Mzo PERSONAL COMPUTER

The ASSEMBLER
User Guide

M 20 PERSONAL COMPUTER

The ASSEMBLER
User Guide

PREFACE

This manual is produced for programmers
using the M20 to create Assembly lLang-
uage programs. The Assembly Language
of the 2Z8001 cpu of the M20 is des-
cribed in the "M20 78000 Assembler
Reference Manual'. The Reference manual
gives the complete instruction set
and deals with other aspects of the
cpu like operational characteristics,
architectural features, etc. This
manual supplies additional information
to enable the programmer to create
Assembly Language programs to run
on the M20.

This manual is divided into two parts.
Part 1 illustrates the characteristics
of an M20 source file and describes
how an executable binary file can
be obtained from a source file.

Part 11 details all the M20 System
Calls, and the routines of the M20
Graphics package.

The following are trademarks of Ing. C. Olivetti & C., S.p.A:
OLICOM, GTL. OLITERM, OLIWORD, OLINUM, OLISTAT, OLITUTOR,
OLIENTRY, OLISORT, OLIMASTER.

MULTIPLAN is a registered trademark of MICROSOFT Inc.
MS-DOS is a trademark of MICROSOFT Inc.

CP/M and CP/M-86 are registered trademarks of Digital Research
Inc.

CBASIC-86 is a trademark of Digital Research Inc.

Copyright © by Olivetti, 1983,
all rights reserved.

REFERENCES:

28000 Assembler Reference Manual
Code 3982410 M (1)

PCOS (Professional Computer Operating
System) User Guide
Code 3985280 D (0)

Basic Language Reference Manual
Code 3982430 P (3)

1/0 with External Peripherals User
Guide
Code 3982300 N (2)

Hardware Architecture and Function
Code 4100630 W (0)

DISTRIBUTION: General (G)
EDITION: June 1983
RELEASE: 3.0

PUBLICATION ISSUED BY:

Ing. C. Olivetti & C., S.p.A.
Direzione Documentazione
77, Via Jervis - 10015 IVREA (ltaly)

=

CONTENTS

1.

PART 1
INTRODUCTION

CREATING AN EXECUTABLE FILE

THE M20 ASSEMBLER PACKAGE

SYSTEM CONFIGURATION

+ THE ASSEMBLER SOURCE FILE

INTRODUCTION

ASSEMBLER CONVENTIONS

ASSEMBLER LANGUAGE STATE-
MENT FORMAT

SYMBOLS, CONSTANTS AND
STRINGS

ARITHMETIC OPERANDS
SYMBOLIC VALUES
EXPRESSTONS AND OPERATORS
78000 ADDRESSING MODES

ASSEMBLER DIRECTIVES

DATA GENERATION

CONTROL DIRECTIVES

THE PCOS STANDARD

- THE ASSEMBLER (ASM) COMMAND

Ash

. THE LINK COMMAND

LINK
PARAMETERS
COMMENTS

MINIMUM COMMAND ELEMENTS

1-3

2-1

7-1

2-1

2-5

2-7

3-1

4-3

4-3

THE_KEYWORDS
MULTI-FILE KEYWORDS
FILE KEYWORDS

VALUE KEYWORDS
STRING KEYWORDS
SIMPLE KEYWORDS
BLOCK KEYWORD
KEYWORD ORDER

ERRORS

- THE PDEBUG UTILITY

INTRODUCTION

LOADING AND INVOKING

PDEBUG
PDEBUG
/CTRL/ /B/

TERMINATING A PDEBUG

SESSION

ENTERING PDEBUG COMMANDS

CALCULATOR FACILITY

THE_COMMANDS
BREAKPOINT

CLEAR BREAKPOINT
CHANGE 1/0

COMPARE MEMORY
DISPLACEMENT REGISTER

DISPLAY MEMORY

4-5

4-5

4-6

4-7

5-4

5-5

5-5

5-9

iii

FILL MEMORY
GO
JumMp
MOVE MEMORY
NEXT
OFFSET REGISTER
PORT (1/0) READ
PORT (1/0) WRITE
PRINT OUTPUT
QUIT
REGISTER
TRACE
EXAMPLES

. LIBRARIES
INTRODUCTION
ML1B

THE M20 GRAPHICS LIBRARY

PART 11

. INTRODUCTION TO SYSTEM CALLS
INTRODUCTION

SYSTEM CALL DESCRIPTIONS

REGISTER ASSIGNMENTS
INPUT/OUTPUT PARAMETERS
ERROR MESSAGES

FUNCTIONAL GROUPS

iv

6-3

7-1

7-1

7-2

7-2

BLOCK TRANSFER CALLS

STORAGE ALLOCATION CALLS

GRAPHIC CALLS

TIME AND DATE CALLS

USER CODE CALLS

1EEE 488 CALLS

MISCELLANEOUS CALLS

. THE M20 SYSTEM CALLS

9 LookByte

10 GetByte

11 PutByte

12 ReadBytes
13 WriteBytes
14 ReadLine
16 Eof

18 ResetByte

19 Close

20 SetControlByte

21 GetStatusByte

22 OpenFile

23 DSeek

24 DGetlLen

25 DGetPosition
26 DRemove

27 DRename

7-4

7-4

7-9

7-10

8-1

8-2

8-3

ASSEMBLER USER GUIDE

~——

CONTENTS

28 DDirectory
29 BSet

30 BWSet

31 BClear

32 BMove

33 NewSameSegment

34 Dispose

35 Cls

36 ChgCur0

37 ChgCur1

38 ChgCur2

39 ChgCur3

40 ChgCur4

41 ChgCur5

42 ReadCur0

43 ReadCur1

44 SelectCur

45 Grflnit

46 PaletteSet
47 DefineWindow
48 SelectWindow
49 ReadWindow
50 ChgWindow

51 CloseWindow

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

ScaleXY
MapXYC
MapCXY
FetchC
StoreC
UpC
DownC
LeftC
RightC
SetAtr
SetC
ReadC
NSetCX
NSetCY
NRead
NWrite
Pntlnit
TDownC
TupC
ScanL
ScanR
SetTime
SetDate

GetTime

8-48

8-49

8-50

8-64

8-66

8-67

8-70

8-71

8-72

8-73

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98
99

GetDate
CallUser
1BSrQo
1B5rQ1
1BPoll
1BTSet
1BRSet
1BPrnt
1BWByt
1BInpt
1BLinpt
1BRByt
Error
DString
CrLf

DHexByte

DHex
DHexLong
DNumW

DLong
DisectName
CheckVolume

Search

MaxSize

102 SetVol

vi

8-82

8-89

8-90

8-99

8-100

8-101

8-102

10.

104 NewAbsolute

105 StringlLen

106 DiskFree

107 BootSystem

108 SetSysSg

109 SearchDevTab
113 CloseAllWindows
114 KbSetLock

115 ClearText

116 ScrollText

120 New

121 BrandNewAbsolute
122 NewlLargestBlock

123 StickyNew

. INTRODUCTION TO GRAPHICS

INTRODUCTION

SUMMARY OF FEATURES

CONCEPTS

FUNCTIONAL GROUPS

ERRORS

DEFAULT CONDITIONS

THE M20 GRAPHICS ROUTINES
ClearViewArea
CloseGraphics

CloseViewTrans

8-103

8-104

8-105

8-106

8-107

8-108

8-109

8-110

8-111

8-112

8-114

8-115

8-116

8-117

ASSEMBLER USER GUIDE

CONTENTS

DivideViewArea
Errorlnguiry
Escape

GDP
GraphCursorAbs
GraphCursorRel
GraphPosAbs
GraphPosRel
IngAttributes
IngCurTransNmbr
InqGraphCursor
InqGraphPos
IngPixel
IngPixelArray
IngPixelCoords
InqTextCursor
InqViewArea
IngqWorldCoordSp
LineAbs
LineRel
MarkerAbs
MarkerRel
OpenGraphics
PixelArray

Polyline

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-21

10-23

10-24

10-25

10-26

10-27

10-28

10-29

10-30

10-31

10-32

10-34

SelectCursor 10-36
SelectGrColour 10-37
SelectTxColour 10-39
SelectViewTrans 10-41
SetColourLogic 10-42
SetColourRep 10-44
SetGrCsBlnkrate 10-45
SetGrCsrShape 10-46
SetlineClass 10-47
SetTextline 10-48
SetTxCsrBlnkrate 10-49
SetTxCsrShape 10-50
SetWorldCoordSp 10-51
TextCursor 10-52

. RESERVED WORDS

- ASM ERRORS AND WARNINGS

- FUNCTIONAL LIST OF SYSTEM CALLS

BYTESTREAM CALLS C-1
BLOCK TRANSFER CALLS C-3

STORAGE ALLOCATION CALLS C-4

GRAPHICS SYSTEM CALLS C-5
TIME AND DATE CALLS c-8
1EEE-488 CALLS C-9
MISCELLANEOUS CALLS c-11

vii

D. FUNCTIONAL LIST OF GRAPHICS
ROUTINES

TRANSFORMATION AND CONTROL ~ D-1

GRAPHICS OUTPUT D-2
GRAPHICS ATTRIBUTES D-3
INQUIRY D-4

E. SYSTEM ERRORS

F. PORT 1/0 ADDRESSES

MAIN MOTHERBOARD PORTS F-1
1EEE EXPANSION BOARD F-2
PORTS

HARD DISK UNIT EXPANSION F-3

BOARD PORTS

RS-232-C TWIN EXPANSION F-3
BOARD PORTS

G. MAILBOX

H. M20 - RS-232-C DEVICE PARAMETER
TABLE

1. DEVICE 1D (DID) ASSIGNMENTS

J. ASCI1 CODE

viii ASSEMBLER USER GUIDE

PART |

' 1. INTRODUCTION
~

ABOUT THIS CHAPTER

This part of the manual describes how to create Assembly Language pro-
grams on the M20. In this chapter a brief step by step description of
the process is given. In each step of this description reference is made
to the relevant chapter or manual where it is described in detail.

CONTENTS

CREATING AN EXECUTABLE 1-1
FILE

THE M20 ASSEMBLER PACKAGE — 1-3

SYSTEM CONFIGURATION 1-3

INTRODUCTION

CREATING AN EXECUTABLE FILE

An Assembly Language program must be written in an Editor environment;
on the M20 this can be done in the Video File Editor environment which
is described in the "M20 PCOS (Professional Computer Operating System)
User Guide". This edited version of the program is known as the source
file. The source file is described in chapter 2, where the Directives
and the Assembler Conventions for the M20 are defined. Chapter 2 ends
with a description of the PCOS Standard, which defines the format of a
source file meant to execute like any PCOS routine.

The next step is to assemble the program using the ASSEMBLER (ASM) com-
mand. This command takes a source file as input and outputs a z-type
object file. The ASM command is described in chapter 3.

The final step in creating an executable file is performed by the LINK
command which is described in chapter 4. LINK takes one or more object
files as input and outputs a single executable binary load file. Note
that z-type object files created using other computer languages can be
linked to z-type object files output by the ASM command.

The process of creating an executable file is shown schematically 1in
fig. 1-1 below.

1-1

Video file editor Video file editor RO Video file editor

'

Assembly language

Assembly language

Assembly language

source file (1) source file (n)

source file (2)

Olivetti z-type Olivetti z-type Olivetti z -type
object file (1) object file (2) object file (n)

L INK

Executable binary

load file

Fig. 1-1 Creating an executable binary file

1-2 ASSEMBLER USER GUIDE

Dumping Facilities

Throughout the process of creating an executable file the programmer may
need to display source files, listing files, object files, etc.. This
can be done using the PCOS command FLIST which allows a number of
optional features for dumping various types of files. The FLIST command
is detailed in the "M20 PCOS User Guide'.

THE M20 ASSEMBLER PACKAGE

The M20 Assembler package contains the Assembler (ASM) command, the LINK
command, and the Video File Editor mentioned abdve. Also included in the
package are the PDEBUG (Program DEBUG) utility detailed in chapter 5t
and the MLIB command for creating library files of object modules
described in chapter 6. All of these routines must be invoked from the
PCOS environment.

SYSTEM CONFIGURATION

The M20 Assembler package will run on any M20 system configuration.

1-3

~ 2. THE ASSEMBLER SOURCE FILE

ABOUT THIS CHAPTER

This chapter contains the main steps to be taken and the Assembler con-
ventions the programmer must adhere to, in order to build source files
for the user's own utilities.

CONTENTS
INTRODUCTION 2-1 ASSEMBLER DIRECTIVES 2-20
ASSEMBLER CONVENTIONS 2-1 DATA GENERATION DIRZCTIVES 2-20
ASSEMBLER LANGUAGE 2-1 CONTROL DIRECTIVES 2-23
STATEMENT FORMAT

THE PCOS STANDARD 2-28
SYMBOLS, CONSTANTS AND 2-5
STRINGS
ARITHMETIC OPERANDS 2-7
SYMBOLIC VALUES 2-7

EXPRESSIONS AND OPERATORS 2-8

78000 ADDRESSING MODES 2-12

THE ASSEMBLER SOURCE FILE

INTRODUCTION

As previously mentioned, to construct the source file, the programmer
will make use of the Video File Editor (as described in the "PCOS (Pro-
fessional Computer Operating System) User Guide"), by means of which he
can insert the instructions and the Assembler directives. The instruc-
tion set used is precisely that of the Z-8001 CPU, described in detail
in the '"M20 78000 Assembler Reference Manual", which is useful to the
programmer for what regards mnemonics, addressing and machine code. As
far as the Assembler conventions and directives are concerned, however,
(which are M20 specific), these will be examined in more detail in the
next two sections entitled "Assembler Conventions" and "Assembler Direc—
tives".

The section on "Assembler Conventions' describes in depth the way to
represent operands, numerical constants, strings, comments, arithmetic
operations, which may appear on a source program line.

The next section provides a description of the '"Assembler Directives"
i.e. those 1instructions which are not translated by the Assembler in
executeable machine code, but which are used by the Assembler itself to
leave uninitialised space in the object program, define strings within
the program, make references to variables outside the program and to
perform operations which facilitate the programmer's work.

The last section "The PCOS Standard" deals with the structure an Assem-
bler source file must have, so that the user can build himself a utility
which is coherent with the PCOS utilities standards, for invoking and
for passing parameters.

ASSEMBLER CONVENTIONS

ASSEMBLY LANGUAGE STATEMENT FORMAT

The most fundamental component of an assembly program is the assembly
language statement, a single line of text consisting of an instruction
and its operands, with an optional comment. The instruction describes
an action to be taken; the operands supply the data to be acted upon.

An assembly language statement can include four fields in the following
order, from left to right on the line:

- Symbolic Label;

- Instruction Mnemonic:

2-1

- Operands;
- Comment.

All fields can be optional depending on the instruction chosen. Each
field of the statement must be separated from the others by white space
(one or more spaces or tabs). 1f a field other than the symbolic label
is to be omitted but subsequent fields on the line are not, it may be
coded as a solitary comma (,). Fields other than the comment field may
not contain white space except for the case of character constants or
strings in operands (which are enclosed 1in apostrophes or quotation
marks respectively).

Symbolic Label Field

Any statement may contain a symbolic label. Some instructions require
it. 1f provided, the label must begin with the first character of the
text line. The absence of the field is indicated by the first character
of the line being a white space character. The only way in which a sym-
bol may be defined anywhere in the assembly is for it to appear in the
label field of a statement. A particular symbol may appear only once in
a label field within one module. Note: a comment line, which is not an
assembly instruction, is indicated by the first character of the line
being an asterisk (*).

Instruction Field

The instruction is the assembly-language mnemonic describing a specific
action to be taken. This may represent either a 78000 machine instruc-
tion or an assembler directive instruction. The instruction must be
separated from its operands by white space (one or more spaces or tabs).

LD R2,ALPHA Load register 2 from memory location ALPHA
JP BETA JUMP to location BETA

Many of the operations of the 78000 can be applied to word, byte, or
long operands. A simple naming convention has been adopted to distin-
guish the size of the operands for these particular instructions:
the suffix '"B" designates a byte instruction, the suffix "L'" designates
a long word instruction, and no suffix designates a word instruc-
tion:

ADD RO,R1 Add word operands
ADDB RHO,RLO Add byte operands
ADDL RRO,RR2 Add long operands

2-2 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

Operand Field

Depending on the instruction specified, this field can have zero or
more operands. If two or more operands are needed, each must be
separated by a comma with no intervening white space. If there
are no operands and a comment field is to be placed on the same state-
ment, the operand field must be a single comma standing alone.

RET No operand
TEST R2 One operand

LD R2,R1 Two operands
LDM R2,ALPHA, #7 Three operands
CPD R2,@R4,R6,EQ Four operands

Operands supply the information the instruction needs to carry out
its action. An operand of a Z8000 machime instruction can be:

- Data to be processed (immediate data);

- The address of a location from which data is to be taken (source
address);

- The address of a location where data is to be put (destination
address);

- The address of a program location to which program control is to be
passed;

A condition code, used to direct the flow of program control.

