 1lines before loading the new
program.

LIST([<line number>] All

In 4K and 8K, prints the current program beginning at the’
specified 1line. In Extended and Disk, prints the specified
line if it exists.

LIST[<line number>] [-<line number>] Extended, Disk

Allows several listing’options.

1. If the second number is omitted, 1lists all .:lines with
numbers greater than or equal to the number specified.

2. If the first number is omitted, lists all lines from the
beginning of the program to the specified line, inclusive.

3. If both line numbers are used, lists all lines from the
first number to the second, inclusive.
LLIST[<line number>] [-<iine number>] Extended, Disk

Same as list with the same options, except prints on the line
printer.

NEW All

Deletes the current program and clears all wvariables. Used
before entering a new program.

NULL<integer expression> 8K, Extended, Disk

BASIC 4.1) ' 71

April, 1977

72

Sets the number of nulls to be printed at the end of each
line. For 18 or 30 <character per second tape punches,
<integer expression> should be >=3. When tapes are not being
punched, <integer expression> should be @ or 1 for Teletypes*
and Teletype compatible CRT's. It should be 2 or 3 for 30 cps
hard copy printers. The default value 1is 6. 1In the 4K
version, the same affect may be achieved by patching location
46 octal to contain the number of nulls plus 1.

* Teletype is a registered trademark of the Teletype:
Corporation.

RUN[<line number>] All
Starts execution of the program currently in memory at the
line specified. If the 1line number is omitted, execution

begins at the lowest line number. Line number specification
is not allowed in 4K.

6—-2. Statements.

The following table of statements is listed in alpahabetical
order. The notation 1in the Version column designates the
versions to which each statement applies. In the table, X and
Y stand for any expressions allowed in the version under
consideration. I and J stand for expressions whose values are
truncated to integers. V and W are any variable names. The
format for an Altair BASIC line is as follows:

<nnnnn> <statement>|[:<statement>...]
where nnnnn is the line ndmber.

Name Format " Version
.CONSOLE \CONSOLE <I>,<KJ> Extended, Disk

Allows terminal console device to be switched. I is the 1I/0
port number which is the address of the low order channel of
the new I/0 board. J is the switch register setting (see
section 5-1 for the list of settings). 0<=I,J<=255.

DATA DATAGlist> ’ ALl
& ‘ :
Specifies data to be read by a READ statement. List elements
can be numbers or, except in 4K, strings. 4K allows
BASIC 4.1

-
iy

April, 19

expressions. List elements are separated by commas.
DEF DEF FNV (<W>)=<X> 8K, Extended, Disk

Defines a user-defined function. Function name is FN followed
by a 1legal variable name. Extended and Disk versions allow
user-defined string functions. Definitions are restricted to
one 1line (72 characters in 4K and 8K, 255 characters in
extended versions).

DEFUSR DEFUSR[<digit>]=<X> Extended, Disk

Defines starting address of assembly language subroutlne. Up
to ten subroutines are allowed.

DIM DIM <V>(KI>{,d3...1)[,...1] All

Allocates space for array variables. In 4K, only one
dimension is allowed per variable. More than one variable may
be dimensioned by one DIM statement up to the limit of the
line. The value o0f each expression gives the maximum
subscript possible. The smallest subscript is 4. Without a
DIM statement, an array is assumed to have maximum subscr1pt
of 10 for each dimension referenced. For example, A(I,J) is
assumed to have 121 elements, from A(5,0) to A(l9,1d) unless
otherwise dimensioned in a DIM statement.

END END All

Terminates execution of a program. Closes all files in the
Disk version.

ERASE ERASEKV> [,<W>...] Extended, Disk

Eliminates the arrays specified. The arrays may be
redimensioned or the space made available for other uses.

ERROR ERRORKI> Extended, Disk

Forces error with code specified by the expression. Used
primarily for user-defined error codes.

BASIC 4.1 1 73

April, 1977

FOR . FORKV>=<X>TO<KY> [STEP<Z>] All

Allows repeated execution of the same statements. First
execution sets V=X. Execution proceeds normally until NEXT is
encountered. Z is added to V, then, IF Z<# and V>=Y, or if
2>83 and V<=Y, BASIC branches back to the statement after FOR.
Otherwise, execution continues with the statement after NEXT.

GOTO © GOTO<nnnnn> All

Unconditional branch to line number.

GOSUB GOSUB<nnnnn> All

Unconditional branch to subroutine beginning at line nnnnn.
IF...GOTO IF <X> GOTO<nnnnn> 8K, Extended, Disk .

Same as IF...THEN except GOTO can only be followed by a 1line
number and not another statement.

JIF...THEN [ELSE] IF<KX>THENKY>[ELSE<Z>] Aall
or IF<KX>THEN<Kstatement>[:statement...]
[ELSE<statement>[:statement...]

If value of X<>0, branches to line number or statement after
THEN. Otherwise, branches to the line number or statement(s)
after ELSE. If ELSE 1is omitted, and the value of X=4,
execution proceeds at the line after the .IF...THEN. .In 4K, X
can only be a numeric expression. The ELSE c¢lause 1is only
allowed in Extended and Disk Altair BASIC.

INPUT INPUTKV> [,<W>...] - All

Causes BASIC to request input from terminal. Values (or, in
4K, -expressions) typed on the terminal are assigned to the
variables in the list.

LET LET <V>=<X> All

Assigns the value of the expression to the variable. The word
LET is optional.

LINE INPUT LINE .INPUT[eprompt strings;]<line feed>
<string variable name> Extended, Disk

LINE INPUT prints the prompt string on the terminal and
assigns all input from the end of the prompt string to the
carriage return to the named string variable. No other prompt
is printed if the prompt string is gmitted. LINE INPUT may
not be edited by Control/A.

BASIC 4.1

April, 1977

LPRINT LPRINT X[,Y...] Extended, Disk

Same as PRINT, but prints on the 1line printer. Line feeds
within strings are 1ignored. A carriage return is printed
automatically after the 80th character on a line.

LPRINT USING LPRINT USING<string>;<list> Extended, Disk

Same as PRINT USING but prints on the 1line printer. For a
detailed description, see section 5-5.

MIDS$ MIDS (<X$>,<I>[,<J>])=¥$ Extended, Disk

Part of the string X$ is replaced by ¥S. Replacement starts
with the Ith character of X$ and proceeds until ¥$ is
exhausted, the end of %$ is reached or J characters have been
replaced, whichever comes €£first. If I 1is greater than
LEN(XS), an .ILLEGAL FUNCTION CALL error results.

NEXT NEXT [<V>,<W>...] All

Last statement of a .FOR loop. V is the variable of the most
recent loop, W of the next most recent and so on. Only one
variable is allowed in 4K. Except 1in 4K, NEXT without a
variable terminates the most recent FOR loop.

ON ERROR GOTO ON ERROR GOTO<Kline number> Extended, Disk

When an error occurs, branches to 1line specified. Sets
variable ERR to error code and ERL to line number where the
error occured. See section 6-5 for a list of error codes. ON
ERRCR GOTO 4 (or without number) disables error trapping.

ON...GOTO ON<KI>GOTOK1list of line numbers> 8K, Ext., Disk
Branches to line whose number is Ith in the 1list. List
elements are separated by commas. If I=6 or > number of

elements in the list, execution continues at next statement.
JIf VIO or >255, an error results.

ON...GOSUB ON <I> GOSUB <list> 3K, Exténded, Disk

Same as ON...GOTO except 1list elements are initial 1line
numbers of subroutines.

ouT OUTKI> ,KJ> . 8K, Extended, Disk
Sends byte J to port I. £<=I,J<=255.
POKE POKE<KI> , KJ> 8K, Extended, Disk

Stores byte J in memory location derived from I.

3ASIC 4.1 : 75

April, 1977

76

B<=J<=255;-32768<1I<65536." If I 1is negative, address is
65536+I. If I is positive, address=I.

PRINT - PRINTKX>[,<¥>...] All

Causes values of expressions in the list to be printed on the
terminal. Spacing is determined by punctuation.

Punctuation Spacing - next printing begins:
’ at beginning of next 14 column 2zone
: immediately
other or none at beginning of next line

String literals may be printed if enclosed by gquotation marks
(). String expressions may be printed in all but 4K.

PRINT USING PRINT USING<string>;<list> Extended, Disk

Prints the values of the expressions in the 1list edited
according to the string. The string is an expression which
represents the line to be printed. The list contains the
constants, variable names or expressions to be printed. List
entries are separated by punctuation as 1in the PRINT
statement. For a 1list of string characters and ‘their
functions, see section 5-5.

READ READKV> [,<W>...] All

Assigns values in DATA statements to variables. values are
assigned in sequence starting with the first value in the
first DATA statement.

REM REM[<remark>] All

Allows insertion of remarks. Not executed, but may be
branched into. 1In Extended and Cisk versions, remarks may be
added to the end of a line preceded by a single quotation mark
(*). ‘

RESTORE : RESTORE All

Allows data from DATA statements to be reread. Next READ
statement after RESTORE begins with first data of first data
statement. ‘

RESUME RESUME [<number>] Extended, Disk

Resumes program execution at the line specified after error
trapping routine. If number is omitted or zero, resumes at
statement where error occured. RESUME NEXT causes resugption
at the statement following the statement where the error was
made.

3ASIC 4.1

April, 1977

RETURN RETURN All

Terminates a subroutine. Branches to the statement after the
most recent GOSUB.

STOP STOP : All

Stops program execution. BASIC enters command -level and,
except in 4K, prints BREAK IN LINE nnnnn. Unlike END, STOP
does not close files.

SWAP SWAP <V>,<W> Extended, Disk

Exchanges values of the variables named. Variables must be of
the same type.

TROFF TROFF Extended, Disk

Turns off trace flag. The trace flag is turned on by TRON
(see below). NEW also turns off the trace flag.

TRON TRON ‘ Extended, Disk

Turns on trace £lag. Prints number of each 1line in square
brackets as it is executed.

WAIT WAITKI> , <KJI>[,<K>] 8K, Extended, Disk
Status of port I is XOR'd with K and AND'ed with J. Continued

execution awaits non-zero result. K defaults to @.
8<=1,J,K<=255.

6-3. Intrinsic Functions.

Altair BASIC provides several commonly used algebraic and
string functions which may be called from any program without
further definition. If the functions are not required for a
program, they may be deleted when BASIC is loaded to conserve
memory space. The functions in the following table are listed
in alphabetical order. The notation to the right of the Call
Format is the version(s) in which the function 1is available.
As wusual, X and Y stand for expressions, .I and J for integer
expressions and X$ and ¥$ for string expressions.

Function Call Format Version
ABS ABS (X) All
3ASIC 4.1 77

April, 1877

Returns absolute value of expression X. ABS(X)=X if X>=8, -X
if X<8.

ASC ~ ASC(XS) 8K, Extended, Disk

Returns the ASCII code of the first character of the string
%S$. ASCII codes are in appendix A.

ATN ATN (X) 8K, Extended, Disk
Returns arctangent(X). Result is in radians in range -pi/2 to
pi/2.

The following functions are available in Extended and Disk:

CINT CINT(X) Converts X to integer.
CSNG CSNG (X) «Lonverts X to single precision.
CDBL CDBL(X) Converts X to double precision.

If the argument 1is in the range -=32768 to 32767, the

CINT(X)=INT(X). Otherwise, CINT will produce an OVERFLOW
error.

.CHRS CHRS (I) , 38K, Extended, Disk

Returns a string whose one element has ASCII <code 1I. ASCII
codes are in Appendix A.

COoSs .COS (X) 8K, Extended, Disk
Returns cos(X). X is in radians.
ERL | Extended, Disk

Returns the number of the 1line in which the last error
occurred.

ERR ' Extended, Disk

Returns the error code of the last error.

ERR ERR(I) Disk

Returns parameters of disk errors. After a DISK I/0 ERROR,
ERR(#) returns number of the disk,. ERR(1) returns the track
number (3-76) , ERR(2) returns the sector number, ERR(3) and
ERR(4) return the low and high order 8 bits of the cumulative
count of disk errors respectively.

EXP : EXP (X) 8K, Extended, Disk

Returns e to the power X. X must be <=87.3365.

BASIC 4.1

April, 1977

FIX FIX(X) Extended, Disk

Returns the truncated integer part of X. FIX(X) is equivalent
to SGN(X)*INT(ABS(X)). The major difference between FIX and
INT is that FIX does not return the next lower number for
negative X. e
FRE FRE(Q) 8K, Extended, LCisk
Returns number of bytes in memory not being used by BASIC. _If
argument is a string, returns number of free bytes in string
space. : '

HEXS HEXS (X) Extended, Disk

Returns a string which represents the hexadecimal of the
decimal argument. .

INP INP(I) ' 8K, Extended, Disk
Reads a byte £from port I.

INSTR INSTR([I,]1X$,¥S), Extended, Disk
Searches for the first occurrence of string ¥$ in XS and
returns the position. Optional offset I sets position for
starting the search. @<=I<=255. ,If I>LEN(XS$), if X$ is null
or if Y$ cannot be found, INSTK returns 9. .If ¥$ is null,
INSTR returns I or 1. Strings may be string variable values,
string expressions or string literals.

INT INT (X) All

Returns the largest integer <=X

LEFTS LEFTS (X5 ,I) 8K, Extended, Disk
Returns leftmost I characters of string XS.

LEN . LEN(XS) 8K, Extended, Disk

Returns length of string XS. Non-printing characters and
blanks are counted.

LOG LOG (X) 8K, Extended, Disk
Returns natural log of X. X>0
LPOS ‘ LPQOS (X) Extended, Disk

Returns the current position of the line printer print head
within the line printer buffer. Does not necessarily give the

BASIC 4.1 79

April, 1977

physical position of the print head. The expression X must be
given, but the value is ignored. '

. MIDS MIDS (XS,I[,J]) 8K, Extended, Disk

Without J, returns rightmost characters from X$ beginning with
the Ith character. If I>LEN(XS), MIDS returns the null
string. ©<I<255. With 3 arguments, returns a string of
length J of characters from X$ beginning with the Ith
character. 1If J is greater than the number of characters in
X$ to the right of I, MIDS returns the rest of the string.

B<=J<=255.
- QCTs QCTs (X) 8K, Extended, Disk

Returns a string which represents the octal value of the
decimal argument. ~

RND RND (X) All

Returns a random number between 0 and 1. X<@ starts a new
sequence of random numbers. X>0 gives the next random number
in the sequence. X=§ gives the last number returned. In 8K,
Extended and Disk, sequences started with the same negative
number will be the same.

POS POS (I) 8K, Extended, Disk

Returns present column position of terminal's print head.
Leftmost position =J. '

RIGHTS RIGHTS (X$,I) 8K, Extended, Di=zk

Returns rightmost .I characters of string XS. If I=LEN(XS),
returns X§.

SGN SGN (X) ' All

If X>9, returns 1, if X=0 returns 4, if X<g, returns -1. For
example, ON SGN(X)+2 GOTO 100,290,309 branches to 198 if X is
negative, 2006 if X is @ and 300 if X is positive.

SIN SIN(X) All

Returns the sine of the value of X in radians.
LCOS (X)=8SIN(X+3.14159/2).

SPACES - SPACES (I) Extended, Disk

Returns a string of spaces of length I.

BASIC 4.1

April, 1977

SPC SPC(I) 8K, Extenéed, Disk
Prints I blanks on terminal. ¥<=I<=255.

SOR SQR (X) ‘ All

Returns square root of X. X must be >=0

STRS STRS (X) 8K, Extended, Disk
Returns string representation of value of X.

STRINGS STRINGS (I,J) Extended, Disk

Returns a string of length .I whose characters all have ASCII
code J. See Appendix A for ASCII codes.

TAB ' TAB(I) All -~

Spaces to position I on the terminal. Space @ is the leftmost
space, 71 the rightmost. 1If the carriage is already beyond
space I, TAB has no effect. @§<=I<=255. May only be wused in
PRINT and LPRINT statements.

TAN TAN (X) All

Returns tangent(X). X is in radians.

USR USR(X) All

Calls the user's machine language suSroutine with argument X.
VAL VAL (XS) 8K, Extended, Disk

Returns numerical value of string X$. If first character of
X¥§ 1s not +, -, or a digit, VAL(X$)=4.

VARPTR VARPTR (V) Extended, Disk

Returns the address of the variable given as the argument. .If
the wvariable has not been assigned a wvalue during the
execution of the program, an ILLEGAL FUNCTION CALL error will
occur. The main use of the VARPTR function is to obtain the
address of variable or array so it may be passed to an
assembly language subroutine. Arrays are usually passed by
specifying VARPTR(A[f]) so that the lowest addressed element
of the array is returned.

3ASIC 3.1 : 81

NOTE

All simple variables should be assigned wvalues in a
program before calling VARPTR for any array.
Otherwise, allocation of a new simple variable will
cause the addresses of all arrays to change.

6-4. Special Characters

Altair BASIC recognizes several characters in the ASCILI
font as having special functions in carriage control, editing
and program interruption. Characters such as Control/C,
Control/S, etc. are typed by holding down the Control key and
typing the designated letter. The special characters in the
table are 1listed in the order of the versions to which they
apply, starting with those common to all versions and ending
with those that apply conly to extended versions.

Typed as: Printed as:

The following Special Characters are available in ALL
versions.

@ @
Erases current line and executes carriage return.

e B

Erases last character typed. If there is no last character
types a carriage return.

_ _f(underline)

same as backarrow.

Carriage Return

Returns print head or curser to beginning of the next line.
Control/C VaNe (in Extended and Disk)

Interrupts execution of current program or list command.
Takes effect after execution of the current statement or after

listing the current line. BASIC goes to command level and
types OK. CONT command resumes execution. See section 6-1.

Separates statements in a line.

BASIC 4.1

April, 1877

The following special characters are available in 8K, Extended
and Disk versions only.

o s i

Control/0O /N0 (in Extended and Disk)
Suppresses all output until an .INPUT statement is encountered,

another Control/0 1is typed, an error occurs or BASIC returns
to command level.

? ?

Equivalent to PRINT statement.

Rubout see explanation
Deletes previous character on an input 1line. First Rubout
prints \ and the 1last character to be printed. Each

successive Rubout prints the next character to the left.
Typing & new character causes another \ and the new character
to be printed. All characters between the backslashes are
deleted.

Control/U /A\U (in extended)
Same as @.
Control/sS

Causes program execution to pause until Control/Q or Control/C
is typed.

Control/Q

Causes execution to resume after Control/S. Control/S and
Control/Q have no effect if no program is being executed.

The following special characters are available in Extended and
Disk versions only.

Control/A

Allows use of the EDIT command on the 1line <currently Dbeing
typed. Control/A 1is typed instead of Carriage Return. See
section 5-4.

Control/I 1 to 8 spaces

Tab character. Causes print head or curser to move to the
peginning of the next 8 column field. Fields begin at columns

3ASIC 4,1 - 83

1, 9, 17, etc. The tab character is especially useful for
formatting lines broken with line feeds.

180<tab>FOR I=1 TO 10:<line feed>
<tab><tab>FOR J=1 TO l1ld:<line feed>
<tab><tab><tab>A(I,J)=0:<1line feed>
<tab>NEXT J,I<carriage return>

lists as:
198 FOR .I=1 TO 149:
FOR J=1 TO 19:
A(I,J)=0:
NEXT J,1I
Control/G ‘bell

Rings terminal's bell.
LINE FEED

Breaks a long :line into shorter parts. The result is still
one BASIC line.

Denotes the number of the current line. May be used wherever
a line number is to be specified.

(/] [,]

Brackets are interchangeable with parentheses as delimiters
for array subscripts.

Lower .Case Input

Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower
- case to upper case if the lower case characters are not part
of -string literals, REM statements or remarks delineated by
single quotation marks (').

6-5. Error Messages.

After an error occurs, BASIC returns to command ;level and
‘types OK. Variable values and the program text remain intact,

put the program cannot be continued by the CONT ccmmand. In
4K and 8K versions, all GOSUB and FOR context is lost. The
program may be continued by direct mocde GOTO, however. When

BASIC 4.1

April, 1977

an error occurs in a direct statement, no line number is
printed. Format of error messages:

Direct Statement ?XX ERROR ~
Indirect Statement ?XX ERROR IN YYYYY

where XX is the error code and YYYYY is the line number where
the error occurred. The following are the possible error
codes and their meanings:

ERROR CODE EXTENDED ERROR MESSAGE NUMBER

- —

The following error codes apply in ALL versions.

- — > -

BS SUBSCRIPT OUT OF RANGE 9
An attempt was made to reference an array element which 1is
outside the dimensions of the array. In the 8K andlarger
versions, this error can occur if the wrong number of
dimensions are used in an array reference. For example:

LET A(1,1,1)=2Z
when A has already been dimensioned by DIM A(10,18)

DD REDIMENSIONED ARRAY 196
After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs
if an array has been given the default dimension of 18 and
later in the program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION .CALL 5

The parameter passed to a math or string function was out of
range. FC errors can occur due to:

1. a negative array subscript (LET A(-1)=0)
2. an unreasonably large arrayv subscript (>32767%)

3. LOG with negative or zero argument

=3

SQR with negative argument

w
.

AuB with A negative and B not an integer

BASIC 4.1 35

April, 1877

6. a call to USR before the address of a machine language
subroutine has been entered.

7. calls to MIDS, LEFTS, RIGHTS, INP, OUT, WAIT, PEEK, POKE,

TAB, SPC, STRINGS, SPACE$, INSTR or ON...GOTO with an
improper argument.

ID ILLEGAL DIRECT 12

.INPUT and DEF are illegal in the direct mode. In extended

g6

versions, however, INPUT is legal in direct.
NF NEXT WITHOUT FOR 1

The variable in a NEXT statement corresponds to no previously
executed FOR statement.

oD OUT OFf DATA. 4

A READ statement was executed but all of the DATA statements
in the program have already been read. The program tried to
read too much data or insufficient data was included in the
program.

CM OUT OF MEMORY 7
Program is too large, has too many variables, too many FOR
loops, to many GOSUBs or too complicated expressions. See
Appendix C.

ov OVERFLOW ' 6

The result of a calculation was too large to be represented in
Altair BASIC's number format. If an underflow occurs, zero is
given as the result and execution continues without any error
message being printed.

SN SYNTAX ERROR 3

Missing parenthesis in an expression, illegal character in a
line, incorrect punctuation, etc.

RG RETURN WITHOUT GOSUB 3

A RETURN statement was encountered before a previous GOSUB’
statement was executed.

UL UNDEFINED LINE 8

The line reference in a GOTO, GOSUB, IF...THEN...ELSE or
DELETE was to a line which does not exist.

BASIC 4.1

April, 1877

/9 DIVISION BY ZERO 11

Can occur with integer division and MOD as- well as floating
point division. @ to a negative power also causes a DIVISION
BY ZERO error. ' .

The following error messages apply to
8K, Extended and Disk versions only

CN CAN'T CONTINE 17

~Attempt to continue a program when none exists, an error
occurred or after a modification was made to the program.

LS STRING TOO LONG 15

An attempt was made to create. a string more than 255
characters long. .

Gs OUT OF STRING SPACE 14

String variables exceed amount of string space allocated for
them. Use the CLEAR command to allocate more string space or
use smaller strings or fewer string variables.

ST STRING FORMULA TOO .COMPLEX 16

A string expression was too long or too complex. Break it
into two or more shorter ones.

™ TYPE MISMATCH 13

The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or vice-versa;
or a function which expected a string argument was given a
numeric one or vice-versa.

UF UNDEFINED USER FUNCTION 18
Reference was made to a user defined function which had never

been defined.

- — -

The following error messages are available in Extended and
Disk versions only.

- — o

MISSING OPERAND 29

During evaluation of an expression, an operator was found with

BASIC 4.1) , ‘ 87

no operand following it.

NO RESUME - 19

BASIC entered an error trapping routine, but the program ended

"before a RESUME statement was encountered.

RESUME WITHOUT ERROR 21

A RESUME statement was encountered, but no error trapping
routine had been entered. .

UNPRINTABLE ERROR 22
An error condition exists for which there is no error message
available. Probably there 1is an ERROR statement with an
undefined error. code.

LINE BUFFER OVERFLOW 23
An attempt was made to input a program or data line which has

too many characters +to be held in the line buffer. Shorten
the line or divide it into two or more parts.

Disk Altair BASIC Error Messages
FIELD OVERFLOW 59

An attempt was made to allocate more than 128 characters of
string variables in a single FIELD statement.

INTERNAL ERRCR 51

:Internal error in Disk BASIC. Report conditions under which

error occurred and all relevant data to MITS software
department. This error can also be caused by certain kinds of

disk .I/0 errors.

88

BAD FILE 52

An attempt was made to use a file number which specifies a
file that is not OPEN or that is greater than the number of
files entered during the Disk Altair BASIC initialization
dialog. '

FILE NOT FGUND 53

BASIC 4.1

April, 1977

FILE NOT FOUND ' 53

Reference was made in a LOAD, KILL or OPEN statement to a flle
which did not exist on the disk specified. .

BAD FILE MODE ' 54

An attempt was made to pervform a PRINT to a random file, to
OPEN a random file for sequential output, to perform a PUT or
GET on a sequential file, to load a random :file or to execute
an OPEN statement where the file mode is not I, C, or R.

FILE ALREADY OPEN | | 55

A seqguential outpdt mode OPEN for a file was issued for a file
that was already OPEN and had never been CLOSEd or a KILL
statement was given for an OPEN file.

DISK NOT MOUNTED 56

An I/0 operation was issued for a file that was not MOUNTed.

DISK I/O ERROR 57

An I/0 error occured on disk X. A sector read (checksum)
error occurred eighteen (18) consecutive times.

SET TO NON-DISK STRING 58

An LSET or RSET was given for a string variable which had not
previously been mentioned in a FIELD statement.

DISK ALREADY MOUNTED : 53

A OUNT was 1issued for a DISK that was already MOUNTed but
never UNLOADegd. ~

DISK FULL N 69

All disk storage is exhausted on the disk. Delete some old
disk files and try again.

INPUT PAST END 61

An INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT is
executed for a null (empty) file. Use of the EOF function to
detect End Of File will avoid this error.

BASIC 4.1) 89

April, 1977

90

BAD RECORD NUMBER 62

In a PUT or GET statement, the record number is either greater
than the allowable maximum (2046) or equal to Zero.

BAD FILE NAME : 63

A file name of @ characters (null) or a file name whose first
byte was 8 or 377 octal (255 decimal) or a file name with more
than 8 characters was used as an argument to LOAD, SAVE, KILL
or OPEN.

MODE-MISMATCR 64
Sequential OPEN for output was executed for a file that

already existed on the disk as a random (R) mode file, or vice
versa.

DIRECT STATEMENT IN FILE 65

A direct statement was encountered during a LOAD of a program
in ASCII format. The LOAD is terminated.

TOO MANY FILES 66

A SAVE or OPEN (O or R) was executed which would create a new
file on the disk, but all 255 directory entries were already
full. Delete some files and try again.

CUT OF RANDOM BLQGCKS 67

An attempt was made to have more random files OPEN at once
than the number of random blocks that were allocated during
initialization by the response to the
'"NUMBER OF RANDOM FRILES?' guestion (see Appendix H).

FILE ALREADY EXISTS _ 68

The new file name specified in a NAME statement had the same
name as another file that already existed on the disk. Try a
different name.

FILE LINK ERROR 69

During the reading of a file, a sector was read which did not
belong to the file.

BASIC 4.1

April, 1977

6-6. Reserved

Words.

Some words are reserved by the Altair

BASIC

use as statements, commands, operators, etc.

be used for variable or function names.
listed below in order of the versions for which they are
all

are

reserved, starting with those reserved in
with those reserved only in Disk Altair BASIC.
smaller

ending

reserved in larger versions may be used in

although one

interest of compatibility.
intrinsic
versions in which they are available.

below,

RESERVED WORDS
Words reserved

- .CLEAR
DATA
DIM
END
FCR
GOSUB
GOTGC
IF
INPUT
LET
LIST

Words reserved
plus:

AND
{CONT
DEF
FN
NOT
NULL

Words reserved

AUTO
CONSOLE
DEFDBL
DEEINT
DEFSNG
DEFSTR
DELETE
EDIT
ELSE

BASIC 4.1

April, 1977

may want to avoid

function names

in all versions.

NEW
NEXT
PRINT
READ
REM
RETURN
RON
STOF
TO
TAB
THEN
USR

in 8K,

ON
OR
ouT
POKE
SEC
WAIT

in Extended and Disk

LINE
LLIST
LEPRINT
MOD
RENUM
RESUME
SPACES
STRINGS
SWAP

In addition to
are

Extended and Disk

interpreter
and thus may not

The reserved

for
words
and

Words
versions,

versions

all reserved words in the

versions.

the
reserved words in all

versions.

words listed -

All the above

All the above plus:

9l

CLOSE

92

ERASE
ERL
ERR
IMP
INSTR

Words

DSKIS
DSKOS$
FIELD
FILES
GET
KILL
LOAD

TROFF
R:ON
VARPTR
WIDTH
XOR

reserved in Disk.

LSET
MERGE
MOUNT
NAME
OPEN
PUT
RSET
UNLOAD

All the above plus:

BASIC 4.1

April, 1977

DECIMAL
000
001
602
803
004
805
006
667
708
899
919
911
012
913
914
815
916
017
018
819
020
821
822
923
924
225
026
827
528
029
6390
931
832

- §33
834
635
836
937
938
839

040
941
942

LF=Line Feed

BASIC 4.1

April, 1977

CHAR.
NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
SI
DLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESCAPE
FS
GS
RS
us
SPACE
!

o =2 00 e

APPENDIX A

ASCII CHARACTER CODES

2
100

DECIMAL
943
044
045
46
247
048
849
250
651
@52
@53
854
@55
@56
857
@58
359
2960
g6l
262
263
g64
65
066
g67
g68
069
270
871
272

- 973

874
875
376
677
378
879
289
asl
082
583
084
@85

FF=Form Feed

CHAR.

+

I -

CHNXWOUWOZRRNUHDINOAHEEBUOQUWD® OV I A~ oo (O ~JA U WR SRS

dete
) ofklgh«
Reloe

DECIMAL
986
887
288
289
290
291
292
293
294
895
296
297

298

299
1649
191
192
143
124
135
106
197
198
149
119
111
112
113
114
115
115
117
118
119
123
121
122
123
124.
125
126
127

CR=Carriage Return

CHAR. .-

- A

—N R ECO TN QT O HAWPTAQHO LA OP

DEL

(or })
(or =)

DEL=Rubout

93

Using ASCII codes -- the CHRS$ function.