Although there are a number of valid combinations of operands, there
is one basic convention to remember: the destination operand
always precedes the source operand. Refer to the specific
instructions in the Reference Manual for valid operand combinatons.

Immediate data can be in the form of a constant , an address , or an
expression (constants and/or addresses combined by operators).

LD Rz,#7 Load 7 into register 2
LD R2,#ALPHA Load address of ALPHA into register 2
LD R4,#BETA/2 Load value of expression [BETA/2] into

5 s register 4
As far as the conventions are concerned, for expressing numeric con-
stants and alphanumeric strings, these will be dealt with later in the
appropriate section.

Source, destination, and program addresses can also take several forms.
Addressing modes are described in detail later. Some examples are:

2-3

LD R1,@R2 Load value whose address is in register 2

y y into register 1
LD R1,ALPHA Load value located at address labeled
v , ALPHA into register 1
LD R1,ALPHA#1 Load value at location following that
. i addressed by ALPHA into register 1
JP EQ,BETA Jump to program address labeled BETA if
y 5 ’ EQ flag is set
JP NE,BETA+16 Otherwise, jump to location sixteen bytes

, , following BETA
Condition codes are listed in the Reference Manual.
Operands of an assembler directive instruction can be:
- A numerical value or expression;
- Expressions or strings representing initialization data;

- A string such as a file name, a module name, or a section name
(such strings cannot be referenced elsewhere in the program);

- A keyword.

Examples of assembler directives:

MODULE device.1,segmented
AT BETA+16

DSB 27

DDL %7FO1FFF, 'AB'

The assembler directives are dealt with later in the appropriate sec-
tion.

Comments

Comments are used to document program code as a guide to program logic
and also to simplify present or future program debugging A text line
which begins with an asterisk as the first non-white-space character
is copied as it appears to the 1isting file but is ignored by the assem-
bler for all other purposes.

2-4 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

Examples of comment lines:

* This routine is used to compare two strings. The operands are
* pointers to the first characters of each string. The

* strings are of variable length with a zero byte marking

* the end of the string.

* The returned value of this routine is:

* -1: first string less than second

* 0: strings equal

* 1: first string greater than second

Comments may also be placed on the end of each assembler statement All
text which appears after the operand field on the line is a comment and
is reproduced in the listing file but ignored otherwise. If the operand
field or the instruction field are to be omitted the comment field may
only be included if the omitted field(s) are coded as a solitary comma
(,)

Examples of on-statement comments:

CLR R2 Initialize register 2

IRET y return from the interrupt NOW!
START.UP , j THIS 1S THE ENTRY POINT OF THE PROGRAM

JP Z,BETA+12 this is a close comment

SYMBOLS, CONSTANTS, and STRINGS

Symbols

A symbol may consist of the letters A-Z (upper or lower case), the
digits 0-9, the underscore character ((), or a period (.). A symbol may
not begin with a digit (0-9). The maxImum length of a symbol is 16
characters.

Upper and lower case letters are considered different characters. Thus
"Start" and "start" are different symbols.

The following are valid symbols:

ValueAssignments
Initial_yalues
start_up

Pass 2

sort

Constants

A constant is a value which stands for itself. It may be either a
number or a character sequence.

Numbers can be written in decimal, hexadecimal, binary, or octal nota-
tion. The latter three are preceded by a percent sign (%) and, in
the case of binary and octal, by a base specifier enclosed in
parentheses. 1f a number has no prefix, decimal is assumed.

42 decimal
%42 hexadecimal
%(8)42 octal

%(2)10110010 binary

A characters sequence is a seguence of one to four characters
enclosed in apostrophes. Any ASCI1 character can be included in the
character sequence, for example;

IAI
'Open’
A character can also be represented in a character sequence in the

form "%hh," where 'hh' 1is the hexadecimal equivalent of the ASCII code
for the character, for example;

'E=%18"

For convenience, certain ASCI1 characters have been assigned
shorter, more mnemonic codes as follows:

%L or %l Linefeed

%T or %t Tab

%R or %r Carriage Return

%P or %p Page (Form Feed)

%% Percent Sign

%Q, %q, %' Apostrophe (Single Quote)
Example:

"% 2% " represents the ASC11 sequence: 1 /CR/ 2 /CR/
and '%Qt=%Q " represents the ASCIL sequence: =
Strings

Strings are sequences of any length of ASCI1 characters, enclosed in
quotation marks. They can be defined only by using the DDB directive
(see Data Generation Directives).

Strings also use the above ASCI1 mnemonic forms. Since strings are

enclosed in quotation marks, the mnemonic %" is used for embedded quota-
tion marks.

2-6 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

ARITHMETIC OPERANDS

Run-Time and Assembly-Time Arithmetic

Arithmetic is performed in two ways in an assembly language program Run-
time arithmetic is done while the program is actually executing,

ADDB RHO,RL2 Add the contents of register
i y RL2 to the contents of register RHO

Assembly-time arithmetic is done by the assembler when the program is
assembled and involves the evaluation of arithmetic expressions in
operands, such as the following:

LDL RR14,#[2*0ne+%10]
JP Z,BETA+34
AND R5,ALPHA-3
Assembly-time arithmetic is more limited than run-time arithmetic.

All assembly-time arithmetic is computed using 32-bit representations of
the numbers. Any number in excess of 32 bits (4,294,967,296) loses the
extra bits on the left, so all values are calculated '"modulo
4,294,967,296". Depending on the number of bits required by the particu-
lar instruction, only the rightmost 4, 8, 16, or 32 bits of the result-
ing 32-bit value are used. If the result of assembly-time arithmetic is
to be stored in four bits, the value is taken "modulo 16" to give a
result in the range 0 to 15. If the result is to be stored in a single
byte location, the value is taken "modulo 256" to give a result in the
range 0 to 255 (or -128 to 127 if signed representation is intended). If
the result is to be stored in a word, the value is taken "modulo 65536"
to give a result in the range 0 to 65535 (or -32768 to 32767 if signed
representation is intended).

LDB RH7,#one*2 Result of '"one*2'" must be in
* range 0 to 255

Jp BETA+2 Modulo 65536. Result is the
* address 2 bytes beyond BETA

SUBL RRZ,#0ne*%80000 Result of "one*%80000" is taken
modulo 4,294,967,296

SYMBOLIC VALUES

A symbol can be assigned a value other than that of the current assem-
bly location counter by means of the assembler directive instruc-
tions which are described later in this chapter. In this way a symbol

can be made to represent an absolute constant value or a relocatable
memory location in the same section, in a different section of the same
module or in a completely different module. That symbol may then be
used in operand expressions anywhere that a value of its type is per-
missible.

EXPRESSTIONS AND OPERATORS

Expressions are formed using arithmetic, logical, shift, and rela-
tional operators 1in combination with constants and variables. These
operators allow both unary (one-operand) and binary (two-operand)
expressions, as shown below.

Arithmetic Operators

The arithmetic operators are the following:
Operator Operation
+ Unary plus, binary addition

- Unary minus, binary subtraction

* Multiplication
/ Divison
\ Modulus

The division operator (/) truncates any remainder. The modulus opera-
tor (\) performs the modulo function (i.e. returns the remainder after
division)
9/2
9\2

4
]

-9/2 = -4

1f zero is specified as the right operand for either of these opera-
tors, the result is undefined.

Examples:
SUBB RLO,#1 1 is subtracted from RLO

SUB R10,#one+[10-3] Value of one + 7 is subtracted
' . from register 10

2-8 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

Logical Operators

The logical operators are the following:

Operator Operation
~ (Unary) Logical COMPLEMENT
& Logical AND
(. Logical OR

Logical EXCLUSIVE OR

Logical COMPLEMENT (~) simply complements the bit pattern of its single
operand (i.e. all one bits are changed to zero and vice-versa).

LD R11,#~CONSTANT1 Reverse the bits of CONSTANT1 and load into
reg 11

The effect of Logical AND, Logical OR, and Logical EXCLUSIVE OR can
be seen from the following examples. Although 32-bit arithmetic would
actually be done by the assembler, 4-bit arithmetic 1is shown for
clarity. Assume two constants, CONSTANT1 and CONSTANT2, which have the
bit patterns 1100 and 1010, respectively. The expressions:

CONSTANT1&CONSTANT2
CONSTANTT ! CONSTANT2
CONSTANT1~CONSTANT2

will result in the following evaluations of the operands:

AND 1100 OR 1100 EXCLUSIVE OR 1100
1010 1010 1010
1000 1110 0110

The assembly-time logical operations performed by Logical COMPLEMENT,
Logical AND, Logical OR and Logical EXCLUSIVE OR can also be done at
run time by the 78000 instructions COM, AND, OR, and XOR respectively.
The assembly-time operations require less code and register manipula-
tion. The run-time operations allow greater flexibility, however. For
example, they can operate on registers (variables) whose contents are
not known at assembly time, as well as on known constant values.

Shift Operators

The shift operators are as follows:

{SHR} Logical shift right
{SHL} Logical shift left

2-9

When used in expressions, the shift operators have the form
d operator n

where "d'" is the data to be shifted and '"n" specifies the number of
bits to be shifted. Vacated bits are replaced with zeros. For exam-
ple, if CONSTANT1 has a value of 00001100, the statement

LD R10, #[CONSTANT1{SHL}2]

would load the value 00110000 into register R10. 1f the second operand
supplied is negative (that 1is, if the sign bit 1is set), it has the
effect of reversing the direction of the shift.

LD R10,#[CONSTANT1{SHR}-2] CONSTANT1 is shifted
® two bit positions LEFT

Relational Operators

There are two basic types of relational operators: those which con-
sider their operands to be signed 32-bit integers, and those which
consider their operands to be unsigned 32-bit integers.

Signed:
< Less than
< = Less than or equal
= Equal
< > Not equal
> = Greater than or equal
> Greater than

2-10 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

Unsigned:
{ULT} Less than
{ULE)} Less than or equal
{UEQ) Equal
{UNE} Not equal
{UGE} Greater than or equal
{ueT} Greater than

The relational operators return a logical TRUE value (all ones) if the
comparison of the two operands is true, and return a logical FALSE value
(all zeros) otherwise.

LD RO,#[1=2] Reg 0 is loaded with zeros

LD RO,#[2+2]<5 Reg 0 is loaded with ones

Precedence of Operators

Expressions are generally evaluated left to right with operators having
the highest precedence evaluated first. If two operators have equal
precedence, the leftmost is evaluated first.

The following lists the assembly-time operators in order of pre-
cedence:

- Unary operators: +, -, ~
- Multiplication/ Division/Modulus/Shift/AND: *, /, \, {SHR}, {SHL},&
- Addition/Subtraction/OR/XOR: +, -, [N

- Relational operators: <, <=, =,<>, >=, > {uLt}, {uLe}, {ueq},
{UNE}, {UGE}, {UGT]

Square brackets ([]) can be used to change the normal order of pre-
cedence. Ltems enclosed in brackets are evaluated first. 1f brackets
are nested, the innermost are evaluated first.

100/4 - 48/2 =1

100/[4 - 48/2]= -5

Note: Square brackets are used instead of the traditional
parentheses. This is done to avoid all confusion and conflict whether
it be syntactical, semantical or conceptual, with the indexed address
operand forms described further on in this chapter.

Segmented Address Operators

Two special operators are provided to ease the manipulation of seg-
mented addresses. While addresses can be treated as a single value
with a symbolic name assigned by the programmer, occasionally it is
useful to determine the segment number or offset associated with a
memory location.

The SEGMENT unary operator, {SEGMENT}, is applied to —an address
expression that contains a symbolic name associated with an
address, and returns a 16-bit value. This value 1is the 7-bit seg-
ment number associated with the expression and a one bit in the most
significant bit of the high-order byte, and all zero bits in the
low-order byte.

The “OFFSET" unary operator, {OFFSET}, 1is applied to an address
expression and returns a 16-bit value which is the offset value asso-
ciated with the expression.

Example

* Load the segmented address of buffer_pointer into register pair RR12.
LD R12,#{SEGMENT }buffer pointer
LD R13,#{OFFSET}buffer pointer

#* This is functionally equivalent to the following statement:

LDL RR12,#buffer pointer

Because of the special properties of these address operators, no other
operators can be applied to a subexpression containing a SEGMENT or
OFFSET operator, although other operators can be used within the subex-
pression to which the operator is applied:

{SEGMENT}[buffer pointer+4] valid
[{SEGMENT }buffer pointerl+4 Invalid
-[{OFFSET Jbuffer_pointer] Invalid

78000 ADDRESSING MODES

With the exception of immediate data and condition codes, all 78000

2-12 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

machine instruction operands are expressed as addresses: register,
memory, and 1/0 addresses. The various address modes recognized by
the 78000 assembler are as follows:

- Ilmmediate Data

- Register

- Indirect Register

- Direct Address

- Indexed Address

- Relative Address

- Based Address

- Based Indexed Address

Special characters are used in operands to identify some of these
address modes. The characters are:

- '"R" preceding a word register number;

- "RH" or "RL" preceding a byte register number;
= "RR" preceding a register pair number;

- "RQ" preceding a register quadruple number;

- '"@" preceding an indirect-register reference;
- "#" preceding immediate data;

- "()" used to enclose the displacement part of an indexed, based,
or based indexed address;

- "$" signifying the current program counter location, usually used in
relative addressing.

Immediate Data

The operand value used by the instruction in Immediate Data
addressing mode is the value supplied in the operand field
itself.

Immediate data is preceded by the special character "#" and can be
either a constant (including character constants and symbols represent-
ing constants) or an expression as previously described. Immediate data
expressions are evaluated using 32-bit arithmetic. Depending on the
instruction being used, the value represented by the rightmost 4, 8,
16, or 32 bits is actually used. An error message is generated for

2-13

values that overflow the valid range for the instruction.

ADDB RL7,#98 Add 98 to the contents of register RL7
LDL RR14,#6789*FOUR
. . Load the value of the multiplication
’ i into register pair 14
1f a variable name or address expression is prefixed by "#, the value

used is the address represented by the variable or the result of the
expression evaluation, not the contents of the corresponding data
location.

The assembler automatically creates the proper format for a long
offset address which includes the segment number and the offset in a 32-
bit value. It is recommended that symbolic names be used wherever
possible, since the corresponding segment number and offset for the
symbolic name will be automatically managed by the assembler and
can be assigned values later when the module is linked or when the
program is loaded for execution.

For those cases where a specific segment 1is desired, the following
notation can be used (the segment designator is enclosed in double
angle brackets):

<<segment>>offset

where "segment'' is a constant expression that evaluates to a 7- bit
value, and "offset' is a constant expression that evaluates to a 16-bit
value. This notation is expanded into a long offset address by the
assembler.

LDL RR2,#MESSAGE Load the address of MESSAGE into
y y register pair RR2

LDL RR2,#<<2>>%10 Load the segmented address

, R with segment 2, offset %10

i i into register pair RR2

Register Address

In register addressing mode, the operand value is the content of the
specified general-purpose register. There are four different sizes of
registers on the Z8000:

- Word register (16 bits),

- Byte register (8 bits),

2-14 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

- Register pair (32 bits), and
- Register quadruple (64 bits).

A word register is indicated by the "R" followed by a number from 0 to
15 (decimal) corresponding to the 16 registers of the machine.
Either the high or low byte of the first eight registers can be
accessed by using the byte register constructs "RH" or 'RL" followed by

a number from 0 to 7. Any pair of word registers can be
accessed as a register pair by using "RR" followed by an even number
between 0 and 14. Register quadruples are equivalent to four

consecutive word registers and are accessed by the notation "RQ"
followed by one of the numbers 0, 4, 8, or 12.

If an odd register number is given with a register pair designator, or a
number other than 0, 4, 8, or 12 is given for a register quadruple, an
assembly error will result.

In general, the size of a register used in an operation depends on the
particular instruction. Byte instructions, which end with the suffix
"B'" are used with byte registers. Word registers are used with word
instructions, which have no special suffix. Register pairs are used

with long word instructions, which end with the suffix "L'".
Register quadruples are used only with three instructions (DIVL, EXTSL
and MULTL) which use a 64-bit value. An assembly error will

occur if the size of a register does not correspond correctly with the
particular instruction.

LD RS, #%5A5A Load register 5 with the
5 i hexadecimal value S5A5A
LDB RH3,#%A5 Load the high order byte of

)) word register 3 with the
, y - hexadecimal value A5

ADDL RR2,RR4 Add the register pairs 2-3 and
. v 4-5 and store the result in 2-3

MULTL RQ8,RR12 Multiply the value in register

" pair 10-11 by the value in

' register pair 12-13 and store the
i result in register quadruple

’ 8-9-10-1

Indirect Register Address

In Indirect Register addressing mode, the operand value is the con-
tent of the location whose address is contained in the specified regis-
ter. A register pair is used to hold the address. Any general-purpose
register (register pair) can be used except RO or RRO.

Indirect Register addressing mode is also used with the 1/0
instructions and always indicates a 16-bit 1/0 address. Any

general-purpose word register can be used except RO.