CHRS (X) returns a string whose one character is that with
ASCII code X. ASC(X$) <converts the first character of a
string to its ASCII decimal value.

One of the most common uses of CHRS is to send a special
character to the user's . terminal. The most often used of
these characters is the BEL (ASCII 7). Printing this
character will cause a bell to ring on some terminals and a
beep on many CRT's. This may be used as a preface to an error
message, as a novelty, or just to wake up the user if he has
fallen asleep. Example:

PRINT CHRS (7);

Another major use of CHR$ is on those CRT's that have
cursor positicning and other special functions (such as
turning on a hard copy printer). For example, on most CRT's a
form feed (CHRS(12)) will cause the screen to erase and the
cursor to "home" or move to the upper left corner.

Some CRT's give the user the capability of drawing graphs
and curves in a special point-plotter mode. This feature may
easily be taken advantage of through use of Altair BASIC's
CHRS$ function.

BASIC 4.1

April, 1277

APPENDIX B
LOADING AND INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.

This appendix details the procedure for loading BASIC 1in
4K, 8K and Extended versions from paper tape or tape cassette.
For instructions on loading Disk BASIC, see appendix H.

The programs below are entered into memory through the
front panel switches. Rather than specify the switch
positions as "up" and "down"; it is convenient to denote the
up position as 1 and the down position as 8. Taken in groups
of three the switches can represent octal digits. To save
space, the switch positions in the following .loader program
listings are shown in octal notation. - The leftmost two
switches in an 8 bit set are revpresented by the first digit,
the next three by the second digit and the low-order three
switches by the last digit.

For example, if we wish to enter octal 315 on the data
switch register, the switches would have the following
positions:

7 6 5 4 3 2 1]
up up down down up up down up
3 1 5 :

For data entry, only the rightmost 8 switches of the 156
switches on the ALTAIR 8889 front panel switch register are
used. All 16 switches would be wused to enter a memory
address.

» The following is the procedure for 1loading BASIC from
parver tape or cassette:

1. Turn the power switch on

2. Raise the STOP switch and RESET switch simultaneouslvy

3. Switch the terminal to LINE

4, Enter one of the following programs on the front panel
switches. The 88-MBL Multi-Boot Loader PROM contains the
necessary loader programs, so it is not necessary to enter

a loader from the front vanel if it is installed. Refer
to the 88-MBL manual for more information.

BASIC 4,1 95

April, 1977

%6

loading from paper tave with the SIO board (REV 1)

Octal Address
300
2901
8g2
3403
ga4
@85
2d6
ga7
819
211
g12
813
314
815
gle
817
220
g21
822
923

Octal Data

g4l

302 .
@xx (17 for 4K, 37 for 8K, 77 for
g6l Extended & Disk)

922

000

333

0a90

g17

339

333

ga1

275

310

g55

167

304

351

393

g0a

loading from cassette

Octal Address
289
ga1
202
283
204
285
g06
867
219
g11
812
213
gl4
g15
gle
217
328
321
222
223

Octal Data

gal

392 . ’
gxx (17 for 4K, 37 for 8K, 77 for
361 Extended and Disk)
g22

6o

333

gaée

g17

338

333

667

275

319

g55

167

300

351

393

980

BASIC 4.1

April, 1977

c. loading with the 88 PIO board

Octal Address Octal Data
009 g4l

801 302

ga2 gxx (17 for 4X, 37 for 8K, 77 for
203 g6l Extended and Disk)
ga4 823

285 209

gd6 333

397 234

210 346

911 891

212 319

313 333

g1l4 ‘ 385

415 275

216 319

817 455

320 167

821 309

822 351

923 293

324 290

d. 1loading with the 2SI0 bcard-

Octal Address Octal Data

090 876

881 293

292 323

093 229

004 g76

gas © @21 (=2 stop bits, 825=1 stop bit)
006 323 ‘
287 320

g1a g41

g11 342 ‘ ‘
212 Bxx (l7for 4K, 37 for 8, 77 for
g13 61 Extended and Disk)

gl4 332

g15 399

g1l6 ' 333

817 829

024G » 017

921 329

922 333

723 g21

g24 275

825 3193

g26 " @455

BASIC 4.1

April, 1977

98

027
030
31
832
233

167
300
351
813
009

loading with the 4PIO board

Octal Address
209
g6l
302
ga3
534
285
gae
aa7
319
g1l1
812
g13
214
g15
016
817
829
821
322
823
g24
825
g26
827
330
831
832
p33
334

Octal Data

. 257

323
340
323
g41
g76
954
323
249
941
382
gxx (17 for 4K, 37 for 8K,
@61 Extended and Disk)
833
509
333
349
487
3349
333
g41
275
319
@55
167
360
351
gl4
gog

Loading with the High Spesd Tape Reader

Octal Address
600
281
892
893
304
295
006
207
310

Octal Data
257
323
g44
323
g45
323
g46
857
323

77 for

BASIC 4.1

April, 1977

11
212
213
gl4
15
g1ls6
817
820
p21
022
223
924
825
P26
227
630
231
832
233
P34
035
836
237

049
241

942
g43
ga4
@45
846
047
659

247
76
014
323
044
876
g4
323
946
323

647

g41
352
Fxx
761
047
289
333
ga4
3456
109
312
333
345
275
319

855

167
300
351
927
6049

To enter these programs:

BASIC. 4.1

_April, 1977

(17 for 4X, 37 for 8K, 77 for
Extended and Disk)

Put switches @ to 15 in the down vositions

Raise EXAMINE

Put the data for address zero in switches 9 through 7

Raise DEPOSIT

Put the data for the next address in the switches

Depress DEPOSIT NEXT

Repeat stevs 5 and 6 until the whola loader

is toggled in

\O
Y]

100

8.
9.
10.

11.

17.
18.
19.

20.

21.

22.

Put switches @ through 15 in the down position
Raise EXAMINE

Check to see that the lights D@ through D7 show the data
that should be in location 908. Light on =1, light off =
. If the correct value is there, go to step 13; 1if not,
go to 11.

Put the correct value in the switches

Raise DEPOSIT |

Depress EXAMINE NEXT

Repeat steps 1f through 13 to check the entire loader

If there were any mistakes, check the entire loader again
to make sure they were corrected.

If a paper tape is being loaded, put it intc the reader
and make sure that it is positioned at the beginning of
the leader. The leader is the section of tape at the
beginning with 382 octal punched in each column. If an
audio cassette is being loaded, put it in the cassette
recorder and make sure it is fully rewound.

Lower switches @ through 15
Raise EXAMINE

Enter the sense switch settings. See the table in
section B.

If loading is through a SIOA, B or C or an 88PIO, turn on
the tape reader and then depress RUN. If a cassette is
being loaded, turn on the recorder, put it in PLAY mode
and wait 15 seconds. Then press RUN on the computer. If
loading is through a 4PIQ, 2SIO or High Speed Tape Reader,
depress RUN and then start the read device.

Wait for the tape to read. Paper tape takes about 25
minutes for Extended, 12 minutes for 8K and 6 minutes for
4%, Cassettes take about 8 minutes for Extended, 4
minutes for 8K and 2 minutes for 4K. Do not move any of
the switches while the tape is being read.

If a loading error occurs, the 1loading procedure must
start over from step 1. See section C below for error
conditions.

BASIC 4.1

April, 1377

23. When the tape is read, BASIC should start up and orint
MEMCRY SIZE? See section D below for what to do next.

24, If BASIC will not load from cassette, the ACR module may
need realignment. The Input Test Program described in the
ACR Manual, pages 22 and 28, may be used to test the ACR

B. Sense Switch Settings

Sense switches (switches A8 through AlS5) must be set
before tape or cassette loading begins. The settings depend
on the terminal and input interface boards in use. The low
order (rightmost) four switches contain the 1load board
setting, and the high order four switches contain the terminal
board setting. - In the table below, the setting is given for
each I/0 board option. As above, the setting 1is an octal
number which signifies the switch positions. The Terminal
Switch and Load Switch columns show the switches that are
raised for each of the load and terminal device ootions.

Sense Switch Terminal Load

Device Setting Switches Switches Channels
2810) none none 28, 21

(2 stop bits) ’
2SI0 1 al2 A8 28, 21

(1 stop bit)
SI0 2 Al3 A9 g, 1
ACR 3 Al3,Al2 A9,AS8 6, 7
4PI0 4 Al4 AlQ 49, 41, 42, 43
PIO ' 5 Al4,Al12 Al0,A8 4, 5
HSR 6 Al4,Al13 alg,A9 46, 47
non-standard 14

terminal

no terminal 15
Examples:

Input from audio cassette through ACR and CRT terminal
through 25I0 with 1 stop bit.

Switch 15 14 13 12 11 18 9 8

Position @ g g 1 2 g 1 1

Input from high speed paper tape reader, terminal
through SIO.

Switch 15 14 13 12 11 19 o9 8

Position @ Vi) 1 /] g 1 1 8

- BASIC 4,1

April, 1977

102

C. Error Detection

The checksum loader turns on the Interrupt Enable liaght
on the front panel when a loading error occurs. The ASCII
code of the error letter is stored in 1location #. _In
addition, the error letter is sent out over all the terminal
channels and appears on whatever terminal is connected to the
terminal. The error letters are as follows:

C checksum error. Bad taoe data.

M memory error. Data won't store properly.
The address of the bad memory location is stored
in locations 1 and 2.

O overlay error. Attempt was made to load data on top
of the loader.

I invalid load device. 1Invalid setting on the
sense switches.

D. Initialization Dialog
Upon starting, BASIC orints
MEMORY SIZE?

To this, the usar responds by typing the number of bytes of
memory to be used by BASIC and BASIC programs. Remember ‘that
the BASIC interpreter itself takes 3.4K in the 4K version,
6.2K in 8K and 14.6K in Extended. 1If the response is just a
carriage return, BASIC will use all the memory it can find,
starting at location =zero up to the last byte of read/write
memory. Then BASIC asks,

TERMINAL WIDTH?

to which the user resvonds with the width of the printing line
of whatever output device is in use. Typing a carriage return
sets the terminal width to 72. Extended and Disk Altair BASIC
set the terminal width through the WIDTH command, so the
TERMINAL WIDTH question is not asked at initialization and an
initial width of 72 is assumed.

In 4K, the response to MEMORY SIZE? and TERMINAL WIDTH?

must be less than 6 digits.

The Extended and Disk versions now ask what kind of 1line
printer is in use.

LINEPRINTER?

The user answers with O if the 80LP printer is in use, C for

BASIC 4.1

April, 1977

the C700 and Q for the Q70. One of these letters must be
typed whether or not a lineprinter is connected to the system.

At this point .BASIC asks several questions about
mathematical functions. The functions may be kept if needed
or deleted to save space. 4K asks,

SIN? Answer Y to save SIN, SQR and RND
Answer N to delete SIN and see the
next question

SQR? Y keeps SQR and RND
N deletes SQR, asks next question

RND? Y keevs RND
N deletes RND

8K and Extended BASIC ask,
WANT SIN-COS~-TAN-ATN? keeps all four

deletes all four

deletes only ATN

(in extended) retains

CONSOLE and all other

functions. Other an-
swers delete CONSOLE.

(@ R g

Now BASIC prints,
XXXX BYTES FREE

ALTAIR BASIC VERSION 4.9
[FOUR-K VERSION]

or
[EIGHT-K VERSION]

or
[EXTENDED VERSION]
COPYRIGHT 1977 BY MITS, INC.
OK

BASIC is now in command level and is readv for use.
E. Echo Routines.

The Altair input/ocutput channels work in a full-duplex
mode. This means that characters entered on an input/output
terminal will not, as a rule, be orinted as they are entered
unless the computer is programmed to return them. The
following echo programs may be used to test the inout/output
devices. To test an input-only device, dump the echoed
Characters on an output device or store them in memory for
later examination. To test an output-only device, send the
echo characters through the front panel ,switches .or send a
constant character. Be sure to check the ready—-to-receive bit

"
BASIC 4.1 103

Aprii, 1977

of the output terminal before attempting outnut.
program works, but BASIC does not, make sure the load device's

I/O board 1is

strapped for 8 data bits

and

If the echo

that the

ready-to-recieve bit is set properly on the terminal device.

88-PIO

OCTAL ADDRESS
01
982
283
004
@5
006
837
219
11
912
813
14
215

2510
OCTAL ADDRESS
000
801
002
203
004
805
006
007
919
011
12
213
014
915
015
917
520
21
622
923
624

-4PI0

OCTAL ADDRESS
o9
001
002
283
ga4

OCTAL DATA
pa4
346
291
312
po9
2909
333
985
323
095
383
000
000

OCTAL DATA
a76
903
323
9280 (flag ch.)
276
@21 (=2 stop bits,
323 #25=1 stop bit)
220
333
320
817
322
813
g0
333
@21 (data channel)
323
g21
363
919
000 .

OCTAL DATA
257
323
940
323
fpal

BASIC 4.1

April, 1977

105

2905
9d6
0a7
P19

© 911

212
g13
814
015
16
817
220
921
822
823
024

@25

826
027
239
631
832
833
934
835
636
637
949
041
42
@43
044

323
a2
957
323
243
876
954
323
249
323
042
333
249
346
209
312
0290
pa9
333
a42
346
200
312
827
009
333
pal
323
043
303
2290
paa

BASIC 4,1

April, 1977

APPENDIX C
SPACE AND SPEED HINTS

A. Space Allocation

The memory space required for a program depends, of
course, on the number and kind of elements in the program.
The following table contains information on the space reguired
for the various program elements.

Element Space Reguired

Variables
numeric integer 5 bytes
single precision 7 bytes in Extended and Disk
6 bvtes in 4K and 8K
double precision 11 bytes
string 6 bytes

Arrays _
integer (# of elements)*
single precision
double precision
string
8K and 4K

strings and floating pt.

+[6]+(# of dimensions)*2 bytes

W 0O = d

(o)}
-+
w

Functions
intrinsic
user-defined

byte for the call (2 bvtes in Extended and Disk)
byvtes for the definition

ON

Reserved Words byte each

bytes for ELSE in Extended and Disk

N =

Other Characters
1 byte each

Stack Space
active FOR
loop 17 bytes in Extended and Disk,
16 bytes in 4K and 8K
active GOSUB 5 bytes
parentheses 6 bytes esach set
temporary
result 12 bytes in Extended and Disk
19 bytes in 4K and 8K

106) BASIC 4.1

April, 1877

BASIC itself takes about 3.4K in the 4K version, 6.2K in
8K, 14.6K in Extended and 20 X in Disk.

B. Space Hints

The space required to run a program may be significantly
reduced without affecting execution by following a few of the
following hints:

1. Use multiple statements per line. Each line has a 5 byte
overhead for the 1line number, etc., so the fewer lines
there are, the less storage is required.