An Indirect Register address is specified by a "commercial at' symbol
(@) followed by either a word register or a register pair designator.
For Indirect Register addressing mode, a word register is specified by
an "R" followed by a number from 1 to 15, and a register pair is speci-
fied by an "RR" followed by an even number from 2 to 14.

LD @RR2,#15 Load immediate value 15 into
i ; location addressed by register
’ , pair 2-3

Direct Address

The operand value used by the instruction in Direct addressing mode
is the content of the location specified by the address in the instruc-
tion. A direct address can be specified as a symbolic name of a memory
or 1/0 location, or an expression that evaluates to an address. For all
1/0 instructions, the address 1is a 16-bit value. The memory address
is either a 16-bit value (short offset) or a 32-bit value (long
offset). All assembly-time address expressions are evaluated
using 32-bit arithmetic.

LD R10,TABLE Load the contents of the

i . location addressed by TABLE

; 5 into register 10

LD ARRAY+2,R2 Load the contents of register
, y 2 into the location addressed
¥ . by adding 2 to ARRAY

LDB RH5,55 Load the contents of the 1/0
i " location addressed by 55 into
’ y RH5

The assembler automatically creates the proper format which includes the
segment number and the offset. It is recommended that symbolic names be
used wherever possible, since the corresponding segment number and
offset for the symbolic name will be automatically managed by the assem-
bler and can be assigned values later when the module 1is linked or
loaded for execution.

For those cases where a specific segment is desired, the following nota-
tion ocan be used (the segment designator is enclosed in double angle
brackets) :

<<segment>>offset

where "segment' is a constant expression that evaluates to a 7-bit

value, and "offset' is a constant expression that evaluates to a 16-bit
value. This notation is expanded into a long offset address by the

2-16 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

assembler,

To force a short offset address, the segmented address can be
enclosed in vertical bars (||). 1In this case, the offset must be in
the range 0 to 255, and the final address includes the segment number
and short offset in a 16-bit value.

LD R10,|TABLE| Load the contents of the

, location addressed by TABLE
v (short offset format) into
, i register 10

]

LD <<SEGMENT>>OFFSET,R10 Load the contents of reg-

, ister 10 into the location
, addressed by the segment

7 named SEGMENT offset by

i OFFSET (long offset format)

JP |<<SEGMENT>>0FFSET Jump to location addressed
’ , by segment, offset
’ ’ (short offset format)

Indexed Address

An Indexed address consists of a memory address displaced by the con-
tents of a designated word register (the index). This displacement is
added to the memory address and the resulting address points to the
location whose contents are used by the instruction. The memory address
is specified as an expression that evaluates to either a 16-bit value
(short offset) or a 32-bit value (long offset). All assembly-time
address expressions are evaluated using 32-bit arithmetic. This address
is followed by the index, a word register designator enclosed in
parentheses. For Indexed addressing, a word register is specified by an
"R" followed by a number from 1 to 15. Any general-purpose word regis-
ter can be used except RQ.

LD R10,TABLE(R3) Load the contents of the

, ; location addressed by TABLE
i . plus the contents of reg-

y ister 3 into register 10

The assembler automatically creates the proper format for the memory
address, which includes the segment number and the offset. As with
Direct addressing, symbolic names should be used wherever possible so
that values can be assigned later when the module is linked or loaded
for execution.

For those cases where a specific segment is desired, the following nota-
tion can be used (the segment designator is enclosed in double angle
brackets) :

<<segment>>offset(r)

2-17

where ''segment' is a constant expression that evaluates to a 7-bit
value, 'offset" 1is a constant expression which evaluates to a 16-bit
value, and ""r'' is a word register designator. This notation is expanded
into a long offset address by the assembler.

To force a short offset address, the segmented address —may be
enclosed in vertical bars (|[). 1In this case, the offset must be in the
range 0 to 255, and the final address includes the segment number and
short offset in a 16-bit value.

LD R10,|TABLE|(R3) Load the contents of the

' . location addressed by

. i TABLE (short offset format)
, y plus the contents of reg-

i , ister 3 into register 10

—
o

<<5>>8(R13),R10 Load the contents of regis-
) ter 10 into the location ad-
’ dressed by segment 5

, offset by 8 (long off-

, set format) plus the con-

¥ tents of register 13

Relative Address

Relative address mode is implied by its instruction. 1t is used by
the Call Relative (CALR), Decrement and Jump 1f Not Zero (DINZ),
Jump Relative (JR), Load Address Relative (LDAR), and Load Relative
(LDR) instructions and is the only mode available to these instructions.
The operand, in this case, represents a displacement that is added to
the contents of the program counter to form the destination address that
{s relative to the current instruction. The original content of the
program counter is taken to be the address of the instruction byte fol-
lowing the instruction. The size and range of the displacement depends
on the particular instruction, and is described with each instruction in
the 28000 Assembler Reference Manual.

The displacement value can be expressed in two ways. In the first case,
the programmer provides a specific displacement in the form "$+n' where
n is a constant expression in the range appropriate for the particular
instruction and $ represents the contents of the program counter at the
start of the instruction. The assembler automatically subtracts the
value of the address of the following instruction to derive the actual
displacement.

JR OV,$+ONE Add value of constant ONE to program
v ¥ counter and jump to new location if
P overflow has occurred

In the second case, the assembler calculates the displacement automati-
cally. The programmer simply specifies an expression that evaluates to

a number or a program label as 1in Direct addressing. The address speci-
fied by the operand must be in the valid range for the instruction, and

2-18 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

the assembler automatically subtracts the value of the address of the
following instruction, to derive the actual displacement.

DINZ R5,BETA Decrement register 5 and jump to

v ¥ BETA if the result is not zero

LDR R10,ALPHA Load the contents of the location

’ . addressed by ALPHA into register 10

Based Address

A Based address consists of a register that contains the base and a 16-
bit displacement. The displacement is added to the base and the result-
ing address indicates the location whose contents are used by the
instruction.

The segmented based address is held in a register pair that is specified
by an "RR" followed by an even number from 2 to 14. Any general-purpose
register pair can be used except RRO. The dispacement is specified as an
expression that evaluates to a 16-bit value, preceded by a "#" symbol
and enclosed in parentheses.

LDL RR2,R1 (#255) Load into register pair 2-3 the
y , long word value found in the

y " location resulting from adding

§ § 255 to the address in register 1
LD RR4(#%4000) ,R2 Load register 2 into the loca-

i , tion addressed by adding %4000

, P to the segmented address found

. i in register pair 4-5

Based Indexed Address

Based Indexed addressing is similar to Based addressing except that the
displacement (index) as well as the base is held in a register. The con-
tents of the registers are added together to determine the address used
in the instruction.

The segmented based address is held in a register pair that is specified
by an "RR" followed by an even number from 2 to 14. Any general-purpose
register pair can be used except RRO. The index is held in a word regis-
ter that is specified by an '"R" followed by a number from 1 to 15. Any
general-purpose word register can be used except RO.

LDB RR14(R4),RH2 Load register RH2 into the
i i location addressed by the
) ' address in RR14 indexed by
, , the value in R4

ASSEMBLER DIRECTIVES

Assembler Directives are program statements which have the same format
as machine instructions but whose action does not correspond to any
machine instruction. These are used to control the operation of the
assembler with regard to functions other than producing the machine code
for an instruction.

Directives fall into two major categories: data generation directives
which allocate and possibly initialize program data areas, and control
directives which control and affect the operation of the assembler.

DATA GENERATION DIRECTIVES

These cause data space to be reserved at the current assembly location.
Directives differ in element size and ability to initialize the data
space.

DS

This directive is used to define uninitialized data. It takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). No forward referencing of symbols is
allowed in the expression. The given number of two-byte words is
reserved at the current location, after rounding up to the next even
boundary. Note that an operand of "0" may be used to force rounding of
the location counter up to an even boundary without reserving any
space for data. Also, if a label is defined in the label field of the
same statement its value is set to that of the location counter after
the rounding operation, but before the data definition.

DS 0 round up to next word boundary

BUFFER DS 100 reserve a one hundred-word buffer

DSB

This directive is used to define uninitialized data. It takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). The given number of bytes is reserved
at the current location. No forward referencing of symbols is allowed
in the expression.

2-20 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

DSB 100 reserve 100 bytes

keyboard buffer DSB number_base 16 define keyboard buffer

DSL

This directive is used to define uninitialized data. 1t takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). No forward referencing of symbols is
allowed in the expression. The given number of four-byte longwords is
reserved at the current location, after rounding up to the next
even boundary. Note that an operand of "0" may be used to force round-
ing of the location counter up to an even boundary without reserving
any space for data. Also, if a label is defined in the label field of
the same statement its value is set to that of the location counter
after the rounding operation, but before the data definition.

DSL 100 leave exactly 400 bytes
* uninitialized
buffer pointer DSL 1 define memory pointer
variable

DD

The DD directive is used to define initialized data areas consisting of

two-byte word wvalues. The directive may take any number of operands
and repetition factors may be applied to groups of them (described
below). Each operand is an expression which evaluates to either an

absolute value or to a relocatable value. 1In either case only the low-
order 16 bits of the value is used. One word of data is generated for
each operand supplied at the current location after rounding up to the
next even boundary. Also, if a label is defined in the label field of
the same statement its value is set to that of the 1location counter
after the rounding operation, but before the data definition.

DD 10244 define one word with contents 10,244 (%2804)

* Define a power-of-two table of words:

TABLE DD 0,1,2,4,8,16,32,64,128
DD %100,%200,%4 O,%800,%1000,%2000,%4000,%8000
Key DD A’ define word containing %0041

2-21

DDB

The DDB directive is used to define initialized data areas consisting of
byte values. The directive may take any number of operands and repeti-
tion factors may be applied to groups of them (described below). Each
operand is an expression which evaluates to an absolute value, or a
string.

1f the operand is a value, only the low-order 8 bits are used and one
byte of data is generated at the current location.

DDB TA'1%40,['Z'+1]1%40 two data bytes

String operands are sequences of any length (including zero) of ASCII
characters. They are delimited by quotation marks, so an embedded quo-
tation mark is written %' and an embedded percent sign 1s written
%% . The discussion of hexadecimal and mnemonic equivalents for ASCII
characters (see Constants) applies as well to strings. One byte of
data is generated for each byte of a string, at the current location.

string DDB "this is a string"
EndOff DDB 7,%0D,%0A bell, carriage return, line feed
MESSAGE DDB "ERROR - INVALID INPUT%F",7,0

DDL

DDL is used to define initialized data areas consisting of four-byte
long values. The directive may take any number of operands and repeti-
tion factors may be applied to groups of them (described below). Each
operand 1is an expression which evaluates to either an absolute value or
to a relocatable value. Two words of data are generated for each
operand supplied at the current location after rounding up to the next
even boundary. Also, if a label is defined in the label field of the
same statement its value is set to that of the location counter after
the rounding operation, but before the data definition.

%* Define table of three long words, the address of the
%* start of the region, the address of the end of the
* region and the size in byte of the region.

DDL START,END,END-START

DDL %7F017Fff, 'AB' define two long words the first
. . containing hex 7f017fff, and the
, s second hex 00004142

The DD, DDB and DDL directives each take an arbitrary number of
operands and allow repetition factors to be applied to them. A
repetition factor takes the form of an absolute expression. The
repetition factor must be followed by the operand enclosed in

2-22 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

parentheses. This has the effect of the enclosed operands appearing in
sequence, the number of times given by the expression.

Repetitions-may be nested. No forward referencing of symbols is
allowed.

ARRAY DD 1000(0) define array of 1000 words,

= all initialized to zero.

*

* define and initialize 8 bytes
CrcTab DDB 2("asdf") which would be 8 bytes.

The DD directives with repetition factors have the potential to produce
voluminous listings. If the generated code is too large to fit the
space to the left of the source line, the code will follow the listing
line in groups of 8, 16, or 32 data elements (for DDL, DD, and DDB
respectively).

CONTROL DIRECTIVES

MODULE

A MODULE statement defines the beginning of each module in the source
file. It must occur as the first instruction of each module in the
input source file. A module ends either at the next MODULE state-
ment or at the end of the input source file. Modules within the same
file are completely unrelated; no symbols may be shared or passed
between them.

The first operand of the MODULE statement, the module name, is required.
This operand follows the composition rules of a normal symbol, but can-
not be referenced elsewhere in the program. The second operand is
also required. It must be the keyword 'SEGMENTED" to tell the module to
contain code for a segmented Z8000.

MODULE test seg,segmented

SECTION

A module is composed of sections which are named explicitly by the user.
A section is the smallest unit of relocatability within the programming
system. Portions of the same section cannot be split further and placed
separately at link time.

A SECTION directive must appear in each module before the first
machine instructions or data generating directive. The SECTION direc-
tive has one required operand which is the section name. This

operand follows the composition rules of a normal symbol, but cannot
be referenced elsewhere in the program.

1f a section name duplicates another section name already declared in
the same module, it is taken as a continuation of the same section. The
assembly location counter is set to 0 at the beginning of a new section
or to the value it had at the previous end of a continued section. The
special character asterisk (*) may be specified in place of the section
name to indicate the most recent section is to be continued.

All symbols defined within a module must be unique. Thus, symbols may
be cross-referenced between sections of the same module.

section some_examples
SECTION examples
SECTION *
AT
This directive is used to change the assembly location counter. 1t

takes a single operand which is a numeric expression. The expression
defines the offset in the current section at which the next instruction
or data is to be generated. 1t may be used to move forward, leaving an
uninitialized gap, or to move backward, overwriting code or data previ-
ously generated at that location.

The expression must use symbols which have already been defined or
constants; no forward referencing of symbols is permitted.

In order to specify a symbolic location with a numeric expression, label
the beginning of the section. 1f the label at the beginning of the sec-
tion is, for instance, START.up, you could make the following assign-
ments:

AT [$-START.up]+10 same as "DSB 10"
AT START.up+%100 resume assembling at offset %100
TEMPLATE

This directive allows the definition of assembly-time symbols by means
of suspending the actual generation of code/data. The effect of the
TEMPLATE instruction is to cause all subsequent source statements to be
processed normally but no code or data to be generated in the output
object file. Thus all symbols are defined, but they are not assigned to
any location. Normal processing of assembler instructions is reinstated
by the next SECTION, MODULE, COMMON, or TEMPLATE statement.

2-24 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

The TEMPLATE directive takes one required operand. It is an
expression which is absolute, internally relocatable or externally relo-
catable. The symbols subsequently defined are given values relative to
that expression.

* The following statements define the layout
* of the REQUEST CONTROL BLOCK. No memory is
* reserved at this time but the four symbols
* become defined as absolute constants which
* are their respective offsets in the block.
TEMPLATE 0

RCB.RQCODE DSB 1
RCB.STATUS DSB 1
RCB.DATAPTR DSL 1
RCB.COUNT DS 1

COMMON

The COMMON directive is used to declare a common data area. Generation

of code or data in the object module is suspended until the next MODULE,
SECTION, TEMPLATE or COMMON directive. The instructions which fol-
low have the effect of defining the symbols therein declared and of
defining the length of the common area. The COMMON directive has
no operand but a common name must be provided in the label field of the
instruction. This follows the composition rules for external symbols
and is itself an external symbol; the COMMON statement serves to declare
it as such.

No memory space is reserved for the common area by the assembler. The
name and size of the common is placed into the output object module for
use by the linker. The common name is a bonafide external symbol and
may be used in other places in the assembly where an external symbol is
allowed.

* Define named common area to contain all globally used variables.

GLOBAL_VARIABLES COMMON

Buff.Ptr DSL 1
Glob.Flag DSB 1
CmdLength DS 1 #%% WARNING, rounding will
. , occur for alignment *¥*
ASSIGN

ASSIGN is used to define an assembly-time symbol. The symbol to be
defined appears in the label field of the instruction. The value- to be
assigned to it is given as the operand. The operand is an expression
which may be absolute, internally relocatable or externally relocatable.

The new symbol takes on the value and type of the expression. Symbols
in the expression may not be forward referenced. The defined symbol
must be unique within the module; it is not permissible to redefine a
symbol with an ASSIGN statement.

€CCe ASSTGN %F defines a constant symbol
KEY ASSIGN tA! defines a character value
ABSOLUTE_ADDR ASSIGN <<3>>%100 defines an absolute address
LO0P2 ASSIGN $ equivalent to "LOOP2 DSB 0"
7 ' or to LOOP2 standing alone
’ s on a line
LOOP_X ASSIGN LOOP2+2 program location after first
; , word of LOOP2 routine.
GLOBAL

The GLOBAL directive is used to define a global symbol. This symbol is
accessible within the current module, and is also made accessible at
1ink time to all other modules. There are no operands to the directive.
The symbol to be defined is given in the label field of the instruction,
and must be unique within the module. It receives the value of the
current assembler location. This directive may only occur within a sec-
tion; it may not appear within the range of a TEMPLATE or a COMMON
directive.

compare global label first instruction of routine
* so it may be used by all modules

* pefine a global word variable, initialized to
* all ones.