2. Delete unnecessary spaces. Instead of writing

190 PRINT X, Y, Z

use

19 PRINTX,Y,2

3. Delete REM statements to save 1 byte for REM and 1 byte
for each character of the remark.

4, Use variables instead of constants, expecially when the
same value is used several times. For example, using the
constant 3.14159 ten times in a program uses 49 bytes more
space than assigning

18 P=3.1415%
once and using P ten times.

5. Using END as the last statement of a program 1is not
necessary and takes one extra byte.

6. Reuse unneeded variables instead of defining new
variables.

7. Use subroutines instead of writing the same code several
times.

8. Use the smallest version of BASIC that will run the
program.

.9. Use the zero elements of arrays. Remember the array
dimensioned by

100 DIM A(10)

)

has eleven elements, A(@) through A(19).

BASIC 4.1

april, 1977

108

19.

In Extended and Disk, use integer variables wherever
possible.

Speed Hints

Deleting spaces and REM statements gives a small but
significant decrease in execution time.

Variables are set up in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the variable at each
reference. Variables at the head of the table take less
time to search for than those at the end. Therefore,

‘reuse variable names and keen the list of variables as

short as possible.

In 8K, Extended and Disk use NEXT without the index
variable.

8K, Extended and Disk have faster floating point
arithmetic than 4K. 1If space is not a limitation, use the
larger versions.

The math functions in 8K, Extended and Disk are £faster
than those in 4K.

In the 4K and 8K versions, use variables ' instead of
constants, especially in FOR loops and other code that
must be executed repeatedly.

In Extended and Disk, use integer variables wherever
possible.

String variables set up a descriptor which contains the
length of the string and a pointer to the first memory
location of the string. As strings are manipulated,
string space fills up with intermediate results and
wextraneous material as well as the desired string
information. When this happens, BASIC's *"garbage
collection” routine clears out the unwanted material. The
frequency of gargbage collection is inversely oproportional
to the amount of string space. The more string space
there 1is, the longer it takes to fill with garbage. The
time garbage collection takes 1s proporticnal to the
square of the number of string variables. Therefore, to
minimize garbage collection time, make string sovace as
largge as possible and use as few string variables as
possible.

BASIC 4.1

April, 1977

'APPENDIX D
MATHEMATICAL FUNCTIONS

1. Derived Functions.

The following functions, while not intrinsic to ALTAIR BASIC,
can be calculated using the existing BASIC functions:

Function: BASIC eguivalent:

SECANT SEC(X) = 1/COS(X)

COSECANT CSC(X) = 1/SIN(X)

COTANGENT COT(X) = 1/TAN(X)

INVERSE SINE ARCSIN(X) = ATN(X/SQR(=-X*X+1))

INVERSE COSINE ARCCOS (X) = =-ATN X(X/SQR(-X*X+1))

: +1.5798 o

INVERSE SECANT ARCSEC(X) = ATN(XSQR(X*X-1))
+SGN (SGN (X)-1)*1.570¢8

INVERSE COSECANT ARCCEC(X) = ATN(1l/SQR(X*X-1))
+(SGN(X)-1)*1.5748

INVERSE COTANGENT ARCCOT (X) = ATN(X)+1.57@8

HYPERBOLIC SINE SINH(X) = (EXP(X)-EXP(-X))/2

HYPERBOLIC COSINE COSH(X) = (EXP(X)+EXP(~-X))/2

HYPERBOLIC TANGENT TANH(X) = EXP(-X)/EXP(X)+EXP (-X))
*2+1

HYPERBOLIC SECANT SECH(X) = 2/(EXP(X)+EXP(=X))

HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)=-EXP(-X))

HYPERBOLIC COTANGENT COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))
*2+1

INVERSE HYPERBCLIC

SINE ARCSINH(X) = LOG(X+SQR(X*X+1))

INVERSE HYPERRBOLIC

CCSINE ARCCOSH({X) = LOG(X+SQR(X*X+-1))

INVERSE HYPERBOLIC

TANGENT ARCTANH (X) = LOG((1+X)/(1-X))/2

INVERSE HYPERBOLIC

SECANT ARCSECH (X) = LOG((SQR(=-X*X+1)+1)/X)

INVERSE HYPERBOLIC .

COSECANT ARCCSCH(X) = LOG(({SGN(X)*
SQR(X*X+1)*1)/K

INVERSE HYPERBOLIC .

COTANGENT ARCCOTH(X) = LOG((X+1)/(X-1))/2

2. Simulated Math Functions.

The following subrcutines are intended for 4K BASIC users

want the

BASIC.

to use

BASIC 4.1

i1

April,

1977

who

transcendental functions not built into 4K
The corresponding routines for these functions in

the

109

110

8K version are much faster and more accurate. The REM
statements in these subroutines are given for documentation
purposes only, and should not be tyved in because thevy take up
a large amount of memory. The following - are the subroutine
calls and their 8K eguivalents: .

8K EQUIVALENT 4K SUBROUTINE CALL
P9=X97Y9 GOSUB 6003¢
L9=LOG (X9) GOSUB 60092
E9=EXP (X9) GOSUB 62164
C9=C0OS (X9) GOSUB 60240
T9=TAN (X9) GOSUB 60289
AS=ATN (X9) GOSUB 6@318

The unneeded subroutines should not be typed in. Please note
which wvariables are used by each subroutiné. Also note that
TAN and COS require that the SIN function be retained when
BASIC is loaded and initialized.

6A908 REM EXPONENTIATION: P9=X97Y9

60012 REM NEED: EXP, LOG ’

60029 REM VARIABLES USED: A9,B9,C9,E9,L9,P9,X9,Y9

60038 REM P9 =1 : E9=8f : IF Y9=0 THEN RETURN

60049 IF X9<@ THEN IF INT(Y9)=Y9 THEN PO9=1-2*Y9+4*INT(Y9/2)
: X9=-¥9

50959 IF X9<>0 THEN GOSUB 68896 : X9=YS9*LS : GOSUR 691583

60068 P9=P9*E9 : RETURN

68079 REM NATURAL LOGARITHM: L9=LOG(X9)

60789 REM VARIABLES USED: A9,B9,C9,E9,L9,X9

60099 E9=0 : IF X9<=g THEN PRINT "LOG FC ERROR"; : STOP

68136 A9=1: B9=2: (C9=.5: REM THIS WILL SPEED THE FOLLOWING

62119 IF X9>=A9 THEN X9=C9*X9 : E9=E9+A9 : GOTO 60100

60129 X9=(X9~-.707187)/(X9+.7877187) : L9=X9*X9

683130 LO9={(((.598979*1.9+,.961471)*L.9+2.88539) *X9+E9~-.5)*
.693147

64135 RETURN

68140 REM EXPONENTIAL : E9=EXP(X9)

60153 REM VARIABLES USED: A9,E9,L9,X9

60169 L9=INT(1.4427*X9)+1 : IF L9<127 THEN 60189

68179 IF X9>0 THEN PRINT "EXP OV ERRCR"; : STOP

64175 E9=@ : RETURN

60180 E9=.693147*L9-X9 : A9=1.32988E-3-1.41316E-4*E9

68198 AS=((A9*E9-8.30136E-3)*E9+4.16574E-2) *E9

60195 E9=((A9~.1666565)*E9~1) *E9+1 : A9=2

608197 IF L9<=0 THEN A9=.5 : L9=-L9 : IF L9=0 THEN. RETURN

602906 FOR X9=1 TO L9 : E9=A9*E9 : NEXT X9 : RETURN
68213 REM COSINE: C9=COS (X9)

60229 REM N.B. SIN MUST BE RETAINED AT LOAD-TIME
60239 REM VARIABLES USED: C9,X9

60240 C9=SIN(X9+1.57868) : RETURNM

60256 REM TANGENT: T9=TAN (X9)

BASIC 4,1

April, 1977

60260
60270
60280
60290
60300
60319
60320

60330
60349

BASIC 4.1

April, 1977

REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME)

REM VARIABLES USED: C9,T9,X9

GOSUB 60249 : T9=SIN(X9)/C9 : RETURN

REM ARCTANGENT : A9=ATN(X9))

REM VARIABLES USED: A9,89,C9,T9,X9 :

T9=SGN (X9) : X9=ABS(X9):C9=0: IF X>1 THEN C9-1: X9=1/X%5S

A9=X9*X9 : B9=((2.86623E~-3*A9~-1.61657E-2) *A9Q o
+4.29996E-2) *A9

B9=((((B9-7.5289E-2) *A9+.106563) *A9-.1142089)*A9+.199936) *A9

A9=((B9-.333332) *A9+1)*X9 : IF C9=1 THEN A9=1.5708-A9

111

112

APPENDIX E
BASIC AND ASSEMBLY LANGUAGE

All wversions of Altair BASIC have provisions for
interfacing with assembly language routines. The USR function
allows Altair BASIC ovrograms to call assembly language
subroutines in the same manner as BASIC functions.

The first step in setting up a machine language
subroutine for an Altair BASIC program is to set aside memory
space. When BASIC asks, "MEMORY SIZE?" during initialization,
the response should be the size of memory available minus the
amount needed for the assembly language routine,. BASIC uses
all the bytes it can find from location zero up, so only the
topmost locations in memory can be used for wuser supplied
routines. If the answer to the MEMORY SIZE? question 1is too.
small, BASIC will ask the question again until it gets all the
memory it needs. See Appendix C for Altair BASIC's memory
requirements.

The assembly lanquage routine may be loaded into memory
from the front panel switches or from a BASIC nrogram by means
of the POKE statement.

The starting address of the assembly language routine
goes in USRLOC, a two byte location in memory which varies
from version to version. USRLOC for 4X and 8K Altair BASIC
version 4.8 is 111 octal. 1In Extended and Disk, USRLOC need
not be known explicitly since it is defined automatically by
DEFUSR (section 5-3b). The function USR calls the routine
whose address is in USRLOC. Initially, USRLOC contains the
address of ILLFUN, the routine which gives the FC or ILLEGAL
FUNCTION CALL error. If USR is <called without an address
loaded in USRLOC, an ILLEGAL FUNCTION CALL error results.

When USR is called, the stack vointer is set wup for 3
levels (16 bvtes) of stack storage. If more stack space is
needed, BASIC's stack can be saved and a new stack set up for
use by the assembly language routine. BASIC's stack must be
restored, however, before returning from the user routine.

311 memory and all the registers can be changed Dby a
user's assembly language routine. Of course, memory locations
within BASIC ought not to be changed, nor should more bytes be

popved off the stack than were put on it.

JSR is called with a single argument. The assembly
language routine <can retrieve this argument by callina the
routine whose address is in locations 4 and 5 decimal. The

low-order byte of the address is in 4 and the high-order in 5.
In 4X and 8K, this routine (DEINT) stores the argument in the
register pair [D,E]. In Extended and Disk, the araqument is

BASIC 4.1

April, 1977

passed in pair [H,L]. The argument is truncated to integer in
4k and 8X, and if it is not in the range -32768 to 32767, an
FC error occurs. In Extended and Disk, the register wpair
[H,L] contains a pointer to the Floating Point Accumulator
where the argument is stored (see section 5-3b. for more
information about use of the Floating Point Accumulator).

To pass a result back from an assembly language routine,
load the value in register pair [A,B] in 4K and 8K, or [H,L]
in Extended. This value must be a signed, 16 bit integer as
defined above. Then call the routine whose address is in
locations 6 and 7. If this routine is not c¢called, USR(X)
returns X. To return to BASIC, then, the assembly language
routine executes a RET instruction.

Assembly language routines can be written to handle
interrupts. Locations 56, 57 and 58 are used to hold a JMP
instruction to a user supplied interrupt handlinag routine,.
Location 56 initially holds a RET, so it must be set up by the
user or an interrupt will have no effect.

All interruot handling routines should <save the stack,
registers A-L and the PSW. They 'should also reenable
interrupts before returning since an interrupt automatically
disables all further interrupts once it is received.

There is only one way to call an assembly language
routine 1in 4K and 8K, but this does not limit the programmer
to only one assembly language routine. The = argqument o¢f USR
can be used to designate which routine is being called. 1In
8K, additional arguments can be passed through the use of POKE
and values may be passed back by PEEK.

In Extended and Disk BASIC, up te ten routines may be
called with the USRY - USRY9 functions. For more information
on this feature, seé section 5-3b.

' 1
BASIC 4.1 113

April, 1977

114

APPENDIX F
USING THE ACR INTERFACE

NOTE

The cassette features , CLOAD and CSAVE , are only
present in 8K Altair BASICs which are distributed on
cassette and in Extended and Disk versions. 8K BASIC
on paper tape will give the user about 258 additional
bvtes of free memory, but it will not recognize the
CLOAD or CSAVE commands.

Programs may be saved on cassette tape by means of the
CSAVE command. CSAVE may be used in either direct or indirect
mode, and its format is as follows:

CSAVE <string exvpression>

The program currently in memory is saved on cassette under the
name specified by the first character of the <string
expression>. CSAVE writes through channel 7 when the Write
Buffer Empty bit (bit 7) of channel 6 is low. After CSAVE is
completed, BASIC always returns to command level. Programs
are written on tape in BASIC's internal representation.
Variable values are not saved on tape, although an indirect
mode CSAVE does not affect the variable values of the mrogram
currently in memory. The number of nulls (see NULL command)
has no affect on the operation of CSAVE. Before using CSAVE,
turn on the cassette recorder. Make sure the tape is in the
prover position then put the recorder in RECORD mode.

Programs may be loaded from cassastte tape by means of the
CLOAD command, which has the same format as CSAVE. The effect
of CLOAD is to execute a NEW command, clearing memory and all
variable wvalues and 1loading the specified file into memory.
When done reading and loading, BASIC returns to command level.
CLOAD reads a byte from channel 7 when the Read Data Ready bit
(bit 9) in channel 6 1is 1low. Reading continues until 3
consecutive zeros are read. BASIC will not return to command

‘level after a CLOAD if it could not find the requested file,

or if the file was found but did not end with 3 zeros. 1In
that case, the computer will continue to search until it is
stopped and restarted at location 7.

BASIC 4.1

April, 1977

In the 8K cassette and Extended versions of ALTAIR BASIC,
data may be read and written with the CSAVE* and CLCAD*
commands. The formats are as follows:

CSAVE*<array variable name>

CLOAD*<array variable name>

See section 2-44 for a discussion of CSAVE* and CLOAD* for
array data.

CLOAD?<string expression> compares the program currently
in memory with the specified file on cassette. If the two
files match, BASIC prints OK. If not, BASIC orints NO GOOD.

Data may also be read from and written on cassette in the
paper tape version of 8K Altair BASIC. To write data, execute
a WAIT 6,128 statement to check for the Write Buffer Empty bit
and then write with an OUT 7,<byte> statement. To read,
execute a WAIT 6,1 to check for Read Data Ready and then read
with an INP(7). The end of a block of data may be
conveniently designated by a special character. Data should
be stored in array form since there is no time during reading
and writing for computation.

BASIC 4.1 115

April, 1977

APPENDIX G
CONVERTING BASIC PROGRAMS
NOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers

are in many ways similar, there are some incompatibilities
between ALTAIR BASIC and the BASIC used on other computers.

1) Strings.