DS 0 align, to make sure
ONES GLOBAL
DD %(2)111111111111711M

EXTERNAL

The EXTERNAL directive is used to declare a symbol which 1is to be
defined at 1link time 1in another module. There are no operands. The
symbol to be declared is given in the label field of the 1instruction.
Since the symbol is not associated with any particular section, its
declaration may appear anywhere in the module.

2-26 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

* Declare routines in utility module needed by this module.
BCD ADD EXTERNAL

BCD_SUB EXTERNAL
BCD DIV EXTERNAL

IF and ENDIF

These directives are used to implement a conditional assembly facility.
The 1F instruction takes a single operand which is an expression which

may be of any type, but may not contain forward symbol references. If
the value of the expression is exactly zero, all statements following
the 1IF and before the corresponding ENDIF are treated as comments. An

ENDIF takes no operands. IF-ENDIF pairs may be nested.

Assume an assembly program is to be assembled in one of two different
ways, depending on which machine, X or Y, it is going to run on. Using
the ASSIGN directive we set the symbols X and Y to show which the
current assembly 1is for. One is set to 1, the symbol for the machine
being selected, the other to 0, for that not selected. A portion of
the assembly might appear as follows:

* 1If assembling for the X machine, invert the value.

if X could also say IF X<>0
CoM RO
endif

LISTON and LISTOFF

These directives allow the selective inclusion of portions of the assem-
bly in the listing file. They take no operands. 1If no listing file was
named in the assembler command line, then these have no effect since no
listing is being produced anyway. Rather than being just an on/off
switch listing control is accomplished with a signed counter. The
counter starts at zero, each occurance of a LISTON increments it by one
and each LISTOFF decrements it by one. Text is placed into the list-
ing file whenever the counter is greater than or equal to zero. This
technique provides hiergrchical levels of control. The counter 1is not
reinitialized for each new module encountered in the input source file.

PAGE

This directive forces a page break in the listing file following the
newline character of the previous line. A page heading along with the
current title string is produced following a form-feed character, If
no line has been printed since the last automatic or requested page

break then the entire instruction is ignored. With no operand, PAGE
forces a form feed. With an operand, the operand will set the number of
lines per page. This does not include the 5 lines of header informa-
tion. To get 50 lines per page, the PAGE operand would be 554

TITLE

This directive allows the programmer to provide a title to be placed
in the upper left corner of each listing page. It takes a single
operand which is a string enclosed in quotation marks (). An automatic
page break including a new heading 1is produced using the new title
string.

TITLE "LINKER RELEASE 7.44 —- PASS ONE"

INCLUDE

This directive causes the insertion of the source from another file into
the current assembly at the point at which the directive occurs. There
is a single operand consisting of the filename enclosed in quotation
marks. The listing file always has the entire line containing the
INCLUDE instruction before the insertion 1is done. 1f a page break
occurs for any reason while in the included file the page heading shows
the name of the file currently being processed. INCLUDEs may be
nested, but they may not contain MODULE directives.

include "'stdio.h" get standard i/o package definitions

INCLUDE "Def Insert” place insertion source for Def here

THE PCOS STANDARD.

This section describes how to write Assembler source programs in order
to obtain maximum compatibility with the operating system (PCOS) rou-
tines.

This will allow user programs to use the same procedures as for any PCOS
utility for invoking and for passing parameters to the Assembler pro-
gram.

The following figure shows the way in which an Assembler utility is con-
nected to various parts of the system.

228 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

CALL, EXEC BASIC
CALL,
EXEC
Sc #7y [T T T o T]
PCOS commands - NE——
_d S TSN N
| 11 3 |
- 1
[~
\\\\////\\\\////:::::::: ::::
Assembler \/\/\/ [~
utilities ::::::::\\\\:::::::::::: ::::
\é /E/ o] PCos

<
<
<
<+

IN, OUT

=¥ HARDWARE

Fig. 2-1 Connection between Assembler utilities and other parts of the
system

If Assembler routines are written following a certain standard, it is
possible to invoke them like a simple PCOS command, or from a BASIC pro-
gram.

By means of conventions on the passing of paraméters, the same Assembler
utilities can call PCOS commands or access a group of small routines
(system calls), that are also used by the operating system (PCOS).
These provide a certain number of elementary operations on the system
hardware, thus facilitating programming.

Direct access to the system hardware will consequently be possible, by

2-29

means of the Assembler instructions IN, OUT (see Appendix F for a list
of 1/0 port assignments and consult M20 hardware literature).

1t is also possible to access PCOS commands from an Assembler utility,
using the Assembler instruction SC 77 which is described in the second
part of this manual.

Let us now summarise the various ways to call (from PCOS and BASIC
respectively) an Assembler utility (e.g. MYFILE) which is written
according to the PCOS standard, to which the parameters paral, paraZ and
para3 are passed.

pPCOS

MYFILE PARA1,PARAZ,PARA3

BASIC

CALL "MYFILE'(PARA1,PARA2,PARA3)
Where PARA1,PARAZ,PARA3 can be either constant or variable parameters.
or
EXEC '"MYFILE PARA1,PARA2,PARA3"
Where PARA1,PARA2,PARA3 can only be constant parameters.
Furthermore, certain conventions within our Assembler source file, will
also make it possible to obtain the identification of our program, while
the program is being loaded (by using the PCOS commands PLOAD or PDE-
BUG) .
The instructions and the Assembler directives to be wused in ordgr to
obtain a routine compatible with the PCOS standard, are dealt with 1in

this order:

1. Configuration code

2. Header
3. How to pass the parameters
4, Exit Routine

5. Example

2-30 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

1. Configuration Code

The first "word" of an executable program, will provide information
(while the program itself is being loaded) on how it will be configured
in memory. This word, being the first word of the program, must assume
the value zero and indicates that the word immediately following, is the
entry point.

Schematically:

00 00]1 word

———| main entry code

To obtain a source program complying with configuration code 0, the
first statement must be DD 0.

Other types of configuration codes are allowed by the system software,
but cannot be utilised by the user.

2. Header

When an executable file is being loaded using PLOAD or PDEBUG, the . M20
displays some information on the screen, amongst which the program name.
This program name can be inserted at source program level in the
"header' of the program itself.

The header is that part of the program containing both the configuration
code previously mentioned and a string identifier which will be the pro-
gram name. For example, the "header" of a source file can contain any
of the following Assembler instructions:

2-31

module echo, segmented

section example
Header dd 0 type 0
JR start
ddb "File Echo " string ident. prog.
dd 0
start
program

In practice, the string identifier is placed in memory between the
second word and the first occurrence of a 'null (00)". This string must
be skipped by means of the instruction "JR start" in the source program.
1t is important that the jump instruction of the string identifier is JR
and not JP, as JR only occupies 1 word, thus allowing the start of the
string from the third word of the executable program.

The situation of the program in memory will be the following:

00 00
+—JR start code
Header i
1
1 |:l ASCII string identifier
00 00 <«— end of string
start

3. How to pass the parameters

When an assembler utility is invoked by PCOS or by BASIC, all the param-
eters passed to it are placed (pushed) in the stack by the system so
that they can be extracted (popped) from the stack in the order and in
the way in which they were placed.

2-32 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

The maximum number of parameters that can be passed is 20. The pointers
to the parameters (parameter entry) will be allocated in the stack when
the routine is invoked, in the following way:

Stack
pointer
at — n para 7 1 word
entry =
Foutine parameter entry
for para 1 2 words
parameter entry
for para 2 Ziords
parameter entry 2
for para 3 J words
|
1
#
parameter entry 2 words
for para n +——nmax = 2(Q
return address 2 words

The user program must however extract information about the various
parameters by means of as many '"pop" instructions from the stack, as the
corresponding number of parameters.

As seen in the figure, the number of parameters is given by the first
word addressed by the stack pointer when the routine is invoked by PCOS
or BASIC.

It is possible to have 3 types of parameters:

- Null with hexadecimal code 00
- Integer " " n 02
- String . " " 03

The code for each type of these parameters is memorized in the 2nd byte

2-33

of the 1st word for each ''parameter entry"

type
foz 5 parameter
offset

For the type 'null" the "parameter entry' does not contain an actual
pointer, but for compatibility, it will be of the type:

EE 00

FF FF

This type of "parameter entry" is created when, for example, the routine
is invoked in the following way:

my paral,,para3

1t can be seen therfore, that the second parameter has been jumped (para
2). This means in practise, that a pointer to a dummy parameter (param-
eter entry) is created (with FFOO FFFF) in order to maintain compatibil-
ity with the standard.

For the integer type (02) there will be a real pointer to the parameter,
constructed in the following way:

n seg 02

offset

The segment number and the offset constitute the effective address to a
word integer (this is a Z-8001 compatible segmented address)

For example, the 'parameter entry" for integer 5 could be:

2-34 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

86 02

oc 00

In this case, the address for the word containing integer 5 will be:
<<6>> 0C00

This can be represented schematically as:

[86 l 02 oc 00 %L 00 057

(Note that once the type has been identified the second byte is ignored)

However, if the parameter is a "string" (type 03), the procedure for
pointing to the string is more complex than the previous two.

In this case, the pointer (entry parameter) points to a set of 3 bytes,
the first of which contains the string length, whereas the other two
contain the address (significant only for the offset part as the seg.
no. is the same as the entry parameter) pointing to the string itself.

e.qg.
n seg 03
offset 1
n seg -
iy, Lf;;g;g offset 2
offset 1 |
3 Bytes
n seg

—_— string l
offset 2

For example, the "Parameter Entry" for the string "STRING" must have the
following structure:

86 03

0c 00
86 00
> [06 l oc | 09 J
oc 00
I |
3 Bytes
86 00
0cC 09

3 N N B B R

6 byte ASCII

4. Exit Routine

The Assembler programmer is advised to write his programs so that he can
easily handle the exit from the program by means of the instruction RET,
in order to return to the environment from which it was called.

It is convenient to save in 2 words (RETADR) the stack address which
points to the program return address. In this way, the stack pointer can
be set to this address before exiting the program (using the "RET"
instruction). In order to access the program return address, you will
have to use the 'number of parameters' saved in the first stack loca-
tion.

To accomplish this, the following Assembler instructions can be used at
the start of the utility:

2-36 ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

POP RO,@RR14 no. par in RO

CLR R2

LD R3,RO

SLL R3,#2 no. par x4

ADD RR2,RR14 pointer to reurn address in RR2
LDL RETADR,RR2 store RR2

program

LDL RR14,RETADR
RET
RETADR DSL 1

5. Example

Here a complete example is given of a simple Assembler source program in
which the standard (which we have seen up till now) is taken into
account. In input, this program takes a string as a parameter and
echoes the string itself in output. Once the program has been assembled
and linked in an executable file "echo.cmd", it can be called from PCOS
in the following way:

ec string /CR/

FEFE R AR AR NER TR R AR T R

Echo string input to this ruatine
Ar example of the use of the MZ0 Assembler Fackage

PEE

MCDULE echo, SEGHENTED
SECTION example
TITLE "ROUTINE SEGHENTED ECHO®

program header

DD 0 configuration code--MANDATORY HERE
JR echo FC0S expects this instruction format
str 00 “File Echo " program identifier
0D S carriage return
DDB 0 end of program header
*
¥ code
*
echo RSSIGN $
LDA RR12,str point to message
5¢ #89 display string identifier
FOF RO, 8RR14 get parameter count
CLR k2
LD R3,R0 use R3 as working register
SLL R3. H2 multiply # parameters by 4
ADDL RRZ,RR14 add to stack to point to return addr
LOL retadr, RR2 save it for later return
*

% Now test for H parameters passed and reject if wrong
*

TEST RO how many parameters?
JP NZ,echol not zere parameters so go on
LD erconu, #76 Hessage = "error in parameter”
JF error exit with error nessage

*

% So we have one or more parameters passed

% Transfer parameters to registers, checking data types...

*

echol ASSIGN $
FOPL RR2,aRR14 get pointer to parameter in rr2
CFB RLZ,#3 is parameter a string? (type 3)
JB EQ,echo yes, go service, else....
LD erconu, #13 Message = "type mismateh”
JP error

*
% Main program cc : here
*

echod ASSIGN $ print input string to screen
CLRE RL2 clear data type byte
CLR R7
CLRE RHé&
LDe kL&, aRR2 string length in RL6
INC R3 RR2 points to the mext byte
LDB RH1,3RR2
ING K3 RR2 points to the next byte
LDB RL1,8RR2

ASSEMBLER USER GUIDE

THE ASSEMBLER SOURCE FILE

Le
Lo
Lb
Lb
CLR
5¢C
CLR
R

F10,R2

Ri1RL RRLD points to the string paraweter
F8,#17

RS . Ra

#13 display string

] assume no error returned by 5¢ #13
#90 add a CR/LF

R3 assune no error returned by 5C 90
n_return Junp around errar sepvize

* Exit with appropriate error message

*
error

ASSIGN
Lo

5¢

* Normal return

*
n_return

SSIGN
LDt
RET

% Storage area
¥

*
retadr
ercony
#

% End (echo)
*

SECTION

DsL
DS

$

R3sercony nust have been set up first '

#ee display error message

§

ER1%, retadr point stack pointer to return address
' and return to caller

area

1 storage for return address

1 storage for ervor type code

2-39

~ 3. THE ASSEMBLER (ASM) COMMAND

ABOUT THIS CHAPTER

This chapter details the ASSEMBLER (ASM) command. This command processes
an Assembly language source file and produces an object file.

CONTENTS

ASM 3-1

THE ASSEMBLER (ASM) COMMAND

ASM

The ASM command processes an Assembly Language source file of ASCII text
and produces a file containing the corresponding Z8000 machine code.
This file is known as an object file. Optionally the ASM command pro-
duces a listing file. When such a file is listed the video displays the
source file program lines on the right and the generated code or symbol
values along with other information about each program line on the left.
1f the XREF option is specified for a listing file then it will also
include a cross-reference table at the end. Examples of object and list-
ing files are shown at the end of this chapter.

The ASM command is called from PCOS like any other PCOS command. When
called it is loaded into memory and executed. After execution the system

returns to the PCOS environment. The command syntax is shown 1in figure
3-1 below.

- file
[—>‘ identifier
(.s)
file
—»(as ; Y v@——o identifier
(.obj)
file
——-v‘ identifier v@—»‘ xref } ”
(]
-——0‘ quiet }

Fig. 3-1 The ASM command

3-1

Where

SYNTAX ELEMENT

INPUT

file identifier
(.s)

ouTPUT

file identifier
(.obj)

LISTING

file identifier
(.1)

MEANING

The keyword which must precede the source file
identifier

The source file identifier complete with any
necessary volume identifier and/or password.
Usually a source file name is assigned a '.s'
extension.

The keyword which must precede the object file
identifier

The object file 1identifier complete with any
necessary volume identifier and/or password.
Here again it is good programming practice to
assign the extension '.obj' to an object file
name. If the file specified does not exist then
it will be created; if on the other hand the file
exists then it will be overwritten with the new
object file.

The keyword which must precede the 1listing file
identifier.

The listing file identifier complete with any
necessary volume identifier and/or password. A
listing file name is usually assigned the exten-
sion '.1'. 1If the file specified does not exist
then it will be created; if on the other hand the
file exists then it will be overwritten with the
new listing file.

ASSEMBLER USER GUIDE

THE ASSEMBLER (ASM) COMMAND

XREF The Cross-Reference keyword. If specified then a
cross-reference table 1is included at the end of
the listing file. This table contains an entry
for each symbol defined in the assembly with the
following information:

- The statement number at which the symbol is
defined.

- Its value and type.

- An ordered list of statement numbers which
reference the symbol.

QUIET The Quiet keyword. Specifying this keyword in an
ASM command line will suppress all the messages
normally output on the video except for error
messages which abort the command.

An ASM command parameter is identified by the command 1line interpreter
by its keyword; for this reason parameters can be entered in any order.

The command '"AS'" by itself causes the command parameters to be displayed
on the screen.

If the OUTPUT and LISTING options are omitted then the respective object
and listing files will not be created.

Characteristics

The ASM command is executed in a number of stages depending on the
number of modules in the input source file. In the first stage the
header is assembled; each module is then assembled in subsequent stages.
Each assembly stage is done in two passes.

During execution, unless the QUIET keyword was specified, the video
displays information indicating the end of each pass, and short messages
for warnings, and errors discovered. These messages specify the line
number and the code for each error and/or warning. When execution is
complete the video displays a summary line with the total number of
errors and warnings. A listing file printout will turn out to be very
useful for subsequent analysis of errors. ASM error and warning codes
are listed in appendix B.

3-3

Examples

IF you enter

as input 1:test.s,output
1:test.obj /CR/

as input 1:myfile.s,output
1:myfile.obj,listing
1:myfile.1l,xref /CR/

THEN ...

the source file "test.s" which is on the
disk inserted in drive 1 is assembled. The
resulting object file is written into a
file called ‘'test.obj'" on the disk
inserted in drive 1. If this file already
exists then it will be overwritten with
the new object file, if on the other hand
it does not exist then it will be created.

the source file "myfile.s" which is on the
disk inserted in drive 1 is assembled, as
in the previous example, however this time
a listing file is also created. The list-
ing file '"myfile.l'" is created on the disk
inserted in drive 1. The file "myfile.l"
will have a cross-reference table
included.

The sample printout on the following pages is that of the 1listing file
corresponding to the source file shown in chapter 2. This listing file
includes a cross-reference table. This file was obtained using the fol-

lowing command:

as input 1:echo.s,output 1:echo.obj,listing 1:echo.l,xref /CR/

3-4

ASSEMBLER USER GUIDE

THE ASSEMBLER (ASM) COMMAND

20 Assembler v 2. 1. 7. 0 04/08/1783 08:38:27 Fage 1
Source Ref File l:echo.s
Location Code/Value Line Line Line Seurce Text
1 1
2 2% ¥
& 3 % Echo string input fo this ruotine *
4 & % fn example of the use of the M20 Assembler Fack ¥
3 5 * %
4 & % H
¥ 7 2 ¥
8 8 %
8 Lines: 0 Warnings, 0 Evrors in Header
2 MODULE cho . SEGHENTED
10 ji] SECTION Exanple
1 1 TITLE "ROUTINE SEGHENTED ECHO"
12 12 %
i3 13 * program header
03 % x
00,0008 0080 1 18 op o Y HERE
00,9002 £804 6 23 18 JR echo instruction format
00,0004 4449 40 45 20 45 43 17 17 sir i) “File Eoho *
00,0008 68 &F 20
00,000 GO g ooe et carviage return
00,000F 00 1% DOE a end of am header
k]
21
00,0010 2 ASSILN $
00,0010 760C 00,0004 17 LOA RR1Z:str point to message
00,0014 7759 1y HB? disolay string identifier
00,0018 9760 FOF RO, 3RR14 get parameter count
00, 0014 B025 LR R2
00,0012 A103 2 Lo R3.RO use R3 as working register
00,201€ B331 0002 29 S R3. 42 nultiply # parameters by &
00,0022 #6E2 30 ADDL RR2,RRL4 add to stack to point to return
00,0024 3002 01.0000 i LoL retadr, RRE save it for later return
2 #
k& # MNow test for 4 parameters passed and veject if wrong
34 *
00,0024 8004 35 TEST [l how many parameters?
00,002C SEOE 00,0040 36 43 JF NZ.echol rot zero parameters so go on
00,0032 4D03 01,0004 00&C 37 88 LD ercorni, #76 Hessage = "error in paraveter”
00.C03A 5E08 00,007E B 73 JF errar exit with error sessage
39 ¥
40 ¥ S0 we have one or more parameters passed
41 # Transfer paraneters to registers, checking data types...
42 *
00,0040 43 echol ASSIGN $
10,0040 95E2 13 FOFL RRZ,aRR14 get pointer to parameter in rrd
00,0042 DAOA 0303 43 CPR RLZ. 43 is parameter a string? (type 3
00,0044 5E04 00,005R 46 2 JF EQ,echo? yes, go service, else,...
00,004 4D0S 01,0004 000D 47 88 LD erconu, #13 Message = "type mismatch”
00,0054 SE08 00,007E 48 73 JF error
49 ¥
50 * Main progras code here

ROUTINE SEGHENTED ECHO HZ0 Ascembler v 2, 1. 7. 0 04/08/1983 08:38:50 Page 2
Source Ref F 1-echo.s
Locatian Code/Value Line Line Line Source Text
1 51
52 32 echol & print input string to sereen
3 53 RLZ clear data type byte
56 Sé R7
5 55 RHA
54 54 L&, RRZ string length in RL&
37 57 R3 RRZ points to the next byte
38 58 RH1, 8RRZ
59 a8 3 RR2 points to the next byte
4 &0
61 a1
00,0062 R11E of a2 RR10 points to the string paraseter
00.006E 2108 001t &3 &3 8, 817 prepare registers for 5C #13
b4 b4 R9.Ré
5 45 #13 display string
86 46 RS assume no error returned by SC #13
47 &7 H70 add a CR/LF
48 48 RS assume no e SO #90
4 79 &9 n_return Junp arcund ervor s
7 70 %
7 71 % Exit with appropriate errar nessage
2 %
00,0 73 72 eprror ASSIGN $
00,007 4195 01,0004 74 38 7é LD RS ercony must have been set up first ')
00,0084 7Fs8 75 5 o #88 dicplay error message
76 76 %
7 7 % Mormal veturn
] 78 %
” 79 moreturn ASSIGN $
00,0084 5 80 8 a0 LDbL RR14.retadr point stack pointer to return addeess
00,008C 708 81 81 RET , and return to caller
2 2 %
33 83 % Storage area
84 86 %
83 85 SECTION area
36 86 %
01,0000 87 87 vetadr DsL 1 storage for return address
01.0004 38 88 ercomy D5 1 storage for error type code
29 89 x
0 90 % End (echa)
71 91 %
83 Lines, 0 Warnings, 0 Errors in Hodule echo

3-6 ASSEMBLER USER GUIDE

THE ASSEMBLER (ASM) COMMAND

%N

Index for Module echo M20 Assembler v 2. 1. 7. 0 06/08/1983 08:39:00 Fage 3
Source Lines

Type and (Base or Section) Nawe Value Defining Uses

Section area 01,0006 834

Hodule echo 0000_0094 M

Relocatable (example) echo 00,0010 234 16

Relocatable (exauple) echol 00,0040 434 3

Relocatable (example} echol 00,0058 524 46

Relocatable (area) ercony 01,0004 kit 37 47 7%

Relocatable (exasple) error 00,007E 734 I8 48

Section example 00,008E 104

Relocatable (example) n_return 00,0086 9% 69

Relocatable (area) retadr 01,0000 874 3 80

Relocatable (example) str 00,0004 174 2%

ROUTINE SEGHENTED ECHO ’ 20 Assembler v 2. 1. 7. 0 06/08/1983 08:39:07 Page &

Source Ref File 1:echo.s
Location Code/Value Line Lire Line Source Text

91 Lines, 0 Warnings, 0 Errors in 1:echo.s

3-7

AN\

AV

4. THE LINK COMMAND

ABOUT THIS CHAPTER

This chapter describes the LINK command and all its keyword parameters,
The chapter ends ith an exanple and sample printouts of 3 command file

and a map file.

CONTENTS

LINK

PARAMETERS

COMMENTS

MINIMUM COMMAND ELEMENTS
THE KEYWORDS

MULTI-FILE KEYWORDS

FILE KEYWORDS

4-1

4-1

SIMPLE KEYWORDS

BLOCK KEYWORD

KEYWORD ORDER

ERRORS

4-8

4-9

4-9

4-10

THE LINK COMMAND

LINK

LINK is a linkage editor and locater which converts z-type object
modules 1into a PCOS 3.0 relocatable load file. The LINK command must be
called from the PCOS environment like any other PCOS command. LINK
inputs one or more Olivetti Z-type object files, and outputs a single
executable load file.

The LINK command allows a number of optional features described below.

PARAMETERS

There are six types of parameters which can be passed to LINK. These
parameters are of the Keyword type, and can have parameters of their
own. The keywords are listed below, grouped according to their type.

- Multifile keywords: INPUT L IBRARY

- File keywords: COMMAND OUTPUT
MAP

- Value keywords: BLOCKTYPE BLOCKSIZE
STACKSIZE ATTRIBUTEO
ATTRIBUTE1 ATTR1BUTE2

- String keywords: ENTRY MESSAGE

- Simple keywords: QUIET VERBOSE
STATISTICS OPTIMIZE

- Block keyword: BLOCK

The command syntax is shown in figure 4-1 below.

file
—{ Multifile keyword)—h . o
identifier

i T
‘—’Lrlte keyword)——h . ?LG."
identifier

———}‘ Value keyuordj——b term

v

:

:

Simple keyword

String keyword_)———->‘ string
~
J

.

Y,

Block keyword

section
name

Fig. 4-1 The LINK command

Where

SYNTAX ELEMENT

file identifier

4-2

MEANING

The name of a file complete with any necessary
volume identifier, and/or file password.
Depending on the keyword in question the file
will be accessed for reading or writing. In the
latter case if the file specified already
exists it will be overwritten with the new out-
put.

ASSEMBLER USER GUIDE

THE LINK COMMAND

term

string

section name

COMMENTS

In the case of Multifile keywords you can use
the two PCOS wild card characters (*) and (?)
to specify more than one file; an asterisk (*)
matches any string and a question mark (?)
matches any single character.

A hexadecimal number preceded by a "%'' sign, or
a decimal number. In both cases the number can
optionally be followed by a "K" symbol (upper
or lower case) which multiplies the number by
%1000 in the case of a hexadecimal number or by
1000 in the case of a decimal number.

Any string of ASCIL characters.

The name of a program section that exists in
the input program modules. More than one
program sections can be specified by one
section name with the use of the following Wild
Card characters:

- An asterisk (*) which matches any string of
characters,

- A question mark (?) which matches any
one character,

- [ab...] which matches any one character
inside the square brackets,

- [a-b] which matches any one character in
the interval a-b.

Comments, enclosed in exclamation marks, can be inserted in a LINK com-
mand between parameters. This facility is useful to comment command
files which you may use for LINKing specific types of programs. An exam-
ple of a commented command file is given at the end of this chapter.

MINIMUM COMMAND ELEMENTS

The required elements of a LINK command which outputs a PCOS 3.0 execut-
able file are the following:

- The multifile keyword INPUT followed by the file identifier(s) of the
input file(s).

- The file keyword OUTPUT followed by the file identifier of the output
file.

Commonly used options are:

- The multifile keyword LIBRARIES followed by the file identifier(s) of
a library file(s).

- The file keyword MAP followed by the file identifier of a map file.
- The ENTRY keyword followed by the the program entry point.

- The file keyword COMMAND followed by the file identifier of a file
containing part of a LINK command line.

- The BLOCK keyword followed by instructions ordering program sections.

These and other keywords are described in more detail in the next sec-
tion.

Note: Care must be taken that no more than 20 parameters are specified
in one LINK command; this is the maximum number of parameters that the
PCOS command line interpreter can handle. In cases where more than 20
parameters need to be specified the COMMAND keyword can solve the prob-
lem (ghe COMMAND keyword is described below in the section on File Key-
words).

THE KEYWORDS

In the following section all the LINK keywords are described. Each
description has the keyword as a heading. In the command line keywords

must be entered as they appear in this heading in either capital or
small letters.

4-4 ASSEMBLER USER GUIDE

THE LINK COMMAND

MULTI-FILE KEYWORDS

INPUT

The INPUT keyword may occur any number of times. It specifies files con-
taining Z-type object modules which contain code sections to be located.

LIBRARY

This keyword instructs the program to select from the named library
files the modules which have been referenced in the input file(s).

A library file can be created using the MLIB command described in
chapter 6.

FILE KEYWORDS

COMMAND

The COMMAND keyword can be used in the command line to insert parameters
from another named file (command file). Up to two levels of insertion
are allowed (i.e. you can insert a COMMAND keyword in a command file
called from standard input, but you cannot specify another COMMAND key-
word in the file specified by a COMMAND keyword in a command file).

Such files containing part of a command line can be created using the
Video File Editor. Comments, enclosed 1in exclamation marks, can be
inserted in a command file between parameters.

An example of a Command file is shown at the end of this chapter.

OUTPUT

The OUTPUT keyword occurs once and only once. It specifies a file to
receive the executable binary load file. The file is created if it does -
not exist or is completely replaced with the new output 1if it does
exist,

The load file can be assigned any legal name, however there are two
filename extensions which have a special meaning to PCOS; these are
".cmd" and '.sav'. These filename extensions allow files to .be called
and executed from the PCOS environment like any other PCOS command (i.e.

by entering the first two characters of the file name). If a file has
niether of these extensions it can be invoked by entering the complete
file identifier. When a file which has no ".sav' extension is called it
will be loaded from disk to the M20's memory, and executed. After execu-
tion the memory space that was occupied by the program is again made
available to the system. This means that if the program is to be exe-
cuted a second time it will have to be reloaded from disk to memory. In
the case of a '".sav'" extension the file will be permanently loaded and
executed. In this case the file can be executed again even if the disk
the file was loaded from is removed from its disk drive.

MAP

The MAP keyword may occur once. It specifies the file to receive the
formatted map. It 1is created if it does not exist or is completely
replaced with the new map if it does exist. If no MAP keyword is given,
no map file is produced.

A map file will contain a copy of the LINK command line being executed,
diagnostic messages, a location ordered map of sections and an alphabet-
ical list of section names and global symbols with their corresponding
locations.

VALUE KEYWORDS

BLOCKTYPE

The parameter passed to the BLOCKTYPE keyword sets a byte in each pro-
gram text header of the output load file for all subsequently defined
blocks.

In this version of LINK this byte is forced to zero, therefore this key-
word has no effect at all even though it is recognised as a valid
parameter.

BLOCKSIZE

The BLOCKS1ZE keyword may ocecur any number of times. 1Ilts parameter
specifies the maximum size for each block defined subsequently on the
command line. The maximum block size that can be specified is 65528
(i.e. 64K less 8 bytes) which is the size of a processor segment. In the
absence of a BLOCKSIZE keyword on the command line, the maximum block
size is assumed by default.

4-6 ASSEMBLER USER GUIDE

THE LINK COMMAND

STACKSIZE

The STACKSIZE keyword may occur only once. 1f specified its parameter
determines the number of bytes of run-time stack that are to be dedi-
cated to the linked program alone. If not specified the linked program
will use the PCOS stack area (200 bytes in total).

ATTRIBUTEO, ATTRIBUTE1 and ATTRIBUTEZ2

The parameter passed to each of ATTRIBUTEO, ATTRIBUTE1 and ATTRIBUTEZ is
placed in the first, second and third attribute bytes respectively in
the header part of the output load file.

FOR ROUTINES TO RUN ON RELEASE 3.0 OF PCOS IT 1S NECESSARY TO SET THESE
ATTRIBUTES AS FOLLOWS:

- ATTRIBUTEO TO ONE
- ATTRIBUTE1 TO ZERO
- ATTRIBUTE2 TO ZERO

AS THESE ARE ALSO THE DEFAULT VALUES OF THE ATTRIBUTE KEYWORDS 1T IS NOT
NECESSARY TO SPECIFY THESE KEYWORDS AT ALL.

STRING KEYWORDS

ENTRY

The ENTRY keyword may occur once. It provides a global symbol name which
is to be made the entry point of the executable program. The entry point
is determined as follows:

- If an ENTRY keyword is given, then the entry point specified is used,
regardless of any definition within the input module itself.

- 1If no ENTRY keyword is given, then the entry point is set as defined
in the input module.

MESSAGE

A MESSAGE keyword supplies the ASCII text (which must be one string) to
go in the message record of the load file. There may be any number of
MESSAGE keywords in one LINK command. The message record 1is the last

4-7

record of the load file and does not form part of the executable program
itself. It can be used for comments, remarks, date and time of opera-
tion, etc.

SIMPLE KEYWORDS

QUIET

The QUIET keyword causes output normally sent to the standard output to
be suppressed, except for fatal error messages. If no QUIET keyword is
given, the following information will be displayed:

- The LINK header line and version number.

- All error messages.

- A list of unresolved references.

VERBOSE

This keyword causes extra information to be sent to standard output. The
command line being executed is displayed, entry to each new module is
noted, and a warning is issued each time the possibility of an error 1is
encountered.

STATISTICS

The STATISTICS keyword, if specified, causes the program to output
statistics on how much of LINK's memory was used.

OPTIMIZE

Specifying the OPTIMIZE keyword in the command line causes the output
file to be optimized by not including uninitialized memory at the begin-
ning or the end of the program text section of the output 1load file.
This produces a smaller load file and saves time in loading the program
into memory.

4-8 ASSEMBLER USER GUIDE

THE LINK COMMAND

BLOCK KEYWORD

BLOCK

The parameters of a BLOCK keyword are names of program sections that are
to be loaded in one contiguous region of memory (i.e. a block). The
BLOCK keyword may occur any number of times on a LINK command line. The
program sections can also be specified by patterns with the use of the
following Wild Card characters;

- An asterisk (*) which matches any string.

- A question mark (?) which matches any single character.

- [ab...] which matches any single character in the square brackets.
- [a-b] which matches any single character in the interval a-b

A pattern stands for all the section names which match that pattern, and
which have not been used previously in the current or any other block.
The sections are taken in the same order that they occur in the input
object modules.

If a section does not fit in the first block that it matches, a warning
message 1s issued by LINK , and the section is left as a candidate for
other blocks that it also matches. Any sections which remain unplaced
are reported via a warning message and ignored thereafter.

In the absence of a BLOCK keyword, "BLOCK *'" is assumed by default as
the 1last keyword on the command line. This means that LINK will attempt
to place all sections in one block the size of which is defined in the
command line (see BLOCKSIZE). 1If a program does not fit in one block
then two or more BLOCK keywords need to be specified for a successful
LINK operation. You can use BLOCK keywords to group sections in a LINKed
program. For example, in a program where all stack section names end in

" s'" and all data section names end in " d", the three keywords,

block * s,block * d,block *

will cause LINK to group all stack sections in one block followed by all
the data sections in another block followed by all the other sections in
another block.