A number of BASICs require the 1length of strings to be
declared before they are used. All dimension statements of
this type should be removed from the program. In some of
these BASICs, a declaration of the form DIM AS(I,J) declares a
string array of J elements each of which has a lenath I.
Convert DIM statements of this tvype to eguivalent ones in
Altair BASIC: DIM AS$(J). Altair BASIC uses " + " for string
concatenation, not " , *“ or " & ."™ ALTAIR BASIC uses LEFTS,
RIGHTS and MIDS to take substrings of strings. Some other
BASICs use AS$(I) to access the Ith character of the string AS,
and AS(I,J) to take a substring of A$ from character position
I to character position J. Convert as follows:

OLD NEW
AS(I) MIDS (AS,I,1)
AS$(I,J) MIDS (AS$,I,J-I+1)

This assumes that the reference to a subscript of A§ is in an
expression or is on the right side of an assignment. If the
reference to AS is on the left hand side of an assignment, and
X$ is the string exoression used to replace characters in AS,
convert as follows:

In 4K and 8K

OLD NEW

AS (I)=X$ AS=LEFTS (AS$,I-1)+X$S+MIDS (AaS,I+1)
AS(I,J)=XS AS=LEFTS (AS,I-1)+XS$S+MIDS (AS,J+1)
Extended and Disk :

OLD NEW

AS (I)=XS MIDS (AS,1,1)=XS

AS(I,J)=X$ MIDS (AS,I,J-I+1)=X

2) Multiple assignments.
Some BASICs allow statements of the form:

509 LET B=C=0

BASIC 4.1

April, 1977

This statement would set the variables B8 and C to zero. In 8K
Altair BASIC, this has an entirely different effect. All the
“ = " signs to the right of the first one would be interoreted
as logical comparison overators. This would set the variable
B to -1 if C equaled 4. If C did not egqual g, B would be set
to ©@. The easiest way to convert statements like this one is
to rewrite them as follows.

508 C=9:B=C
3) Some BASICs use " \ " instead of * : * to delimit multiole
statements on a 1line. Change each " \ " to * : " in the
program.

4) Paper tapes punched by other BASICs may have no nulls at
the end of each line instead of the three per line recommended
for use with Altair BASIC. To get around this, try to use the
tape feed <control on the Teletvpe to- stop the tave from
reading as soon as Altair BASIC prints a carriage return at
the end of the line., Wait a moment, and then continue feeding
in the tape. When reading has finished, be sure to punch a
new tape in Altair BASIC's format.

A program for converting tapes to Altair BASIC's format
was published in MITS Computer Notes, November 1976, o. 25.

5) Programs which use the MAT functions available 1in some
BASICs will have to be rewritten using FOR...NEXT loops to
perform the aporopriate overations.

BASIC 4.1 . 117

April, 1977

118

APPENDIX H
DISK INFORMATION

Format of Altair Floppy Disk

Track Allocation:

Tracks Use

-5 Disk BASIC memory image.
6-69 Space for either random or sequential files.
72 Directory track. See below.

71-76 Space for seguential files only.

Format of DISK BASIC Memory Image (Tracks 4-5):

BASIC is loaded starting at track @@ sector @ then track @
sector 1, etc. Each sector contains 128 bvtes of BASIC. The
first 128 bvtes are loaded first, second 128 second, etc.

Sector format (Tracks 34-5):

Byte Use
| Track Number+128 decimal.
1-2 Sixteen bit address of the next

higher byte of memory than the highest memory location
saved on this sector.

3-1349 128 bytes of BASIC.

131 255 decimal stop byte.

132 Checksum - sum of bytes 3-130 with no carrv in 8 bits.

Sector format (Tracks 6-76):

Byte Use
7] Most Significant Bit alwavs on.
Contains track number plus 260 octal.
1 Sector number * 17 MOD 32. :
2 File number in directorv. Zero file number means

that the sector is not vart of any file. If the
sector is the first file of a group of 8 sectors
g means the whole group of 8 sectors is free.
3 Number of data bytes written (9 to 128) . Alwavys
128 for random files. (Except for the random file
index blocks in which case this byte indicates how many

BASIC 4.1

April, 1977

groups are allocated to the file.)

4 Checksum. The sum of all the data on the sector
excepot for the track number, the sector
number and the terminating 255 bvte.

5,6 Pointer to the next group of data. This is set up for
random files and sequential files, and is even valid
in the middle of a group. If it is zero it means there
is no more-data in the file. The track is the first byte

] and the sector number is the second bvte. ;
- 7-134 Data

135 A 255 (octal 377) to make sure the right number
of data bytes were read.
136 Unused.

Directory Track (70) Format:

Each sector of the directory (which is all of track 70)
is composed of up to 8 file name slots, 16 bvtes per slot.
Each slot can contain a file name (8 bytes), a 1link to the
start of file data (2 bytes) and a byte which specifies the
mode of a file (Random=4, Sequential=2). The remaining 35
bytes are not currently used. Any slot which has the first
file name byte egqual to zero contains a file which has been
deleted. If the first byte of a slot is a 255 , it is the
last slot currently in use in the directory. Slots beyond the
"stopper™ are garbage. File 'numbers are calculated by
multlolylng the sector number of the directory track the Ffile
is in by 8 and adding the 0051t10n of the slot in the sector
(6-7) plus 1.

NOTE

The ith logical sector on a track is actually mapped
to the 1i*17 MOD 32 vhysical sector to shorten access
time in BASIC I/0 operations.

. Format of Random Files

Each random file starts with two random index blocks. The
"number of data bytes" field in the first block indicates how
many groups are currently allocated to this random file. The
next 256 Dbytes in the two random index blocks give the
location of each group in the random file in order of their
position in the file. The upper two bits give the group
number , and the lower six bits give the track number - 6.

BASIC 4.1 119

A 3 19977
n?l‘ll » 1877

120

Assembly Code to Read and Write a Sector

The following code has been provided to help users write their

own assembly 1language

the floppy 4

the floppy 4
re-synchroni

floppy disk controller.

~8 we “o

ALL REGS D

DSKO: MoV
MVI
SUB
MoV
CALL
MVI
ouT

CALL WITH
AND [H,L]

(o LU TR THR ¥

HLDSK: MVI
MVI
ORA
MOV
INX
NOTYTD: IN
ANA
JNZ
ADD
ouT
MoV
INX
MOV
INX
DCR
Jz
DCR
ouT
JINZ
ZRLOP: 1IN
ANA
JNZ
ouT
DCR

subroutines to read and write data on

isk. It is assumed that the disk being used has
already been enabled and positioned to the correct track. Two
data bytes are always read or written at a time so that the
CPU can keep up with the data rate (32 microseconds/byte) cof
isk. After two bytes are read or written, the CPU

zes with

ESTROYED.

c,A
A,136
c

B,A
SECGET
A,128
9

'byte ready' status from the

CALL WITH NUMBER OF DATA BYTES TO WRITE IN [A]
AND POINTER TO DATA BUFFER IN [H,L]

;SAVE # OF BYTES IN C

;CALCULATE NUMBER OF ZEROS TO WRITE

;s SUBTRACT THE NUMBER OF DATA BYTES

; NUMBER OF ZERCS+1

; LATENCY

; ENABLE WRITE WITHOUT SPECIAL CURRENT

[B]=NUMBER OF ZEROS [C]=NUMBER OF DATA BYTES
POINTING AT OUTPUT DATA

Dyl
A,128
M

E'A
H

8

D
NOTYTD
E

19
A,M

H

E,M

H

C
ZRLOP
C

10
NOTYTD
8

D
ZRLOP
19

B

;SETUP A MASK (READY TO WRITE)
IGH BIT (D7) ALWAYS ON IN FIRST BYTE

;OR ON DATA BYTE

; SAVE FOR LATER

; INCREMENT BUFFER POINTER

;GET WRITE DATA READY STATUS

s TEST STATUS BIT

;s NOT READY TO WRITE, WAIT

;ADD BYTE WE WANT TO SEND TO ZERO

;SEND THE BYTE

;GET NEXT BYTE TO SEND

sMOVE BUFFER POINTER AHEAD

;GET NEXT DATA BYTE

;MOVE BUFFER POINTER AHEAD AGAIN -

; DECREMENT COUNT OF CHARS TO SEND

;IF DONE, QUIT & GO TOC ZRLOP

;DECREMENT COUNT OF CHARS AGAIN

; SEND THIS BYTE

;STILL MORE CHARS, DO THEM.

GET READY TO WRITE

;IS IT READY

; IF NOT, LOOP

s KEEP SENDING FINAL BYTE

; DECREMENT COUNT OF BYTES TO SEND

BASIC 4.1

April, 1977

JNZ ZRLOP ;KEEP WAITING

EI ;s RE-ENABLE INTERRUPTS .
MVI A,S8 ; UNLOAD HEAD

ouT 9 ; SEND COMMAND

RET ; DONE

DISK INPUT ROUTINE. ENTER WITH POINTER
; OF 137 BYTE BUFFER IN [H,L]. ALL REGS DESTROYED.

~e

DSKI: CALL SECGET ;POINT TO RIGHT SECTOR
MVI c,137 ;GET # OF CHARS TO READ
READOK: IN 8 ;GET DISK STATUS
ORA A ;READY TO READ BYTE
Ju READOK
IN 10 ;READ THE STUFF
MOV M,A ;SAVE IN BUFFER
INX H : ;BUMP DESTINATION POINTER
DCR C : LESS CHARS
Jz RETDO ; IF OUT OF CHARS, RETURN
DCR C ; DECREMENT COUNT OF CHARS
- NOP ;DELAY INTO NEXT BYTE
IN 19 ;GET NEXT BYTE
MOV M,A ;SAVE BYTE IN BUFFER
INX H ;MOVE BUFFER POINTER
JNZ READOK ;IF CHARS STILL LEFT, LOOP BACK
RETDO: EI ; RE-ENABLE INTERRUPTS
_ MVI A,8 ;UNLOAD HEAD
- ouT 9 ; SEND COMMAND
RET :
SECGET: MVI a,4 ; LOAD THE HEAD
ouUT 9
DI ;DISABLE INTERRUPTS
SECLP2: IN 9 ;GET SECTOR INFO
RAR ;FIX UP SECTOR 4
Jc SECLP2 ; IF NOT, KEEP WAITING
ANI 31 :GET SECTOR #
cMp E ;IS IT THE ONE WE WANTED
INZ SECLP2 ;TRY TO FIND IT
RET

The Disk PROM Bootstrap Loader

The Disk Bootstrap Loader PROM must be installed in the
highest ©vosition on the PROM board and the PROM board must be
strapped at the proper address. The proper nosition 1is the
PROM IC socket on the opposite side of the board from the
black finned heat sink. The black dot or 'l1' on the PROM
should be in the upper left corner. The address jumpers on
the PROM board must be in the 'l' position.

BASIC 4.1 121

April, 13977

To use the Disk Bootstrap Loader, turn the computer's power
on. Raise RESET "and STOP simultaneously. Lower RESET and
then STOP. EXAMINE location 177480 (address switches Al5-AS8
up, rest down) and then set the sense switches for the
terminal I/O board as explained in Appendix B. Depress the
RUN switch. BASIC should print (or display): -

MEMORY SIZE?

For the rest of the initialization procedure, see below.
Using the Cassette and Paper Tape Bootstraps

If the Disk Bootstrap Loader PROM is not in use, a paper tane
or cassette ©program must be loaded which then reads in BASIC
from the disk. This is done by following the procedure below:

1. £XKey in the appvlicable paper tape or cassette bootstrap
loader from the listings in Avpendix B. Make
location 2=077 octal. Set the sense switches for the
terminal.

2. Start the paper tape or cassette (labeled DISK LOADER)
reading, and then start the computer as in the
instructions for loading BASIC from paper tape from
cassette as given in Appendix B. '

BASIC should respond:

MEMORY SIZE?

For the rest of the initialization procedure, see below.
Disk Initialization Dialog

The initialization dialog has been expanded to allow the user
to select the prover amount of memory needed to use the
disk(s) on the system. After the the MEMORY SIZE question 1is
answered, BASIC will ask:

HIGHEST DISK NUMBER?

The user should answer with the highest physical disk address

in the system or with a carriage return. The default is 4.
Each additional disk uses 40 bytes of memory.

BASIC 4.1

April, 1977

Example:

HIGHEST DISK NUMBER? 1

BASIC next asks how many files are to be OPEN at one time in
the program. This number includes both random and segquential
files. If the user types carriage return, the default is
zero. Each file allocated requires 138 byvtes for buffer
space. Example:

HOW MANY FILES? 2

Finally, BASIC asks how many random files are to be OPEN at
one time. The amount of memory allocated is the answer*257.
This memory space is used to keep track of the location on the
floppy disk where groups of a random file reside. Thus, the
total memory reguired for each random file is 138+257=395
bytes. Example: ’

HOW MANY RANDCM FILES? 1
A typical dialog might appear as follows:

MEMORY SIZE? <carriage return>

HIGHEST DISK NUMBER? <carriage return>

HOW MANY FILES? 2 <carriage return>

HOW MANY RANDOM FILES? 1 <carriage return>

XXXXX BYTES FREE

ALTAIR BASIC REV. 4.9

[DISK EXTENDED VERSION]
COPYRIGHT 1976 BY MITS INC.

OK

BASIC 4.1 . 123

April, 1977

i

24

APPENDIX I

THE PIP UTILITY PROGRAM

A BASIC Utility program has been provided to perform such éuch
common functions as printing directories, initializing disks,
copying disks etc.

NOTE

Some of the PIP commands (LIS, DIR) require that one
<file number> be configured during the Disk BASIC
initialization dialog. This is done by answering the
"HOW MANY FILES?" guestion with a value greater than
zero., If an attempt is made to perform a LIS or DIR
without following this ©vprocedure, a BAD FILE NUMBER
error will occur.

Once the BASIC disk has been mounted, type the following
command :

RUN "“PIP“<carriage return>
(PIP will type)
*

PIP is now ready to accept commands. To exit PIP, type a
carriage return to the prompt asterisk. To 1initialize the
flopoy disk in drive 8, type:

*INIG

PIP will type “DONE" when it is finished. Any disk number may
be substituted for the @ in the above command and PIP will
format the disk in that drive. Any vrevious files on the disk
initialized will be lost. If yvou wish to use blank disks with
Disk BASIC, they must be initialized in this fashion before
they can be MOUNTed.

NOTE

DO NOT INITIALIZE THE DISK WITH DISK EXTENDED BASIC ON
IT. THIS WILL WIPE OUT ALL THE FILES PROVIDED ON THE
DISK.

BASIC 4.1

April, 1977

Printing a Directory

Giving PIP the command:

*DIR<disk number>
prints out a directory of the files on the specified disk.
The name of each file is printed along with the file's "mode"
(S for sequential, R for random) and the starting track and
sector number of the first block in the file. -

SRT<disk number>

prints a sorted directory of the files on the specified disk.
LISting Sequential Files

The LIS command is used to list the contents of a sequential
data file on the terminal:
Syntax:
LIS<disk number>,<file name>
Example:

*LISg,PIPA user types
7 CLEAR 1000 comouter prints

COPving Disks

The COP command is used to copy a disk placed in one drive to
a disk on another drive. Neither disk need be MOUNTed for the
COP command to work properly.

Syntax:

COP<o0ld disk number>,<new disk number>

BASIC 4.1

April, 1977

Before the copy is done, PIP verifies the action by wprinting
the following massage: '

FROM<disk number>T0O<disk number>

Typing Y followed by a carriage return causes execution to
proceed. Any other response aborts the command. Example:

*COP9%,1

FROM 0 TO 1? Y<carriage return>
DONE
*

The DAT command

The DAT command is used to dump out a varticular sector of the
disk in octal.