KEYWORD ORDER

The order in which keywords appear has no gross effect on the outcome of
the operation. The effects of ordering are due to the fact that files
are opened and flags are set when their respective keywords are

encountered. For example, keywords which appear before the MAP or the
VERBOSE keyword do not get echoed into the MAP file, or on standard out-
put. The relative order of the BLOCKSIZE and BLOCKTYPE keywords is
important because their parameters are used as default values for subse-
quently defined blocks.

ERRORS

1f any fatal error occurs during the parsing of keywords or the execu-
tion of the locate operation, the program is stopped immediately with an
error message on standard output and, if it was specified, the map file.

Examples

The following LINK command will create an executable file ‘''echo.cmd"
from the object file created in the example shown in chapter 3,
"echo.obj". The command will also create a map file ''echo.map'.

1i map 1:echo.map, input 1:echo.obj,output 1:echo.cmd, /CR/
The same result can also be obtained by specifying the command file

shown below in the following command:

1i command 1:comlist /CR/

On the following page is a listing of the file 'comlist':

4-10 ASSEMBLER USER GUIDE

THE LINK COMMAND

; Command file for LINKing the ECHO example !

HAF 1:echo.map

! Create a map file ‘“echo.map® on the disk inserted in !
! drive 1. Mote that as this is the first keyword in the !
i

! file all that follows will appear in the map file.

INPUT 1:echo.obj

! If more than ore file need to be specified these can !
! follow even on successive lines as lomg as there are mno !

intervening keywords. !

QUTPUT 1:echo.cmd

Only one output file can be specified !

On the following page is a listing of the map file created by this com-
mand.

0livetti LINK -- Release s2.5

Commands (starting with Hap comsand) :
Map 1:echo.map

! Create a map file ‘echo.map on the disk inserted in
! drive 1, Note that as this is the first keyword in the !

! file all that follows will appear in the map file.

INPUT 1:echo.obj

! If more than one file need to be specified these can !
! follow even on successive lines as long as there are no !

! intervening keywords.

OUTPUT 1:echo.cnd

! Only one output file can be specified

Procedures and warnings:
First pass - l:echo.obj
Second pass - 1:echo.obj

Input Map
file nmodule sectiom size (hex)
1:echo.obj
echo
exanple e
area 4

Block Map (all values in hex)

block offset size end zection
0 1 Be 84 exanple
e 5 23 area

Global Symbols and Section Names (all values in hewd

symbol bigck offset section
area 1] ge =
axanple [t} 1] =

LINK complete

ASSEMBLER USER GUIDE

5. THE PDEBUG UTILITY

ABOUT THIS CHAPTER

This chapter describes how to load the PDEBUG utility, and details

the PDEBUG commands.

CONTENTS

INTRODUCTION

LOADING AND INVOKING
PDEBUG

PDEBUG

/CTRL/ /B/

TERMINATING A PDEBUG
SESSION

ENTERING PDEBUG COMMANDS

CALCULATOR FACILITY

THE COMMANDS

5-1

5-4

5-4

5-5

BREAKPOINT

CLEAR BREAKPOINT

CHANGE 1/0

COMPARE MEMORY

DISPLACEMENT REGISTER

DISPLAY MEMORY

FILL MEMORY

GO

all

5-5

5-8

5-9

Jump

MOVE MEMORY

NEXT

OFFSET REGISTER

PORT (1/0) READ

PORT (1/0) WRITE

PRINT OUTPUT

QUIT

REGISTER

TRACE

EXAMPLES

THE PDEBUG UTILITY

INTRODUCTION

The PDEBUG (Program DEBUG) utility is used for debugging and testing
programs. When the PDEBUG utility is invoked the M20 enters the PDEBUG
environment, the prompt is changed to an asterisk and the cursor stops
blinking; the M20 is ready to execute any PDEBUG command. This utility
is stored on disk in a ".sav'" type of file so that once it is loaded in
the M20's memory it remains there until the system is re-booted.

LOADING AND INVOKING PDEBUG

There are two ways in which the 'pdebug.sav' file can be loaded in the
M20's memory for the rest of a working session; 1. by executing a PDEBUG
command from PCOS (see below), or 2. by PLOADing the utility (see the
PLOAD command in the '"M20 PCOS User Guide').

When PDEBUG is in memory the user can enter the PDEBUG environment in
any of the following ways:

- by executing a PDEBUG command from PCOS {see below)

- by pressing /CTRL//B/ when the M20 is in Execution mode (see below)
Moreover as PDEBUG modifies some tables in PCOS when it is loaded into
memory, the following conditions also cause PDEBUG to be entered: Seg-
ment Violation Traps, Extended Processing Traps, Priveledged Instruction
trap, Illegal Vectored Interrupts, and Non-Maskable Interrupts.

Another way of entering and exiting the PDEBUG environment is possible
with the use of breakpoints. This is described in detail in the PDEBUG
BREAKPOINT command description.

5-1

PDEBUG

Loads and invokes the PDEBUG utility, optionally loading a specified
program from disk to memory.

—"< pd > program f—%

Fig. 5-1 The PDEBUG command

Where

SYNTAX ELEMENT

program

5-2

MEANING

EITHER

the first two letters of a program name which
has a ".sav'", or a ".cmd" extension,

OR

the file identifier of a program file complete
with any necessary volume identifier, extension,
and/or file password.

ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

Example

1f both the PDEBUG utility and the program file
any disk inserted in any of the two drives, and,

"myprog.cmd" exist on

1F you enter THEN ...
pd my /CR/ the program '"myprog.cmd' is PLOADed and the M20
enters the PDEBUG environment. When the M20

PLOADs "myprog.cmd" the
tion about the location

video displays informa-
of ''myprog.cmd" in mem-

ory. This information will enable the user to
access ''myprog.cmd" directly in memory.

/CTRL//B/

When the M20 is in program execution mode, the /CTRL//B/ key combination
will invoke the PDEBUG utility if it is already resident in memory. When
/CTRL//B/ is pressed the video displays a message specifying the loca-
tion in memory wherz program execution was halted, and the PDEBUG prompt
is returned. The interrupted program remains in memery, and control can
be returned to it by using the PDEBUG GO or JUMP commands.

TERMINATING A PDEBUG SESSION

At the end of a PDEBUG session the user can exit the PDEBUG environment

and return to PCOS using the QUIT command.

q /CR/

If the state of the CPU is modified during a PDEBUG session (e.g. by
breakpoint wusage) then the QUIT command will force a re-boot of PCOS.
If the state is not modified then a simple return to PCOS is done.

5-3

ENTERING PDEBUG COMMANDS

PDEBUG commands can be entered when the PDEBUG prompt (*) appears on the
screen. Commands can be entered in either upper or lower case and are
terminated by a carriage return. All numbers input to and output by PDE-
BUG are in hexadecimal ASCII format, and may be entered in either upper
or lower case.

An address is specified either with a segment number and an offset, or
with just an offset. The segment number is enclosed on the left with a
less than symbol (<) and on the right with a greater than symbol (>)
(i.e. <6> for segment 6). If only an offset is specified then either the
last segment number used since PDEBUG was loaded, or, if none were
specified yet, segment O is assumed by default.

An alternate method of specifying addresses is to use one of the 26
address registers ("a" to '"z") preceded by the "@' sign. For example
"@r25e" specifies the address given by the contents of register "r' plus
"25E". Ar address register can be set using the OFFSET (register) com-
mand.

All the PDEBUG commands are described in this chapter. The commands are
listed in alphabetical order. At the end of this chapter there are two
PDEBUG tutorial sessions which demonstrate the use of the more commonly
used PDEBUG commands.

A list of all the commands is displayed on the screen if the user enters
a question mark (?) followed by a carriage return whenever the PDEBUG
prompt (*) is returned.

CALCULATOR FACILITY

When in the PDEBUG environment the M20 can be used as a calculator for
quick calculations in hexadecimal. The following binary operations can
be performed:

+ A,B adds B to A
- A,B subtracts B from A
* A,B multiplies A by B

/ A,B divides A by B

where A and B are positive hexadecimal numbers in the range 0 to FFFF.

5-4 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

In each of these cases the returned result is also in this range, thus
if the absolute value of the result (say C) is outside this range then
the value returned will be hexadecimal ''C mod 10000'". For example,

- 2,6 will return the value FFFC

and + ffff,1 will return the value 0000

THE COMMANDS

BREAKPOINT

Sets a breakpoint or displays the currently active breakpoints.

—o@ > address A{ 3)—o count Yy,

Fig. 5-2 The BREAKPOINT command

Where

SYNTAX ELEMENT MEANING
address The breakpoint address
count The number of times the breakpoint 1is meant to

execute when encountered. 1f this parameter is
set to 0 then the specified breakpoint execu-
tes every time it is encountered, and is not de-
leted until specifically cleared using the CLEAR
breakpoint command. If not specified the break-
point 1is deleted when it is hit for the first
time. Note that this parameter must be expressed
in hexadecimal.

Note: The BREAKPOINT instruction is not placed in memory until a GO or
JUMP command 1is executed. Thus provisions have to be made to return to
PCOS using any one of these commands if the set breakpoints are to be
executed.

When the M20 is in execution mode and a breakpoint is encountered, exe-

cution 1is halted, the video displays a break message with the address
where the break was encountered, and the PDEBUG prompt is returned.

CLEAR BREAKPOINT

Clears either an active breakpoint specified by its memory address or
all currently active breakpoints.

—»@ »f address |—Y»

Fig. 5-3 The CLEAR BREAKPOINT command

5-6 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

Where
SYNTAX ELEMENT MEANING
address The memory address-of an active breakpoint. If

this parameter is not specifified then all the
currently active breakpoints will be cleared.
CHANGE 1/0

Switches the main input and output from the console to the RS-232-C
serial port and vice versa.

s}

Fig. 5-4 The CHANGE 1/0 command
Issuing the CHANGE 1/0 command while using an external terminal causes
the main 1/0 channel to be switched back to the console. Note that the

the PCOS RS232 command has to be executed before entering the PDEBUG
environment in order to use this PDEBUG command.

COMPARE MEMORY

Compares two blocks of memory and returns any differences encountered.

number
—>®—> address1 —-v@——-» address2 —»@—» of ’—D
bytes

Fig. 5-5 The COMPARE MEMORY command

5-7

Where

SYNTAX ELEMENT MEANING

address 1 The starting point of the first block
address 2 ‘ The starting point of the second block
number of bytes The number of bytes to be compared

While the differences are being output the screen image can be suspended
by pressing /CTRL//S/. The command can be aborted by pressing any key. If
no differences are found this command simply returns the PDEBUG prompt.

Note: This command uses byte compare operations.

DISPLACEMENT REGISTER

Sets up a displacement value that will be added to all addresses input
and subtracted from all addresses output by the PDEBUG program.

di address f—

Fig. 5-6 The DISPLACEMENT REGISTER command

5-8 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

Where

SYNTAX ELEMENT MEANING

address The displacement value which will be added to
the addresses specified in subsequent PDEBUG
commands.

The command
di /CR/
will cause the current default segment and offset to be displayed.

This facility is very useful if a user is working on a listing that has
a displaced origin in memory. Using this command the displacement regis-
ter can be set to the value of the address where the listing begins so
that all addresses input and output will match the listing.

DISPLAY MEMORY

Displays blocks of memory or single memory locations. In the latter case
the command interacts with the user for modification of single memory
locations.

number l
— type f l address of | v,

bytes

Fig. 5-7 The DISPLAY MEMORY command

Where

SYNTAX ELEMENT MEANING

type Word or Byte operations, specified as "W' or "B"
(capital or small letters) respectively. Depend-
ing on whether the Word or the Byte option is in
operation the information will be displayed ac-
cordingly. The default value is either the op-
tion specified in the last DISPLAY MEMORY or
FILL MEMORY command executed in the same PDEBUG
session or, 1in the absence of any, the Word op-

tion.
address The memory address where the display is to start
number of bytes The number of bytes to be displayed starting
from the address specified in the 'address"
parameter.

Note: this number must be expressed in hexadeci-
mal, and must be greater than 1.

Characteristics

When the "number of bytes' parameter is specified, the M20 displays the
specified memory block in lines of sixteen bytes each. Each line is
organized in the following way:

- The memory address of the first of the sixteen bytes is on the
extreme left followed by the contents of the sixteen bytes expressed
in hexadecimal code and grouped in words (or in bytes if the '"B"
(byte) option is specified). If the "number of bytes' paremeter is
greater than or equal to sixteen, then the ASCII translation of the
sixteen bytes is displayed on the right on the same line. Codes that
have no ASCII translation are represented by dots.

When blocks of memory are being displayed, any scroll movement can be
halted by entering any character on the keyboard, output can be resumed
by entering any character on the keyboard a second time. If you enter
the key combination /CTRL/ /C/ then the output will be terminated and
the PDEBUG promt is returned.

5-10 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

Modification of Words

1f the "number of bytes' parameter is not specified, then the word
starting at the memory address specified is displayed followed by the
cursor. At this point you can do any of the following operations:

IF you enter THEN ...

/CR/ the next memory word is displayed.

Q /CR/ the preceding memory word is displayed.

(a valid hex the content of the displayed word is changed to the hex

number) /CR/ number entered, and the next memory location is dis-
played.

@ /CR/ the current and next words are interpreted as an ad-
dress and the word specified by that address is dis-
played.

"(string) the string entered is written directly into memory (in

/CR/ hex code) starting from the current address.

q /CR/ the PDEBUG prompt is returned.

FILL MEMORY

Fills a specified block o memory with a given word or byte pattern.

—> type r—»@—L address 1 —0@—» address 2 —»@—0 \flial:ue —

Fig. 5-8 The FILL MEMORY command

Where

SYNTAX ELEMENT

type

address 1

address 2

fill value

GO

MEANING

Word or byte operations, specified as "W' or "B"
(capital or small letters) respectively. Depend-
ing on whether the Word or the Byte option is in
operation the fill value will be 1interpreted as
a word or a byte respectively. The default value
is either that specified in the last DISPLAY
MEMORY or FILL MEMORY command executed in the
same PDEBUG session, or, 1in the absence of any,
the Word option.

The memory address where the writing operation
is to start.

The memory address where the writing operation
is to end. Note that the final location is not
written to.

Fill Value. This is the word (or byte if "B" is
specified in the ''type' parameter) pattern, ex-
pressed in hexadecimal code to be written in the
specified memory block.

Resumes the execution of a program at the location specified by the pro-

gram counter.

-

Fig. 5-9 The GO command

ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

Characteristics

Execution of this command causes all the breakpoints (previously speci-
fied in the same PDEBUG session) to be placed in memory prior to the
start of execution.

Jump

Executes a memory resident program starting from a specified address.

——0@—» address ,@—~ fow J'ﬁ

Fig. 5-10 The JUMP command

Where

SYNTAX ELEMENT MEANING

address The memory address where execution is to start
fcw Flag and Control Word.

Characteristics

This command causes all of the breakpoints (previously specified in the
same PDEBUG session) to be placed in memory prior to the start of execu-

tion.

MOVE MEMORY

Copies a source memory block into a target memory block.

number
—»@—» address1 -——»@—0 address2 —»O—o of >
bytes

Fig. 5-11 The MOVE MEMORY command

Where

SYNTAX ELEMENT MEANING

address 1 The memory address where the source memory block
begins.

address 2 The memory address where the target memory block
begins.

number of bytes The number of successive bytes starting from the

beginning of the source block to be copied.

5-14 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

NEXT

Executes one or more program instructions starting at the location
specified by the Program Counter (PC).

—»‘ n F count v

Fig. 5-12 The NEXT command

Where

SYNTAX ELEMENT MEANING

count The number of instructions to be executed. The
default value is one instruction.

Characteristics

When a specified number of instructions are executed using a NEXT com-
mand, the registers are saved, and a message indicating the address of
the last instruction executed and the current value of the PC (i.e. the
address of the next instruction) is displayed.

A NEXT command is aborted if a breakpoint is encountered in the speci-
fied sequence of instructions.

The following situations cause the NEXT command to crash:

- using NEXT through instructions that modify the PSAP (Program Status
Area Pointer) in the CPU.

- using NEXT through instructions that disable the non-vectored inter-
rupt.

- using NEXT through instructions that change the programming of the
8253 timer chip.

OFFSET REGISTER

Sets an offset register to a given address.

|}l offset o v V.
—»@ register @—b address

Fig. 5-13 The OFFSET REGISTER command

Where

SYNTAX ELEMENT MEANING

offset register Any one of the 26 offset registers ("a" to '"z")
address The memory address to be associated with the

offset register.

When the "address' parameter is left out the specified register is
printed with its current address. The command without parameters prints
all the offset registers with their current addresses.

Offset registers can be used when specifying an address 1in any PDEBUG
command. 1f register "x' ic cet to "<251000" then "@x5" will represent
the address '<2>1005" in any PDEBUG command. This facility is very use-
ful when dealing with module listings; offset registers can be set to
the beginning address of each section.

5-16 ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

PORT (1/0) READ

Reads a specified 1/0 port.

l word
— GO @) e port
e o address

Fig. 5-14 The PORT (1/0) READ command

Where

SYNTAX ELEMENT

type

port address

MEANING

Word or Byte operations specified as '"W'" or '"B"
(capital or small letters) respectively. The
default value is either the option specified in
the last PORT (1/0) READ or PORT (1/0) WRITE
command executed in the same PDEBUG session, or,
in the absence of any, the Byte option.

A valid 1/0 port address. A list of all the M20
1/0 port addresses is given in appendix F.

PORT (1/0) WRITE

Writes to a specified port address

— (o))

word
type f—b| port @-—> code f—>
address

Fig. 5-15 The PORT (1/0) WRITE command

Where

SYNTAX ELEMENT

type

port address

code

MEANING

Word or Byte operations specified as "W'" or "B"
(capital or small letters) respectively. The de-
fault value is either the option specified in
the last PORT (I/0) READ or PORT (1/0) WRITE
command executed in the same PDEBUG session, or,
in the absence of any, the Byte option.

A valid 1/0 port address. A list of all the M20
1/0 port addresses is given in appendix F.

The hexadecimal code of the byte (or word, if
the "word" option is specified) to be written to
the port.

ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

PRINT OUTPUT

Toggles a flag which causes all output from the PDEBUG program to be
sent to a parallel printer as well as to be displayed on the console.

O

Fig. 5-16 The PRINT OUTPUT command

This means that the first "p'"" command during a PDEBUG session will cause
output to be sent to the printer, and the second will turn off. the out-
put to the printer.

QUIT

Causes a return to the PCOS environment.

—(D—

Fig. 5-17 The QUIT command'

Note: Depending on the state of the CPU the QUIT command will cause
either a simple return to the PCOS environment or a re-boot of PCOS.

REGISTER

Displays or modifies the registers saved in memory.

__.®_

~-O+—0—+

-

register
name

e

Fig. 5-18 The REGISTER command

Where

SYNTAX ELEMENT

register name

5-20

MEANING

The registers are displayed as byte registers.

The registers are displayed as word registers.

All the registers changed by the last GO or JUMP
command will be displayed.

A valid register name. With this option the spe-
cified register will be displayed, and subse-
quently the user can modify the contents of it
by entering a valid hexadecimal number.

ASSEMBLER USER GUIDE

THE PDEBUG UTILITY

If the command is entered without any parameters, then all the registers
are displayed as word registers.

The Registers

When the PDEBUG environment is invoked the registers are initialized to
the following values:

REGISTER : INITIALIZED TO

r0 to r13 zero

System Stack Pointer a stack space of 16 words in length
and
Normal Stack Pointer

Flag and Control Worc system mode, segmented mode with interrupts ena-
(FCW) bled.

Program Status Area the PCOS program status area
Pointer (PSAP)

Program Counter the '"return to PCOS'" address.
(PC) ‘

TRACE

Traces through 'count" number of instructions, starting from the
instruction specified by the program counter, optionally including any
calls, call relatives, or system calls (otherwise treated as a single
instruction), and optionally displaying any changed registers after each
instruction.

:@—» count L

Fig. 5-19 The TRACE command

Where

SYNTAX ELEMENT MEANING

c Calls will be included while tracing

r Any changed registers will be displayed after
each instruction.

count The number of instructions to be executed in
each command.

The "+'" and "-" sign turn the "c" and "r" options on and off respec-

tively.

When not specified, parameters assume the values specified in the last
TRACE command, or, in the absence of any, the following command is exe-
cuted:

t -c,+r,1

5-22 ASSEMBLER USER GUIDE

EXAMPLES

The following two PDEBUG tutorial sessions
more commonly used PDEBUG commands.

demonstrate the

use of

the

.10, S8wWooaQg Mou (,pWd*0YdIs,, JO SSaIpPPE
Butjaeas ay3y ST 9SED SIY} UL YOTUM) ,90PP<E>,
ssauppe 2BU} 0S aniea justeoeldstp e dn 39S
0} pasn SI PuBWUOD ¥AISIIN INZWIIVIASIA dY3F SJ3H

*paudniad ST 2dwodd
9ng30d 89Uy pue pakerdsip st sbesssw uoubts Qyod
8Y] °S0Dd WOJ) QUBWUOUTAUS 9Ng(d Y3 SSHOAUL DUB
puc-bosdAw,, o114 weaboad syl sOyQld PuBWWOD STY|

SLHIWWOS

90pp<e> 1P

prZ “ney bnasgg

9715 ‘9Q00%<¥0> = SSaJppe Buriueis 100% "ON 90T

:pe1ro0oTe Adouwsly

——auoN-— = AJaue 2Tul fRNOG%<V0> = AJius utey
wa1sks / pajuswbag = opoly uolredadp

oyo3l o114 = aweu wesbold

pus-oyos = sweu a1l ¥SIQ

29 pd<q

AVIdSIC

1 NOISS3S 9Nn830d TWIdoLnL

ASSEMBLER USER GUIDE

5-24

THE PDEBUG UTILITY

'SNDd 10 1000-84 B sasneo pueuwed 1708 STU)

*auo burpsoeud aya Jo sanyea
Jojawesed syl SAWNSSE DUBWWOD 8JBJ} pUOISS STU|

*SUOTIONJISUT 994Y) 3ISJTy

oYz ybnouyy SOOBJY puBKWOD STYY ,pwO-0ys9, Jo
>Lwc® utew 98U} 02 Jo]junoo wesboud syy 18s buiney

*Asowew ut weaboud sy
Jo sseuppe AJIUS UTew sy} 031 (9d) J93UNOD wedh
-04d ay3 185 03 PISN BJsy ST puewwod ¥I[SI93Y du)

00vV0=€ 3100<¥>=0d
JL00<y>=2d

N0¥0=0 VL0p<y>=od

u..u,.,

R1.00<y¥>=0d

oyoI o114

Y000=EL 00V8=ZL 9L00<y>=od
ECa+ioF q 4

2000<z> V¥d4€z<z> 0z80 1044 002e
od desd MDY GLJ L4

8972 0000 0000 00C™ 00CO 0000 0000
rLd €L ZLd N 0] W 8J

0000 0000 000C 2000 0000 0000 QOO
94 G4 I g4 24 L 04

2000<®> : yaap<p>= od

o~

*pa3OAUT ST ,PWO°0Yd?, UdYM PaINJeX@ SI
AT 1eyy os A-ocwsw uTl paoeld ST utodyesq 3es A1
-Snotagid a8y -aUSLUDITAUS 9NET(d 2u3 Hurie
Jd 8uy jo butlaes njnejsp aul JO 8snedsq susddey
STYL *gpod O UJnias @ SIsSNed puewrod (9 8yl 3JoH

‘Padejunosus S 2T SWTIY 2SJT4 8yl pelsfep #q TIIM
Jutodyesaq oYyl ‘800 285340 USY Judubes Ul jutod
-3Baiq e dn 285 0} Pasn ST PUBRWWOd MIOJMVIRE ¥

pauJniad st adwoad
9Ng3g4 auyx pue pakerdsip st abessaw uoubts qvod
SUl +gp)d WO4) USWUOJTIAUL 9NEIAd BYI SIHOAUL
WwPUD“oyos,, or1)4 weuboid syr sQyQId Puewwod STUL

SINIWWOD

000<Y> LV WV swx
weded 28 <|
b 3%

gopp<e> d
0z "ney bnaeqd

= 8715 '9pOA%<Y0> = SS9Jppe butaueas 00% "ON #2018

)
o~
=
(=)
o

:paaresor1e Auowsi

——auopN-- = Aujus LU :80AQ%<Y0> = Karus utep
veasAg / pajusubag = apol uotaedady

oyo3 9114 = auweu wedboud

pwo-oyod = eWeu 3[4 3SIQ

28 pd<()

Av1dS1d

11 NOTS$3S 9Ng3ad I¥oLNL

ASSEMBLER USER GUIDE

i ey

THE PDEBUG UTILITY

*pauJdnlaJ
s1 adwmoid good sy AT3usnbasans pue ‘weaboud ayy
10 UOTINDAXe oyl SOUNSaL PUBNOD 09 Teuty styj

‘autodyeaug axsu ayy Ag paydnuisijut
utebe st uolIndaxe J48A8MOH uweaboud pairdnassiut
au3 10 U0TINOeXd 9y} S8WNS3J DUBMWOD (9 BY] o JoH

*9ouo Afuo
93noaxa 03 urebe 949y ‘18s ST jutodyesuq Jayiouy

*DaJs9lus st b, usym
pauuanial st 3jdwoud 9NE3Ad 8yl Aem VY & ¥1-FER1T] ¢
ue UL pPasn ST PpueWMOd AYOW3IW AVIdSIO 9yl adsH

‘puBWIIOd AY¥OWIK AYIdSIC B Ul pasn
s4ay st 31 ‘,e, J93S1bas 195440 8y 38s buiaep

*,DWD " 0Yd3,, 4O
ssaJppe Asiue utew aylr o3 B, J93sthau 1asyjo ayy
18s 0} pesn ST puPwwIod ¥IISI9IY 135440 BY3I aJaH

‘wedboad paadnaisaur ayy Jo uot
-3}0NJ3SuUl 3IXau 2yr 03 3I3S MOU ST Jd 8yl 3IBY1 3j0p

*s123stbaa ayy [1B 40 san[ea 1uaiund ayjy Aerd
-STIp 01 P3SN ST puewwod ¥31GTI 2yl ased SI1yj ul
{p2andaxa ag ued puewod 9ngaGe Aum pue paudnial
ST adwoud 9ngIgd 92U “AIU ST jutodyeaud sy uaym

seeelteeecsi[0r 9p0g 00YE
2000 Leeg
TATT oud3 BTTI4TT)09/ 0040

G5GG
Gl

EEEE!
24

8344 0028 80aa

<L

we Jged
b x

2200<Y> 1V MVI-Qaerexn
oyo3 oLty
b«

ol a x

b: gma Lr9L<z>
9 €078 ¥244<z>
<1 4891 9udd4<z>
1 €078 pIdi<z>
TOL0C0 ZD44<2>
7244<2> P «

3035 ¥0Q8 2600 00Y8 20QS 2396 8zCC-Y
€0LY 8208 03L6 6S4L ¥0AA 00Y8 8L00-Y
0249 89€9 S¥0Z G929 699F 9083 80aa-Y

(€229 P »

9opp<e>‘e o 4
008 2344 0028
MO} GLd Ll

00v¥0 4444 4444
oLd 64 J

00¥0 0080 00V0
24 B 04

4 s

5-27

~ 6. LIBRARIES

ABOUT THIS CHAPTER

This chapter describes the use of libraries and the MLIB command for
creating library files.

CONTENTS
INTRODUCTION 6-1
MLIB 6-1

THE M20 GRAPHICS LIBRARY 6-3

L IBRARIES

INTRODUCTION

1t is common programming practice to use a library of subroutines to be
made available to a series of programs. Mathematical programs, for
instance might use a library of subroutines for calculating tri-
gonometric functions, and text oriented programs might use a library of
string comparison functions.

When LINK discovers an external variable which is not present in any
input file, then, if the LIBRARY keyword was specified, it will search
through the list of library file(s) (specified after the LIBRARY key-
word) for a "global' definition. Once the subroutine name is found, the
module containing the subroutine is incorporated into the output 1load
file. Only the modules referenced by input files are included in the
output load file along with the rest of the input modules. A library
module "Y" referenced by another library module "X'" in the same library
file will only be included if "X'" is located before "Y" in the library.

Library files can be created using the MLIB command described below.

MLIB

Creates a library file of object modules from a group of object files.

library object
— file ‘F=<:Z)h—§ file -
identifier identifier

Fig. 6-1 The MLIB command

6-1

Where

SYNTAX ELEMENT MEANING

library file identifier The name of the file that 1is to contain
all the object modules in the specified
object files. This must be complete with
any necessary volume identifier and/or
file password. The file will be created
if it does not exist or, if it already
exists, it will be overwritten with the
new output. A 1library file 1is usually
assigned the extension ".1lib'".

object file identifier The name of an object file complete with
any necessary volume 1identifier and/or
file password. You can use the two PCOS
wild card characters (*) and (?) to
specify more than one file; an asterisk
(*) matches any string and a question mark
(?) matches any single character.

Characteristics

During execution the MLIB command needs to create a temporary work file
on the disk 1inserted in the last selected disk drive. This means that
MLIB will not execute if called from your write protected Assembler
diskette. Rather than remove write protection from the Assembler
diskette it is recomended to PLOAD the MLIB command or to copy the file
"mlib.cmd" from your copy protected diskette onto the disk where you
want to create your library files, or some other disk.

6-2 ASSEMBLER USER GUIDE

LIBRARIES

Example

IF you enter THEN

ml 1:asm.lib,1:progl.obj, the file "asm.lib" 1is created on the
1:prog2.obj /CR/ diskette 1inserted 1in drive 1. This file

will contain all the object modules con-
tained in the object files 'progl.obj" and
""prog2.o0bj'" both of which are resident on
the same diskette inserted in drive 1.

THE M20 GRAPHICS LIBRARY

The M20 Graphics Library is available in the file "graph.lib". This
library is an integrated package of over forty subroutines offering a
set of functionalities for two dimensional graphics applications. The
Graphics Library presents a consistent and easily comprehensible struc-
ture that reflects proposed international standards for graphics. The
routines 1in this library use the PCOS graphics system calls which are
also described in this manual (see chapters 7 and 8).

To use a Graphics Library routine in an Assembly language program you
must first declare it as an EXTERNAL routine. In the program the routine
can then be invoked by the CALL instruction. When LINKing the program
you must specify the library file "graph.lib" using the LIBRARY keyword.

The graphics library is introduced in chapter 9 and all the routines are
detailed in chapter 10.

6-3

o,

PART Il

7. INTRODUCTION TO SYSTEM CALLS

ABOUT THIS CHAPTER

This chapter is a general description of the M20 System Calls. The calls
are divided in functional groups and the characteristics of each group
are discussed. This is followed by the call descriptions.

CONTENTS

INTRODUCTION

SYSTEM CALL DESCRIPTIONS

REGISTER ASSIGNMENTS

INPUT/OUTPUT PARAMETERS

ERROR MESSAGES

FUNCTIONAL GROUPS

BYTESTREAM CALLS
BLOCK TRANSFER CALLS
STORAGE ALLOCATION CALLS

GRAPHIC CALLS

7-1

7-4

7-4

7-5

TIME AND DATE CALLS

USER CODE CALLS

1EEE 488 CALLS

MISCELLANEOUS CALLS

7-7

7-8

7-8

INTRODUCTION TO SYSTEM CALLS

INTRODUCTION

These two chapters describe all of the System Calls (SCs) developed for
the M20. System Calls are PCOS procedures, used to interface with 1/0 or
to manage memory. System Calls can be accessed by assembly language pro-
grams.

All calls made from BASIC, some other utility program, or from user code,
will access the 1/0 and resource management facilities of PCOS via the
28000 System Call (SC) instruction. The SC instruction includes a 1-byte
request code which indicates the function to be performed.

Example:

sc#3 system call, request code = 3
Parameters are generally passed in registers numbered from R5 to R13. 1f
strings or other large data structures are to be passed, pointers to the

structures are passed as parameters in the registers..

In general, parameters are passed as 16-bit unsigned values. ASCII char-
acters are passed occupying the lower bytes of a register

All system calls use R5 to return any error condition. Zero indicates
no-error, non-zero indicates the error and condition code.

SYSTEM CALL DESCRIPTIONS

Each call has been assigned an unique number and a label. The label may
be used to reference the call globally, if a table assigning each call
number to the respective label is created.

Each call description begins at a new page, and on the page are the name
or label, the SC number, and a list of the specific register assignments
for each parameter passed. This is followed by a description of the func-
tion of the call, and any error codes that might be returned.

The descriptions are arranged in ascending order by SC number.

REGISTER ASSIGNMENTS

Register assignments are given in synopsis form, and input and output are
identified. For example (see SC 32):

INPUT/OUTPUT PARAMETERS

Input: R7 <e——Ilength
RR8 -e-——start
RR10 <e——destination

Output: R5 —— error status

Before calling SC 32, the block length, sourc: address and destination
address must be loaded in registers R7, RR8 and RR10 respectively. The
only output for this call is the error status, which is returned in R5.

ERROR MESSAGES

Following the system call, if there are no errors, a zero (0) is returned
in R5. 1f any error occurs, the appropriate error code will be returned.
A list of error codes and messages is given in the appendix.

FUNCTIONAL GROUPS

In this chapter the System Calls are treated in general in functional
groups as follows:

- Bytestream Calls

- Block transfer Calls

- Storage Allocation Calls
- Graphics Calls

- Time and Date Calls

- User Code Calls

S 1EEE 488 Calls

- Miscellaneous Calls

See the Appendix for lists all system calls 1in functional groups, for

7-2 ASSEMBLER USER GUIDE

INTRODUCTION TO SYSTEM CALLS

tables of DIDs (Device 1Ds), as well as lists of error codes.