Syntax:
DAT<disk number>

When the DAT command is issued, PIP asks for the numbers of
the track and sector to be dumped. Example:

*DATH " (DAT is equivalent)
TRACK? @

SECTOR? @

090 200 000 090 000 000 000 040

400 099 000 060 000 etc.

The CNV command

" CNV converts disks written under Altair BASIC version 3.4 and
3.3 to a format useable by version 4.0. The format of the
command is as follows:

CNV<disk number>
CNV makes sure that the next to last byte of each sector is
255.

Other Programs Provided on the System Disk

BASIC 4.1

April, 1977

Program Name
STARTREK

BASIC 4.1

April, 1977

Use
Plays game based on TV series.

=

128

APPENDIX J

RSTLESS VERSIONS OF BASIC

Altair BASIC uses the so-called RST locations (locations
8 through 168 octal) at the bottom of memory. This saves
memory space, but precludes the use of the Vector Interrupt
board for real-time programming applications. Special.
versions of Altair BASIC are available which do not use the
RST locations, however. These versions 1leave the RST
locations free to be used for assembly 1language routines in
the same was as any other locations in high memory.

To restart the standard versions of Altair BASIC, it 1is
necessary simply to actuate the RESET switch on the computer's
front panel. This causes a jump to 1location 4. In the
RSTLESS version, BASIC is restarted by jumping to location 1490
octal. The usual procedure for doing this is as follows:

1. Raise STOP and RESET simultaneously, then release them
2. Raise switch A6

3. Actuate EXAMINE

4, Push RUN

BASIC restarts and prints “OK."

BASIC 4.1

April, 1977

APPENDIX K

USING Altair BASIC ON THE
INTELLEC* 8/MOD 84 AND MDS SYSTEMS

This appendix covers procedures for loading and operating
Altair BASIC on Intellec and MDS development systems.

A, Loading BASIC.

To load Altair BASIC, put the hex paper tape of 3ASIC in
the system reader device. Enter the System and assign the
CONSOLE I/0 device as desired (see Section 4.2.1 of the
Intellec 8/Mod 88 Operator's Manual). Now read in BASIC with
the following R command.

+R(Cr)

The BASIC tape will be loaded into memory, and the system
monitor will type a period on the CONSOLE device. If you are
only using contiguous RAM memory below the system monitor
(3800H) or are using BASIC on a MDS System, proceed to step 2.
If you have RAM memory above the PROM Intellec monitor which
you wish BASIC to use for program and variable storage, you
must patch the two locations known as INTLOC to vpoint to the
bottom (lowest address) of memory. The 1is most easily
accomplished by using the Svstem Monitor S command. INTLOC is
given below under “Memory Requirements.”

.SXXXX 00 48 (Cr)

The above S command would make INTLOC point to RAM, starting
at 16K.

NOTE

If you are wusing RAM above 16K for vprogram and
variable storage and have patched INTLOC, retain all
the math functions at 1initialization time (see
Appendix B). Essentially, this means that the WANT
SIN-COS-TAN-ATN? questions asked by BASIC's
initialization dialog should be answered by a Y(Cr).
Also, you must answer the MEMORY SIZE? gquestion with
the highest decimal or RAM address in your system.

BASIC 4,1 123

April, 1977

Start BASIC by giving the monitor GOTO command.

.GO0BB<carriage return>

NOTE

Once BASIC has been started, 1t may always be
restarted by depressing the RESET switch on the
Intellec 8 console. '

When BASIC types MEMORY SIZE?, typing carriage return will
cause BASIC to use all the RAM memory it can find above the
end of BASIC. Otherwise, if you wish to spvecify an exact
amount of memory, type the decimal address of the highest byte
of memory in the computer and type carriage return.

B. BASIC I/O.

The systém devices used for terminal I/0O in BASIC are CI,
CO and CSTS. ,

C. Saving and Loading Programs.

To save a program on paper tape, re-enter the PROM

monitor and reassign the CO device to the paper tape punch or

130

other output device. Then restart BASIC by using the G@§069
command and type LIST(Cr). The characters of the LIST command
will not be echoed, but the BASIC orogram currently saved in
memory will be put on the output device.

To load a program, enter the svstem monitor, re-assign CI
to the input device where the program resides, and then start
BASIC with a GOd@dd. When the program has been completely read
in, reassign CI to the user console. Then re-enter BASIC with
a GO@88, and start the I/0 device. The program will be echoed
on CO as it is read in. i

D. Memory Requirements

BASIC uses locations 0909H-9003H and @0lgH-approximately
19DFH in the 8K version, and @014H-2F@EH in the Extended
version. For Intellec 8K and MDS 8K BASICs, INTLOC is 6520

decimal. For MDS Extended, INTLOC is 14257 decimal.

E. Calling Assembly Language Routines

USRLOC for 8K BASIC is 0655H. ADR(DEINT) is stored in
locations §@43H. ADR(GIVACF) is stored in location 4645H. 1In
the Extended version, these locations contain the addresses of

BASIC 4.1

April, 1977

FRCINT and MAKINT, respectively. Interrupt driven subroutines
using RST 7 are not allowed in the 1Intellec/MDS version of
Altair BASIC. See Appendix C for further information on
calling assembly language subroutines.

* Intellec is a registered trademark of the Intel
Corporation. ’

BASIC 4.1 131

- April, 187

132

APPENDIX L
PATCHING BASIC'S I/0 ROUTINES

BASIC's I/O routines may be changed to accommodate
non-standard terminal equipment. After BASIC is loaded and
before it has been initialized, location 71 contains a pointer

to a 1list

addre

routines of BASIC:

sses, These addresses contain the I/0

ORG 701
DW IOLST ;TWO BYTE ADDRE3S OF ADDRESS LIST
IOLST: DW TRYIN ; CHARACTER INPUT ROUTINE
DW TRYOUT ;ADDRESS OF OUTPUT ROUTINE
DW ISCNTC ;POLL FOR CONTROL/C CHECK
DW NEWSTT ; FAST POLL FOR CONTROL/C CHECK
;8K AND LARGER ONLY
DW IN25I0 - ;ADDRESS OF INITIALIZATION
;ROUTINE FOR 2SIO BOARDS
DW IN4PIO ;ADDRESS OF INITIALIZATION ROUTINE FOR
;4PI0O BOARDS
DW LPTPOS ;ADDRESS OF LPT CODE FLAGS
DW LPT3CD ;START OF LPT CODE
DW ENDLPT ;END OF LPT CODE
DwW IOCHNL ;ADDRESS OF I/O RESET LOCATION
; (IN EXTENDED AND DISX ONLY)
TRYOUT: IN] ;GET DEVICE STATUS
ANI 200 ;AND OFF BIT 7
JNZ TRYOUT ;WAIT UNTIL TERMINAL CAN OUTPUT
POP PSW ;GET CHARACTER TO OUTPUT OFF STACK
ouT 1 ; TRANSMIT IT
- PUSH PSW ; SAVE CHARACTER BACK 'ON STACK
NOP ;CHANGED TO "IN 41" FOR 4PIO BOARDS
NOP
POP PSW ;GET CHARACTER BACK CFF STACK
RET ;ALL DONE WITH CHARACTER OQUTPUT ROUTINE
TRYIN: 1IN] ;GET TERMINAL STATUS
ANI 1 ; CHARACTER READY?
JNZ TRYIN . ;NO, KEEP WAITING
IN 1 ;READ IN THE CHARACTER
ANI 127 ;GET RID OF PARITY BIT

BASIC 4.1

April, 1977

‘cpI CONTO : CONTROL /0?

RNZ sRETURN IF NOT
ISCNTC: IN : g) s READ TERMINAL STATUS
ANI 11 ;HAS THE TERMINAL A CHARACTER
;TO SEND?
RNZ ;NO, RETURN

;FOLL OWING ROUTINE IS IN 3K AND LARGER VERSIONS ONLY
;AND IS EXECUTED FOR EACH STATPMENT

NEWSTT' IN 2 ; READ TERMINAL STATUS

ANI 1 ;TEST BIT g

C2Z CNTCCN tYES, SEE IF CHARACTER CONTROL/C
IN2SIO: CPI 2%4 ;IS IT 2SIO

RNC ;NO, OTHER GO DIRECTLY TO SETIO

ADI 21 ;GET PROPER INITIALIZATION BYTE

PUSH PSW ;SAVE IT

MVI A,3 s INITIALIZE THE 2SIO

CALL DOIO232

POP PSW ;GET BACK SECOND INITIALIZATION BYTE

JMP DOIO24 ; PROGRAM TO DATA AND STOP BITS
IN4PIO: MVI A,54Q s RESET FOR DATA TRANSFER

DCR M ;s CHANNEL=22

CALL DOIO23

-
[

The pointers LPTPOS, LPTCD3 and ENDLPT refer to the
following sections of lineprinter code:

A. LPT code flags.

LPTLST: DB] ;9 MEANS LAST LPT OPERATION
sWAS LINE FEED
‘ ;1 MEANS LAST LPT OP'N WAS PRINT
LPTPOS: DB g ; CURRENT LOGICAL POSITION OF LPT HEAD
PRTFLG: DB] ;9 MEANS OUTPUT TO CONSOLE
' ;1 MEANS OUTPUT TO LPT
;2 MEANS LLIST QUTPUT TO LPT

T =
BASIC 4.1 133

April, 1977

kQPOS: DB 7] ’ ; CURRENT Q79@9 PRINT HEAD POSITION

DB] ;IN 1/120 INCH INCREMENTS
QMQOV: DB] ;NUMBER OF INCREMENTS TO MOVE Q70
; PRINT HEAD IN ADDITION TO CHARACTER
LPTLEN: DB] ;MAX., NUMBER OF LPT COLUMNS
NLPPOS: DB /] ;COLUMN BEYOND WHICH THERE -ARE NO MORE

; “COMMA FIELDS®

A comma in a LPRINT statement causes the printhead to move to
the beginning of the next 14 column field. If LPTPOS is
greater than NLPPOS, a carriage return line feed seguence is
executed before printing. NLPPOS 1is calculated by the
following relation:

NLPPOS=INT(((LPTLEN/14)-1)*14)

LPTLST is used onlv by the 84LP printer. QPOS and QMOV
are used only by the Q79. The user should not modify the
PRTFLG flag since it is modified and referred to 1in several
places in BASIC. Changing it in a USR routine has
unpredictable results.

B. Start of LPT code.

LPT3CD: JMP - FINLPT
JMP PRINTW

body of LPT code

.
.

The main body of LPT code is entered whenever PRTFLG 1is
determined to be non-zero. The character to be output must be
at the top of the stack. Upon exit from LPT code, the
character must be removed from the stack and should be loaded
into the Accumulator. This 1is because BASIC checks the
Accumulator for the last -character printed. :

FINLPT is entered whenever BASIC returns to command
level. FINLPT calls PRINTW for a carriage return/line feed
sequence, if necessary, and resets PRTFLG to zero.

PRINTW does the carriage return/line feed.

FINLPT and PRINTW both return with zero locaded in the
Accumnulator and all the condition codes set to zero.

BASIC 4,1

April, 1977

C. End of LPT code

ENDLPT is the physical end of the 1lineorinter driver
code.

The following routines are wused in with all terminal

devices:
IOCHNL: 9 ;DEPOSIT BOARD TYPE HERE
a : ;s CHANNEL GETS DEPOSITED HERE.
IOREST: LXI H, IOCCHNL +GRAB POINTER TO IT
CALL HELPIO ;SET UP THE NEW CONSOLE DEVICE
CALL STXINI s MAKE STACK OK

. JMP READY ;AND TYPE “OK" HOPEFULLY ON GOOD CONSOL

To modify the I/0 routines, stop the machine after
loading BASIC and insert the changes using the front panel
switches, or read in a tape containing the. patches. Restart
BASIC at location zero with all sense switches up. This will
prevent BASIC from modifying the I/0 routines. In general,
these guidelines should be followed in writing I/O routines:

1. 1Insert a JMP at TRYOUT to the custom output routine. Be
sure the PSW that is saved on the stack when the routine
is entered is preserved. Make sure all registers are left
unchanged when the routine is exited.

2. Insert a JMP at TRYIN to the custom input routine. Return
the input character in the A register and do not change
any of the other registers. The PSW may beé changed.

3. To modify ISCNTC, insert a CALL to the custom poll
routine. This routine returns a non-zero condition code
setting if no character is present and zero if a character
is present. The A register and the condition codes may be
changed.

4. To change the initialization of the 2SIO board, change the
“ADI 23Q" Lo "MVI A,XXX" where XXX is the new
initialization byte.

5. To change the initialization of the 4PIO board, change the
T "MVI O A,54Q" to a “"MVI A,XXX" where XXX 1is the new
initialization byte.

feed. The code at
if the line printer is

LDTCDZ, ahd ZPTCD3 must be cha
characters wide.

‘.-—l
B ¥Y)
ul

BASIC 4.1

April, 1977

13

7. To recover from an incorrect CONSOLE command, deposit the
board type in IOCHNL, the board type in IOCHNL+1l, and
start the machine at IOCHNL+2.

Patching Disk BASIC -~ the PTD program,

After Disk BASIC is loaded, devosit the desired patches
in memory. Then examine and run PTD at location 54004 octal.
After two or three seconds, the patched version of BASIC will
be saved on disk. The save is complete when the Disk Enable

light on disk drive zero goes out.

To save a patched version of BASIC on a disk which did
not ©previously contain release 4.8 Altair BASIC, track 7 must
be copied from a 4.9 disk.

PTD may also be used to save programs other than BASIC on
tracks 0-4 of a diskette by loading the program after BASIC is
loaded and running PTD. All memory locations between 0 and
46000 octal will be saved on tracks 8-4 on diskette zero.

BASIC 4.1

april, 1977

APPENDIX M
USING ALTAIR DISK BASIC
An Example

The following is a discussion of how to program a typical
application in BASIC. The example 1is the MITS in-house
inventory system which is designed to run on the following
hardware:

Altair 8800b computer with 32K memory, PROM memory board
with the Disk PROM Bootstrap loader and a 2SI0 serial
I/0 board

Two disk drives

24-line Lear-Sigler CRT terminal

Line printer

The most important part of the design for an application
is setting up the files. Files that are correctly set up will.
be easy to use and maintain. Poorly set up files will be a
perpetual headache, causing either an eventual rewrite or,
more likely, abandonment of the systemn.

The first listing at the end of the appendix, INVEN,
contains modules from the main proaram in the inventory
system. INVEN shows how the central file (a random file) in
the system is set up and how it is handlad. The INVEN listing
also shows the use of another random file and a secquential
file. The CALC 1listing shows how to read programs as data
files. CODEl is a partial listing of a program that will be
read as a data file.

The INVEN modules 1listed were included to show the
following features: .

1. program startup initialization and comments about the
files used bv the program (lines 1-35)

2. what the complete pvrogram does (lines 60-1949)

3. an example of how to modify records in a random file
(lines 900-1440)

4. an example of how sequential files are used (lines
1800-1868 and 2700-2829)

5. one approach to the problem of handling a random file that
spans more than one disk (lines 29089-20349)

BASIC 4.1 © 137

April, 1977

138

6. three subroutines (lines 3@0-340, 9900-9029 and 9209-9229)
that are called by the INVEN modules.

The function FNY (line 6) 1is wused to round dollar
amounts to thousandths of a cent. FNQ (line 7) is used to
round quantities to thousandths and to convert single
precision amounts to double precision.

INV3 is fielded once in the program initialization, but
INvl1 and INV2 are repeatedly fielded by calls to the
subroutine at line 2888. The IF F>255 (line 68) avoids the
possibility that the wprogram can be stopped by an illegal
function call at line 61. ‘

PUT statements are the very last statements executed in
the Remove from Inventory module, the Add to Inventory module,
etc. This prevents updating one file but not the other.
(This could hapoen if PUT Z, Rl was at line 1214.)

Line 2000 sets Z to 1 and Rl to N if the item wanted, N,
is less than 2801. It sets Z to 2 and Rl to N-2009 if the
item wanted is greater than 200@¢. Line 2020 then sets the
pointers for the wvariables in the field statement to point
into either the buffer for INV1 or the buffer for 1INV2Z,
depending on whether the item wanted is less than 2001 or
greater than 2009.

The CALC listing is a program which determines 1if there
are enough parts in inventory to meet projected demands. Line
60 waits while the disk comes up to speed so the message
“ENABLE DISK 1" will not be printed on the terminal. Lines
198-140 input up to fifty different product codes and the
number of each product to be built. Line 179 opens a file for
each product that contains the parts required for the product.
Lines 220-250 build up a report heading, extracting the
product description contained in line 10 of each file.

Lines 120-150 accumulate the number of parts required for
each product into the array Q. If more than 32767 of a part
is required, a pointer is set in the array Q and the number of
the vpart is accumulated in the array Q!. This maneuvering is
necessary since the system does not have enough memory to
dimension Q as single precision instead of integer.

The parts lists for a product are programs saved with the

A option. Since they are programs, their maintenance is very

easy. For example, suppose that part 1871 in the 8800b is too
marginal and that from now on wpart 1173 should be used
instead. With the parts lists disk mounted on drive @, the
following sequence will update the 8880b file:

BASIC 4.1

April, 1877

LOAD "“CODEl1l"
160,1,1173
SAVE “CODEl",9,A

The programmer who is cramped for memorv will find that
programs can still be documented adequately if comments are
set up as separate files. The memory used for variables when
a program runs can be used for comments if the comments are
merged in when the program is to be 1listed. Alternatively,
the program could be listed in two or more parts. Additional
memory can be obtained by bringing BASIC up without optional
functions and with no files.

The main inventory program is set up so that a carriaqge
return tyved 1in response to any prompt causes the program to
dump the function descriptions on the CRT and to return to the
FUNCTION NUMBER prompt. If the program were to be run on a
printing terminal, instead of a 9648 baud CRT, it would not be
set up to vprint the descriptions every time the operator
wanted to get back to the FUNCTION NUMBER prompt. The list of
function descriptions might be taped on the wall next to the
terminal instead.

Listing of INVEN

DEFINT F-N

DEFINT R

DEFINT 2

DEFDBL P

DEF FNY# (Q8#)=INT (Q8%*A%+,.5%) /A%

DEF FNQ#(Q9!)=INT (VAL (STRS(Q9!))*10004+.5%)/1600%
AS=MKDS () :B$S=MKSS$ (0) :A¢=100000%

19 DIM QS$(2),PS(2)

11

W -JNhuUtWN -

INV]1 ON DRIVE ¢ HOLDS ITEMS 1-2000

INV2 ON DRIVE 1 HOLDS ITEMS 2001-400¢0

INV3 ON DRIVE 1 HOLDS SUMS LOGGED IN AND OUT BY DEPARTMENT
12 ! :

WEKLYRST AND MONTHRST ARE WRITTEN WHILE THE WEEKLY,
MONTHLY ACTIVE ITEMS LISTS ARE PRINTING;

CONTAIN THE ITEM #S THAT NEED TO BE RESET; AND ARE READ BY
THE WEEKLY,MONTHLY RESETS.

14 ¢

Q$() <=> THREE ON HAND QTY FOR: P$() <=> THREE PRICES

[P(8) OLDEST, P(l) NEXT OLDEST, Q(8)<>0 IF Q(1)<>8,
Q(1)<>8 IF Q(2)<>8]

D§$ <=> DESCRIPTION LEFTS (D$,3)="$$$" <=> INACTVE ITEM #
15 ! '

I1$ <=> WEEKLY QTY IN

I2S8 <=> MONTHLY QTY IN

0l$ <=> WEEXLY QTY OUT

BASIC 4.1 . v . 139

April, 1977

140

02§ <=> MONTHLY QTY OUT
T$ <=> REORDER LEVEL

DIl
ID2
DOl
oD2
17

DT1
DX2
DGl
DY2

20
3@
32
35
60
61

100
298

SUB
*

369
319
320
339

349

890
*

>
s
S
:
s
s
s
s

ANAN
vV VvV VYV

Woion
vV VYV VvV

ANAN

WEEKLY $ IN
MONTHLY § IN
WEEKLY $ OUT
MONTHLY § OUT

WEEKLY DEPT § TAKEN
MONTHLY DEPT $ TAKEN
WEEKLY DEPT $§ GIVEN
MONTHLY DEPT $ GIVEN

OPEN “R",#1,"INV1*"

OPEN “"R",#
OPEN upw , #

2,"INvV2",1
3,"INV3*,1

FIELD #3,8 AS DT1S,8 AS DX2$,8 AS DGls$S,8 AS DY2S

PRINT:F=0:

ON F GOTO

INPUT"FUNCTION NUMBER";F:IFF>255THENG63
216,359,350,1900,600,900,1709,

27069,2500,2300,2400,1880,2900"

2 3
14 15

PRINT*]1 -
PRINT"2 -
PRINT"3 -
PRINT"4 -
PRINT"S -
PRINT"6 -
PRINT"7 =
PRINT"8 =-
PRINT"9 -
PRINT"10~-
PRINT"11-
PRINT"12~-
PRINT"13~-
PRINT"14-
PRINT"15-
PRINT"16-

GOTO64d
1

5 6 7 8 9 19 11 12 13
16
ENTER NEW ITEM"
LIST ITEM ON CRT (SHORT FORM)"
LIST ITEM ON CRT (LONG FORM) ™
PRINT ITEMS ON LINE PRINTER
ADD TO INVENTORY"
REMOVE FROM INVENTORY"
PRINT WEEKLY DEPT DOLLAR RECORD ON LINE PRINTER
PRINT WEEKLY ACTIVE ITEMS LIST ON LINE PRINTER
WEEKLY RESET
PRINT MONTHLY DEPT DOLLAR RECORD ON LINE PRINTER
PRINT MONTHLY ACTIVE ITEMS LIST ON LINE PRINTER
MONTHLY RESET
RESET ORDER LEVELS :
PRINT LISTNG OF ITEMS NEEDING TO BE RE-ORDERED
DELETE OLD ITEM
ERRORS BACXOQOUT

- INPUT PART % & GET RECORD

PRINT:PRINT:N=0:INPUT"PART NUMBER“;N:IFN<1THENRETURN
IFN>4@0@THENPRINT : PRINT" ' '# TOO HIGH''":GOTO 380
GOSUB2999 :GETZ,R1
IFLEFTS (D$,3)="$S$$"THENPRINT:

PRINT"''NO INFORMATION ON PART''";N:GOT03d0

RETURN

F=6 - REMOVE FROM INVENTORY

*

BASIC 4.1

April, 1977

900 GOSUB390:IFN=0GOTO63
920 DN=-1:INPUT"NUMBER OF ITEMS REMOVED FROM INVENTORY";
DN:IFDN=-1THEN63
950 IFCVS(QS(8))+CVS(QS(1))+CVS(QS(2))<DNTHENPRINT"
ATTEMPT TO REMOVE MORE THAN ON HAND" : PRINT:GOTO63
964 D@=DN:P=9 ; »
979 IFDOKCVS(QS(9))THEN)
P=P+FNQ# (D@) *CVD (P$ (9)) :LSETQS (9) =MKSS (CVS(QS$(9))-DJ) =~
GOTO10069
980 P=P+FNQ# (CVS(Q$(9)))*CVD(P$(8)) :DI=DA-CVS(QS$ (D)) :
LSETQS () =Q$ (1) :LSETQS$ (1) =Q$ (2) : LSETQS$ (2) =BS:
LSETPS (#) =P$ (1) :LSETPS (1)=P$(2) :LSETPS (2)=AS : IFDITHEN
GOT0978 -
1200 LSETO1$=MKSS$ (CVS(01$)+DN) :LSET02$=MKSS$ (CVS (02$)+DN) :
LSETDO1$=MKDS (CVD (DO1$)+P) : LSETOD2$=MKDS (CVD (OD2S) +P)
1020 GOSUB9200:IFC%=-1GOT0O63
1939 LSETDT1$=MKD$ (CVD(DT1$)+P) :LSETDX2$=MKD$ (CVD (DX2S)+P)
1649 PUT3,C%:PUTZ,R1:GOTO9G7
1799 .
*

F=9 - WEEKLY RESET

*

1808 PRINT"7 - WEEKLY DEPARTMENT RECORD

1802 PRINT"8 - WEEKLY ACTIVE ITEMS

1804 2$="":INPUT"HAVE THE ABOVE BEEN LISTED FOR TODAY";ZS$

1819 IFLEFTS$(Z$,1)<>"Y"THENPRINT:PRINT
“WEEKLY RESET NOT PERFORMED" :GOT063

1843 OPEN"I",4,"WEKLYRST"

1845 IFEOF (4) THENCLOSE4:KILL"WEKLYRST":GOTO1862

1850 INPUT#4,N:IF 1<=NANDN<=4000 THENGOSUB2088:GETZ,R1
ELSEPRINTN; “OUT OF BOUNDS. RESET ABORTED.":END

1855 LSETI1$=B$:LSETOl1$=BS$:LSETDI1$=AS$:LSETDO1S$=AS:PUTZ,R]1

1868 GOTO1845

1862 FORI=1TO240

1864 GET3,I:LSETDT1$=A3$:LSETDG1$=AS:PUT3,I

1866 NEXT

1868 GOTO60

1999

*

SUB - GET Z,Rl1 FOR N AND FIELD TO INV1,2
*

2000 Z=1-(N>2000) :R1=N+(2=2)*20430
2920 FIELD 2,4 AS Q$(9),4 AS Q$(1),4 AS Q$(2), 8 AS PS(9),
8 AS P$(1),8 AS P$(2),40 AS D$,4 AS 11S$,4 AS 128,
4 AS 01$,4 AS 02$,8 AS DI1S,8 AS ID2$,8 AS DOlS,8 AS 0oD2s
2038 RETURN
2699

*
F=8,11 - WEEKLY ,MONTHLY ACTIVE ITEMS LIST
* ;

2700 N=1:GOSUB2000:GOSUB2855
2763 IFF=8THENOPEN"O",4,"WEKLYRST"ELSEOPEN"0",4, “MONTHRST"

'.—J
W
}.J

BASIC 4.1

April, 1977

2705 IT#=0:0T#=0:TT#=0
2719 FORI=1TO02000
2720 GETZ,I:IFLEFTS$(DS$,3)="S$$S"THEN289O
2723 QB=CVS(QS$(9)) :Q1l=CVS(Q$ (1)) :Q2=CVS(QS$(2))
2725 IFF=8THENI!=CVS(I1l$):0!=CVS(01$):I#=CVD(DI1S$) :0#=CVD(DO1S)
ELSEI!=CVS(I2$):01=CVS(028) :I#=CVD(ID2§) :0#=CVD(OD2§)
2727 TT#= TT#+CVD(P$(Q))*QE+CVD(P$(1))*Q1+CVD(P$(2))*Q2 .
2730 IFI!+0!=@THEN2800
2733 PRINT#4,N+I-1
2735 IT#=IT#+I#:OT#=OT#+O#
2749 IFL9>59ANDKK=@THENGOSUB2854
2750 LPRINTUSING"####%#";99999!+N+I;
2779 LPRINTUSING"##,###,###";1!,0!,00+01+Q2,Q00+Q1+Q2+0!~I!;
2780 LPRINTUSING"SS,###,##%#.#%";1#,0%
2790 L9=LS+1
2795 KK=KK+1:IFKK=5THENLPRINT:L9=L9+1:KK=0
- 2808 NEXT
2819 IFN=1THENN=2001:GOSUB20089:GOT02719
2811 CLOSE4
2813 LPRINT:LPRINTUSING"TOTAL INVENTORY COST =S##,%#%, #4#.%3";TT#
2815 REM *GOTO02820 IN F=7,10
2820 LPRINT:LPRINTUSING“TOTAL IN = $$##, 433, 7%3.43";IT%
2830 LPRINTUSING"TOTAL OUT =S##,#%##,###.#%";0T#
2837 LPRINT:LPRINT ' :
2849 GOTO54
2850 FORJ=L9TO066:LPRINT:NEXT
2855 IFF=8THENLPRINT"WEEKLY";:ELSELPRINT“MONTHLY";
2869 LPRINT" ACTIVE ITEMS LIST";:GOSUB9090
2865 LPRINTTAB(39);"STARTED" -
2878 LPRINT"ITEM # QTY-IN QTY-0OUT ON-HAND MO-WITH
: DOLLARS-IN DOLLARS-0UT"
2880 LPRINT:KK=0:L9=6:RETURN
899¢ '
* .

SUB - PRINT TODAY'S DATE
*

9909 IFTDS="“THENLINEINPUT"TODAY'S DATE ?";TD$:IFTD$=""THENG3
9914 LPRINT" ";TDS

S@15 LPRINT

5929 RETURN

9199 '

*

INPUT DEPARTMENT # AND GET TOTALS
*

9299 C%=-1:INPUT"ENTER DEPARTMENT CODE";C%:IFC%=-1THENRETURN
9210 IF1<=C%ANDC%<=20THENGET3,C%:RETURN
922@ PRINT"INVALID CODE":GOT09209

Listing of CODEl
&
5 CODEl

142 BASIC 4.1

April, 1977

10

20

99

199
119
129
139
149
150
169
170
180
199
200

18
29
30
40
508
60
90
95
INP
*% %
160
119
129

1349
149
145
ACC
k%%
159
160
170
180
190
2008
219
2249
230
240
250
260
270
2880
2949

BASIC 4.1

PARTS LIST FOR: 8800B
OCT 30,1976
REM THIS IS THE START OF DATA
11,1042
#3,1134
14,1040
/1,1020
$1,1821
»1,1024
$1,1071
r1,10874
»1,2185
24,348
12,326

Listing of CALC

CLEAR63

DEFINT A-Z

DIM CN(49) ,NU(49),Q(4A08) ,Q!(269)

CLOSE:UNLOADL

INPUT"PLACE DISK WITH PARTS LISTS IN DRIVE 1. HIT RETURN";GS
FORK!=1TO5009 :NEXT:MOUNT1 '

LINEINPUT"TODAY'S MO/DA/YR “;DTS$:HS(8)=DTS$+" PARTS AVAILABLE FOR: "
t

UT QUANTITY OF EACH PRODUCT REQUIRED

* *

INPUT"CODE NUMBER(? WHEN FINISHED)";CN(I)

IF CN(I)=0 THEN 150

IF CN(I)<1 OR 50<CN(I) THEN PRINT“INVALID CODE NUMBER":
GOTO 180

INPUT“NUMBER OF UNITS TO BE MADE";NU(I)

I=I+1:IF I<5¢ THEN 100

1

UMULATE QUANTITY OF EACH PART REQUIRED
* %

FOR K=0 TO I-1

ONERRORGOTO614
OPEN"I",#1,"CODE"+MIDS$ (STRS (CN (X)) ,2),1
ONERRORGOTO® |
LINEINPUT#1,A$:IFAS=""THEN190

IFLEFTS (A$,3)="90 "THEN260

IFLEFTS$ (AS,3)<>"10 “THEN199
IFKTHENHS (HK) =HS (HK) +", "

HH$=STRS (NU (X)) +STRS (CN (X)) +"= (“+MIDS (AS, 20) +") »
IFLEN (HHS) +LEN (3$ (HK)) >72THENHR=HK+1

HS (HK) =HS$ (HK) +HHS : GOT01940

ONERRORGOT0630

IFEOF (1) THEN310

INPUT #1,A,QN,PN |
IFQ(PN)<@THENQ! (~Q(PN))=Q! (~Q (PN)) +NU (K) *ON

'_J
£
(98]

April, 1977

144

: ELSEQ(PN)=Q(PN)+NU(K)*QN
309 GOTO274
310 ONERRORGOTO@:CLOSE 1:NEXT X

315 !

GET SECOND HALF OF INVENTORY BACK ON LINE
* %k % %k

329 CLOSE:UNLOADL

336 INPUT*

PLACE INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TO START REPORT";G$

340 FORI!=1TO5000:NEXT:MOUNT1

368 OPEN"R",#2,"INV1"

370 FIELD #2,4 AS Q1$,4 AS Q2$,4 AS Q3$,24 AS GS,40 AS DS

375 °

PRINT REPORT

*kk k%

380 GOSUB573

390 FOR I=1 TO 4000

469 IF Q(I)=0 THEN 530

419 QQ!=Q(I):IFQ(I)<@THENQQ!=Q! (-Q(I))

420 IFL9>59ANDKK=0THENGOSUB564

43¢ L9=L9+1

449 RN=I :

450 IFI<2090THEN460ELSERN=RN-2000: IFFLAG=0THEN
CLOSE2:0PEN"R",%2,"INV2",1:FLAG=1:
FIELD#2,4 AS Q1$,4 AS Q25,4 AS Q3%,24 AS G$,40 AS D$

460 GET #2,RN |

470 IFLEFTS (DS,3)="$$$ " THENLPRINTI+100000!;
kkkkkkxkkx NO INFORMATION ON PART ***kkkkin ;.
LPRINTUSING"##,##4444" ;00! :GOT0529

4808 QH!=CVS(Q1l$)+CVS(Q2$)+CVS(Q3$) :QD!=QH!-QQ!

500 LPRINTI+140008!;D$;" “;

519 LPRINT USING “##,#####%";QQ!;QH!;QD!

520 KK=KK+1:IFKK=STHENKK=0:LPRINT:L9=LI9+1

53¢ NEXTI:CLOSE:END

560 FORK=LITO66:LPRINT:NEXT

565 !

PRINT PAGE HEADING

khkxKk*k

570 FORK=§TOHK:LPRINTHS (K) :NEXT

580 LPRINT:LPRINTTAB(52);"NEEDED ON HAND EXCESS":LPRINT

590 KK=0:L9=5+HK:RETURN

605

TRAP ROUTINE: BAD CODE NUMBER

*k ki

610 IFERR=53THENPRINT:PRINT"NO CODE";MID$ (STRS$ (CN(X)),2);" FILE"

620 ONERRORGOTO®

625 '

TRAP ROUTINE: ACCUMULATE INTO Q OVERFLOWED

kkkx*

630 IFERR<>6ORERL<>29JTHENONERRORGOTOH
640 NQ=NQ+1:Q! (NQ)=Q (PN)+NU(K) *QN:Q(&N)=-NQ
679 RESUME278

BASIC 4.1

April, 1877

INDEX

@ - ® . [. - . [. . L] . . . 9

ABS & i i e e e e e e e e e . 78
ACR interface e s e o e+ o o 114
AND . . v ¢ 6t e e e e e e e 17
Array variables ., 14
ASC & v i et ot e e e e e e . 78
ASCII character codes 93
ATN e e 6 e s 2 e e s = s e 78
AUTO v v v v 6 4 o o o o o o 6
Backarrow 82
Boot loaders 095
Branch, conditional 19
Branch, unconditional 19
Branching e « « 19

Carriage Return i, 8
Character, alphanumeric . . . 4
CHRS & v v v ¢ v v o o o o « . 78
CLEAR v 4 ¢ ¢ o o o o o o o 69
CLOAD . & 4 4 ¢ 4w v v 4 o « « 69
CLOAD* for arrays 25
CLOAD? & v 4 v ¢ v v o o o o 69
CLOSE & & ¢« v ¢ &« &« & o o« &« . 59
CLOSE, random files 62
Command Level 4
Commands List &9
CONSOLE v v &« ¢« v v o o o o « 32
Constants e e o s s « « o 10
CONT . & v v v v v v v v o o . 69
Control/A 9
Control/C + .+« . . . 82
Control/I 83
Control/0 . . . ¢« .« + . . . 83
Control/Q « +« &« . . . 83
Control/S . &« ¢« v ¢« &« « o « « 83
Control/U . . . « « 9

"Conversion from non-Altair BASIC 116
CSAVE. L] - - L] - * L] Ll L] - L] L] 69

COS . . ¢ ¢« v ¢ v v v e . . . 78
CSAVE* for arrays 25
CVD & 4 v 6 4 4 ¢ v e o o « . &5
CVI &« v v ¢ v ¢ v v v . 4 . . B85

« + « 65

CVS - 3 L] o . .

BASIC 4.1

April, 1977

o

FOR . . (3 . .

DATA . « « =
DEF .+ o« « =
DEFDBL . . .
Definitions
DEFINT . . .
DEFSNG . . .
DEFSTR . .
DEFUSR . .
DELETE . .
DIM . . .
Dimensions
Direct Mode .
Disk format

Disk number . . .
Disk operations . .

e e . L] e @
3 s & & o o o
* L] » L] * L

s ® . o .
L[] L] L] L]
L] . . . L] . L] L[] L] . .

* e * e e e

L]
.
.
]

. L] L[]

* L] L] L] . .

L] .

. * L] .

.

Disk PROM Bootstrap Loader
Disk read and write, assembly code 120

Division,integer . .
Double precision . .
DSKF L] L] L] . .‘ . - .

.

-

3

DSKI$ and DSKO$ primitives

Echo routines . . .
EDIT L] L] L] . . * . L]
Edit, definition . .

.

L] . L) . -

. . L] L] . .

e . L] .

.

.

-

Editing, elementary provisions

END - . L] 3
EOF . - - L3 - 3 .

EQV . . . L3
ERAS E [- L) 3 . .
ERL . . .

ERR . « + &
Error codes
Error message format
Error messages, disk
ERROR statement . .
Error trapping . . .
EXP v o o o o o o
Expression, integer
Expressions, string

.

- . - . .
.
L]

FIELD =« o « o o o
Fields, numeric .
Fields, string . .
File name . . .
FILES command .

.

FIX - . - . .

FRCINT . « .« .+ &
FRE « o o s & e
Functions . .« . .

Functions, derived

Functions, extended
Functions, intrinsic
Functions, simulated

Y . . s & 0

. ¢ . * o o @

. »

L[] L]

.« o *» e o) . . .

th

QO e o o o o o o

(a1

L

. e o ¢« o & . .

£

o« ° e o] e o

.

KRe e s e s e o s o o

~

. . ¢ o s e e * s

24
28
13
4
13
13
13
39
70
14
14
5
118
52
51
121

35, 78

63
47
47
52
53
79
21
49

79

28
199
39
28
169

BASIC 4.1

April, 1977

Functions, string

Functions, user~-defined . . . 28
GET & v 4 ¢ 4 o o o o o o o« « 62
GOSUB v v 4 v ¢ o o o o o o & 22
GOTO & & & 4 4 &« ¢ & o o o « « 19
HEXS & ¢ ¢ ¢ 4 ¢ 4 o o o o o . 79
Hexadecimal constants 12
IF...GOTO v & v ¢ o ¢ o o o 28
IFC..THEN . ¢ ¢ v 4« o o« o o« < 19
IF...THEN...ELSE 27
1 17
Indirect Mode 5
Initialization dialeog 102
Initialization dialog, disk . 122
Initializing a disk 124
INP v 6 4 e e e e o o o o o 27
INPUT . ¢ 4 ¢ ¢ v v v o o o 23
INPUT, disk ¢« «v ¢ o v o « . . 57
INSTR . & v ¢ ¢ ¢ ¢ ¢ v v o « 79
INT & v e e e e 6 e e e s o o« 79
Intellec systems, Altair BASIC on.
KILL & ¢ ¢ ¢ 4 v ¢ 4 & o « o« « 56"
LEFTS e o o o o s e e s s o 79
LEN . & & ¢ ¢ ¢ 4 ¢ o o o« o . 179
LET . ¢ ¢ ¢ ¢ v ¢ o o o o 3 . 18
Line . . ¢ . ¢« ¢ ¢« v v 4« v . . B
LINE FEED ¢ &« o « o o o o o 84
LINE INPUT .+ & ¢ ¢ o & & « « « 32
LINE INPUT, disk . . « « « . . 60
Line Length 7
Line Number 6
LIST ¢ & v ¢ v ¢ ¢« v o v v o« « 71
Lists and Directories 69
LLIST . . ¢ ¢ ¢ v v 4 v v o« o« 71
LOAD v v v v ¢ v 4 4 e o o o . 54
Loader errors . . . <« 182
Loading BASIC 95
Loading programs from paver tape 71
LOC v v vttt e e e e e e . B2
LOF . v v v v v v v v v v v . B2
7 € 4
LOOPS & v ¢ v ¢ o . . o o o 21
Lower case input 84
LPOS . v v v v ¢ ¢ v v e e e . 79
LPRINT ¢ ¢ v o« o o o o o o o 75
LPRINT USING . . v v o o o o 75
LSET v 4 4 v ¢ o o o o o o o 66
BASIC 4.1

April, 1977

129

148

MAKINT . .
MERGE . .
MIDS . .
MID$ functi
MKDS . . .
MKIS . . .
MKSS . . .
MOD operato
MOUNT . .

NAME . . .
NEW . . .
NEW in disk
NEXT . .
NOT L] L L]
NULL . . .

oCTS . . .
Octal const
ON ERROR GO
ON...GOSUB
ON...GOTO
QPEN . . .
OPEN, rando
Operators
Operators,
Operators,
Operators,
Operators,
Operators,
OR « . . .
ouT . . .

PEEK . . .
PIP utility

PIP, CNV command .
PIP, COP command

PIP, DAT co
PIP, DIR co
PIP, INI coO
PIP, LIS co
PIP, SRT co
POKE . . .

PCS . . .

Precedence,
PRINT . .

PRINT USING
PRINT, disk
Prompt stri
PTD program
pUT . . .

L] .
L] L
on
.
.

r

L] . [} . L] L] . L] .
. . . . LI . . L]
L[] . . . L]
. . [. L] . . . 3
. [} » .]] . L) L)

L] L] L] L]
. o ® .
L] L] L] .

- L] . L] . L[]
] . * » . .

L] .

ants
TO .

- -

. . L] . * L]

m files

L] L[] . L] L] L] L] .
L] . . L] L . .
L] . . L] L] L] . .

. - .]

extended and

logical . . .
precedence of
relational .
string . .

3
. 3 . . L] . .
.

- . 3 . . .

program

3

mmand .
mmand .
mmand .
mmand . .

. . . . L]

mmand
table of

L]
L] ¢ o » . ¢« o o

-

ng .

. . . . L] . . . » L] - .

. . . L] .
. .
. o o . .

L] . . L] L[] . . - L]

L[] . . L . L L] -

. . . s 0 . 3

L3 3 . L3 . . e . . »

e o & & & 8 K'es e e o & s s o

. » . . » L I] .

. L] L] . . » . L] L . L] L] L]

. e o .« o e e e .] . . o [} °

. L] 3 . * e . 3 .

49
55
75
80
65

65
39
52

56
71

22
17
71

g0
12
35
22
29
56
62
15
38
16
15
16
39
17
27

27
124
126
125
126
125
124
125
125
26
80
15
23
46
59
23
136
62

BASIC 4.1

april, 1977

Random buffer .
Random File I/0

Random files . . .
READ + . + « &« « .
Remarks
RENUM
Reserved Words . .
RESTORE
RESUME
RESUME NEXT. . . .
RETURN
RIGHTS
RND . « « ¢ o o .
RSET ¢« « v & + o .
RSTLESS versions .
Rubout
RUN

RUN, disk files

SAVE . . 4 ¢« « . .
Saving programs on
Scientific notation
Sense switch settin
Sequential File I/0
Sequential mode .
GN . . ¢ ¢ .« . .
SIN . . ¢« « o o
Single precision .
Space allocation .
Svace hints . . .
SPACES + .« « + . .
SPC &« ¢« v ¢ « . .
Special Characters
Sveed hints . . .
SQR . 4 v e e . .
Statements
Statements, extende
STOF .+ .« .+ . .
STRS « ¢« « . .
String Literal
STRINGS . . .
Strings
Subroutines . . .
.Subroutines, machin
SWAP « o« .

¢ o e o

. . .

BASIC 4.1

April, 1977

L] . . . - -
.
. -
.
. -
- . L] . . L]
.
.
. . (3 . . .
. o s . - .
L] . . - L] -
. . . L] . L
L3 L4 - . L] L)
L] L] . - L] .
- L] L] L] . .
* . Ll - L] .
.
. °® - . L] -

. . -

vaper tarpe
gs
d. - o - * L]
e language

186
197
80
81
82
198
81
72
32
60,

81
38
22
112
33

91

77

TAB .

TAN L] . * . . - .
TROFF
TRON . * L] L] L] L] L]

Tvpe of constants
Type of variables
Type,definition .

UN LOAD - 3
USR L] . . L] [] . L3

VAL -

Variable tyves . .
Variables
VARPTR . L] . - * -

v'qAIT . L] . . - L] L]
WIDTH

L]
.
»
L]
.
3

XOR . . L] . - » .

L] L] L] L] L[] . .

. o

e @ . o o ® *

L] . . L[]

¢« o & o o o &

81
81
33
33
11
13

52
81,

81
13
12
81

26
34

17

82
82

112

BASIC 4.1

April, 1877

2450 Alamo S.E.
Albuquerque, New Mexico 87106

USER’S DOCUMENTATION REPORT

In order to improve the quality and usefulness of our publications, user feedback lS

necessary. Your comments will help us effectively evaluate our documentation.

Please limit your remarks to the document, giving specific page and line references
when appropriate. Specific hardware or software questions should be directed to the MITS
Customer Service or Software Departments, respectively.

NAME OF PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT:

ERRORS:

Name Date
Organization |

Street |

“City State Zip

First Fold Here — _

-—_ — —_ Second Fold Here and Staple —
e ——————
No Postage Stamp
Necessary If Mailed in
the United States
==BUSINESS REPLY MAIL - — —

First Class Permit No. 2114, Albuquerque, New Mexico

Postage Will be Paid by: MITS, Inc.
2450 Alamo S.E.
Albuquerque, New Mexico 87106

Imnt's

2450 Alamo SE
Albuquerque, NM 87106

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153