BYTESTREAM CALLS

Bytestream system calls are used for:

a) Transferring bytes of data to or from an 1/0 device

b) Sending control information to a device or to a device driver

c) Receiving status information from a device

The following are a list of bytestream 1/0 calls used to interface with

the disk, printer, RS-232 communications port, and console (keyboard and
video).

LookByte (9) SetControlByte (20)
GetByte (10) GetStatusByte (21)
PutByte (11) OpenFile (22)
ReadBytes (12) DSeek (23)
WriteBytes (13) DGetLen (24)
ReadLine (14) DGetPosition (25)
Eof (16) DRemove (26)
ResetByte (18) DRename (27)

Close (19) DDirectory (28)

DID (Device IDentifier) Numbers

A DID is an integer used to identify 1/0 devices (or files) like the key-
board, an open disk file etc.. The operating system maintains a table
associating DIDs with a File Pointer. The latter consists of pointers .to
data structures and routines describing the 1/0 streams.

Device Pointers

Opening a disk file creates a stream data structure, and places a
pointer to it in the device pointer table. Closing the disk file sets
this pointer to nil, and releases any table space associated with
the file. Some 'devices' or files are always open. For example, the
keyboard and the screen (the default window) are always open. They can,
however, be closed and re-opened by using the PCOS Device Rerouting
feature.

BASIC file numbers translate simply into PCOS DIDs, but BASIC window

numbers for the screen are distinct from DIDs. A table of DID assign-
ments is included in the Appendix.

7-3

Disk Bytestream 1/0 Calls

Disk input and output are all done by bytestream system calls. A
stream structure for an open file maintains a 32-bit pointer to the
current position in the file, at which the next byte will be read or
written. Files will be extended automatically as they are written, in
increments specified by the system globals.

The functions Close, OpenFile, DSeek,DGetLen, DGetPosition, DRemove,
DRename and DDirectory are all used for disk files. Of these, only
DSeek, DGetPos, DDirectory, DRemove and DRename are disk specific.
The other calls can be also used for other devices (printer, console or
communication ports). The RS-232 device driver is described in the "M20
1/0 with External Peripherals User Guide'", and device rerouting in gen-
eral are described in the "M20 PCOS User Guide"

BLOCK TRANSFER CALLS

The block transfer system calls allow the programmer to set memory to
a fixed value, to transfer data from one segment to another, and clear
memory. 1In particular, the block transfer calls are used by the PCOS
system to transfer the BASIC interpreter's fixed tables from ROM to RAM.
BASIC will be able to use the block transfer system calls to transfer
other tables from ROM to RAM, for initialization of BASIC.

List of Calls

The following are the Block Transfer calls:

BSet (29) BClear (31)
BWSet (30) BMove (32)
STORAGE ALLOCATION CALLS

1t is possible for a user program to call PCOS and then allocate or
release heap space.

Functions which open a disk file, split a window, or close a file or
a window, will use these system calls internally to either allocate heap

space or release space.

The following are the Storage Allocation calls:

NewSameSegment (33) New (120)

Dispose (34) BrandNewAbsolute (121)
MaxSize (99) NewLargestBlock (122)
NewAbsolute (104) StickyNew (123)

7-4 ASSEMBLER USER GUIDE

INTRODUCTION TO SYSTEM CALLS

GRAPHIC CALLS

The screen area for the M20 display has 256 scanlines by 512 pixels for
either black-and-white or (optional) colour display. There is a rela-
tionship between the pixels on the screen and the bits of an area in RAM
called Bit-Map. This area is grouped in words, and each word in the Bit-
Map can be identified by the first word of the graphics accumulator (C-
value) described below. The following types of system calls are provided
to set global variables or change attributes.

Clear Window

System call Cls (35) clears the screen (or current window) and posi-
tions the cursor(s).

Cursor(s)

The PCOS system provides two cursors, text or graphics, for the screen.
These may be placed anywhere and XORed with the normal contents of the
screen. The cursor may be blinking or nonblinking. There is only
one cursor displayed for the whole screen. System calls 36 through 44
provide the capability to select the text or graphics cursor, select
blinkrate, and update its position:

ChgCur0 (36) ChgCur1 (37) . ChgCur2 (38)
ChgCur3 (39) ChgCur4 (40) ChgCur5 (41)
ReadCur0 (42) ReadCur1 (43) SelectCurl (44)

Colour

The M20 is available with either a black and white, or a colour video.
Colour videos can be of two types; one type can display 4 colours simul-
taneously out of a choice of 8 (the four colours can be selected using
System Call 46 'PaletteSet') and the other type can display 8 colours
simultaneously.

A colour code is a value from 0 to 7 and is therefore expressed on three
bits, say bit 0, bit 1 and bit 2. For a black and white system if a
colour code in the range 2-7 is specified then PCOS maps the code to the
value obtained when bits 0, 1 and 2 are ORed together. For a four colour
system, colour codes in the range 4-7 are mapped into the value obtained
when bit 2 is ORed with bit 0.

Windows

The screen may be divided into windows by splitting along horizontal
or vertical 1lines. There may Dbe a maximum of sixteen windows on the
screen, which are assigned window numbers 1 to 16 in order of crea-
tion. System calls 45, 47 through 51, and 113 are provided to initialize

the screen, create and/or close windows:

Grflnit (45) ChgWindow (50)
DefineWindow (47) Closellindow (51)
SelectWindow (48) CloseAllWindows (113)

ReadWindow (49)

Graphics Accumulator

The graphics routines make use of a global variable referred to as the
'graphics accumulator' to define the current absolute screen location.

This graphics accumulator is said to be of type 'C'. A C-variable is
a 32-bit variable containing a memory address and a bit mask for the
specified group of pixels at that address. The ‘'memory address" (2

bytes) selects a word in the Bit-Map area, and is in the range %0 to
%3FFE (8192 words). The "bit mask' is a word each bit of which relates a
pixel on the screen to a bit in that area of the Bit-Map specified in the
“memory address' (bit=1 for ON and bit=0 for OFF). For example, 1if the
graphics accumulator is assigned the value %20208000 then the first word
identifies the sixteen pixels at the centre of the screen and the second
word selects the first of these sixteen pixels. Conversion routines are
provided for converting local x-y coordinates for windows to or from the
C-type variable in the graphics accumulator. Most plotting routines
manipulate the graphics accumulator 1in an abstract and machine-
independent way. In general, the plotting of a point is at the posi-
tion defined by the contents of the graphics accumulator.

Likewise, the 'current attribute' is a global variable representing
the current foreground colour. Any plotting or painting routine will
set this to the colour specified in the higher-level BASIC (or other)
routine by using SetAtr (set attribute), SC 61, or is assumed to be the
current window's current foreground colour by default.

7-6 ASSEMBLER USER GUIDE

INTRODUCTION TO SYSTEM CALLS

A set of system calls (52 through 67,115 and 116) are provided for scal-
ing or converting coordinates, for manipulating the accumulator, and for
drawing lines:

ScaleXY (52) DownC (58) NSetCX (64)
MapXYC (53) LeftC (59) NSetCY (65)
MapCXY (54) RightC (60) NRead (66)
FetchC (55) SetAtr (61) NWrite (67)
StoreC (56) SetC (62) ClearText (115)
uUpC (57) ReadC (63) ScrollText (116)

Paint Graphics Calls

M20 BASIC supports a PAINT operation which fills an area of a window
bounded by a specified boundary colour (and the window boundaries) with
another specified brush colour. The following system calls are used to
implement the PAINT operation:

Pntinit (68) ScanL (71)
TDownC (69) ScanR (72)
TupC (70)

These calls set the global colour attributes, move the position of the
graphics accumulator up or down, (checking first if the move is within
the boundaries of the current window, if not an error is returned): and
scan left or right to paint the window.

TIME AND DATE CALLS

The M20 system has a real-time clock which maintains both date and
time. This clock must be reset each time the system is turned on.

Time or date setting are done by passing the address of an ASCII string
to the operating system. Likewise, the time or date may be read by
transferring an ASCII string from the operating system. The format
of these strings are defined by the calls listed below. These will
correspond to the string values passed in BASIC by manipulating the
TIMES and DATES pseudo-strings.

The following system calls perform clock reading and setting:'

SetTime (73) GetTime (75)
SetDate (74) GetDate (76)

7-7

USER CODE CALLS

One system call has been provided to allow the user to execute any pro-
gram or routine on diskette that could be executed from the PCOS command
line. The call is:

CallUser (77)

The call can be used in Assembler utilities to process PCOS user com-
mands. .

1EEE 488 CALLS

The 1EEE 488 package consists of a group of programs which execute the
following BASIC 1EEE statements:

1SET, IRESET, ON SRQ GOSUB, POLL, PRINTE,
WBYTE, RBYTE, INPUT@, and LINE INPUTE.

these statements allow the user to perform the following operations on
an 1EEE-488 bus:

a) Controlling the IFC (interface clear) and REN (remote enable)
lines;

b) Receiving a service request from another device on the bus, identi-
fying the requesting device through serial polling, and processing
the service request;

¢) MWriting control bytes (e.g.: 'Device Clear', "Device Trigger',
etc.) to other devices;

d) Addressing, writing data to, and reading data from, other devices;
and

e) Allowing the devices within an 1EEE-488 network to transfer data on
the bus (i.e.: assigning "Talker'" status to one device, and
"Listener" status to one or more devices).

The following system calls are assigned to the IEEE package. On exiting
from any of these procedures, register R5 will contain hex OA if the sys-
tem does not have an 1EEE option board.

1BSrQ0 (78) IBPrnt (83)
1BSrQ1 (79) 1BWByt (84)
1BPoll (80) 1BInpt (85)
1BISet (81) IBLinpt (86)
1BRSet (82) 1BRByt (87)

For further details on the 1EEE-488 interface see the "M20 1/0 with

7-8 ASSEMBLER USER GUIDE

INTRODUCTION TO SYSTEM CALLS

External Peripherals User Guide'.

MISCELLANEOUS CALLS

The following miscellaneous calls complete the list of System calls:

Error (88)
Dstring (89)
CrLf (90)
DHexByte (91)
DHex (92)
DHexLong (93)
DiNumld (94)
DLong (95)
DisectName (96)
CheckVolume (97)
Search (98)

SetVol (102)
NewAbsolute (104)
StringlLen (105)
DiskFree (106)
BootSystem (107)
SetSysSeg (108)

SearchDevTab (109)

CtlCharDisp (111)
KbSetLock (114)
GetVol (119)

7-9

8. THE M20 SYSTEM CALLS

ABOUT THIS CHAPTER

In this chapter the system calls are described in detail. The descrip-
tions follow each other in numeric order. A list of system calls in
functional groups is given in Appendix C.

CONTENTS

9 LookByte 8-1 21 GetStatusByte 8-14
10 GetByte 8-2 22 OpenFile 8-15
11 PutByte 8-3 23 DSeek 8-17
12 ReadBytes 8-4 24 DGetlen 8-18
13 WriteBytes 8-6 25 DGetPosition 8-19
14 ReadlLine 8-8 26 DRemove 8-20
16 Eof 8-9 27 DRename 8-21
18 ResetByte 8-11 28 DDirectory 8-22
19 Close 8-12 29 BSet 8-23

20 SetControlByte 8-13 30 BWSet 8-24

3

32

33

34

35

36

37

38

39

40

Y

42

43

44

45

46

47

48

49

BClear

BMove

NewSameSegment

Dispose

Cls

ChgCur0

ChgCur1

ChgCur?2

ChgCur3

ChgCur4

ChgCur5

ReadCur0

ReadCur1

SelectCur

Grflnit

PaletteSet

DefineWindow

SelectWindow

ReadWindow

8-40

8-41

8-43

8-44

50

5

puy

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

ChgWindow
CloseWindow
ScaleXY
MapXYC
MapCXY
FetchC‘
StoreC
UpC

DownC
LeftC
RightC
SetAtr

SetC

ReadC
NSetCX
NSetCY

Nread
NWrite

Pntlnit

8-46

8-47

8-48

8-51

8-52

8-53

8-54

8-55

8-56

8-58

8-59

8-60

8-61

8-62

8-64

8-66

69 TDownC

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

TupC

ScanL

ScanR

SetTime

SetDate

GetTime

GetDate

CallUser

1BSrQo

1BSrQ1

1BPoll

IBTSet

IBRSet

IBPrnt

1BWByt

IBInpt

IBLinpt

IBRByt

8-75

88

89

90

9N

92

93

94

95

96

97

98

99

102

104

105

106

107

108

109

Error

DString

CrLf

DHexByte

DHex

DHexL ong

DNumW

DLong

DisectName

CheckVolume

Search

MaxSize

SetVol

NewAbsolute

StringlLen

DiskFree

BootSystem

SetSysSeg

SearchDevTab

8-95

8-96

8-97

8-100

8-101

8-102

8-103

8-104

8-105

8-106

8-107

8-108

113

114

115

116

120

121

122

123

CloseAllWindows

KbSetLock

ClearText

ScrollText

New

BrandNewAbsolute

NewLargestBlock

StickyNew

8-109

8-110

8-111

8-112

8-114

8-115

8-116

8-117

THE M20 SYSTEM CALLS

9 LookByte

Returns the next byte from the designated device buffer without remov-
ing the byte from the buffer.

Input/Output Parameters
Input: R8 <-—— DID

Output: RL7 —# returned byte
RH7 — buffer status (00 or FF)
RS ——a error status

Characteristics

This function returns the first byte of a device input buffer (unde-
fined if none), without removing it from the buffer. The DID is an
integer, identifying the device. Valid DIDs are listed below.
Also returned 1is the status of the device buffer, FF if the buffer is
not empty, 00 otherwise.

Note: Ring buffers are maintained for the interrupt driven input dev-
ices. Characters are placed into the buffers immediately as they

are received and are available to programs via the two system calls
LookByte and GetByte.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

Valid DID Numbers

7 console
19,25,26 Com (RS-232-C), Com1, Com2

10 GetByte

Returns the first byte from a designated device, removing the byte from
the device buffer.

Input/Qutput Parameters

Input: R8 <-—— DID

Output: R7 —= returned byte
RS —— error status

Characteristics

This call returns the first byte in the input buffer (from file or
designated device) and places that byte in register R7. The DID is an
integer which identifies the source of the 1input. Valid DID
numbers are listed below.

In the case where the DID is either 17 or 19, if the input device
buffer is empty , the system will wait until a byte is input and avail-
able in the buffer before returning to the caller with the byte in R7.

Errors
If there are any errors, the status code is returned in RS. If there

are no errors, a zero (0) will be returned.

Valid DID Numbers

1 -15 disk files (BASIC)

17 console

20 - 24 disk files (PCOS)
19,25,26 Com (RS-232-C), Com1, Com2

8-2 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

11 PutByte

Transmits a byte to a specified device.

Input/Output Parameters

Input: R8 <—— DID
RL7 e—— input byte

Output: RS ——» error status

Characteristics

This transmits the byte supplied in RL7 to the device or file specified
by the DID. Valid DIDs are identified below. For files, no information
is returned about the validity or EOF state of the DID.

1f the device is the R$-232-C port, and the port is not ready to send,
the driver will wait for a timeout period and then return an error if
nothing is sent.

Errors

If there are any errors, the status code is returned in R5. 1f there
are no errors, a zero (0) will be returned.

Valid DID Numbers

1 -15 disk files (BASIC)

17 console

18 printer

20 - 24 disk files (PCOS)
19,25,26 Com (RS-232-C), Coml, Com2

8-3

12 ReadBytes

Reads and counts bytes, from a device, into a buffer in memory.

Input/Output Parameters

Input: R8 <e——DID
R9 <e——count to be read
RR10 <e——pointer to memory buffer

Output: R7 — count returned
R5 ——» error status

Characteristics

FILES

This function reads a specified number of bytes from a file into
memory, and returns a count of the number of bytes actually read.

The count returned is used to determine EOF status for the file. The
EOF status is determined when the "count returned" in R7 is less than
the "count to be read" input in R9, (because there are no more bytes to
be read).

The input to RR10 is a segmented pointer to the first byte of memory
where these bytes will be stored. The output "'count returned" is the
actual number of bytes read.

RS-232-C

This call transfers a specified number of bytes from the input buffer to
the user specified buffer.

If the number of characters in the input buffer is less than the number
requested, the driver will wait for the needed characters to arrive.

8-4 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

Errors

1f there are any errors, the status code is returned in R5.

are no errors, a zero (0) will be returned.

Valid DID Numbers

1-15 disk files (BASIC)

17 console

20 - 24 disk files (PCOS)

19,25,26 Com (RS-232-C), Com1, Com2

If there

13 WriteBytes

Writes a specified number of bytes from memory to a file or device.

Input/Output Parameters

Input: R8 -e——DID
R9 <@——count
RR10e——start

Output: R7 ——count returned

R5 ——=error status

Characteristics

FILES

This function writes a specified number of bytes from memory into a
file. It returns a count of the number of bytes actually
transferred. Valid DIDs are listed below.

The input 'count" is the number of bytes to be transferred. The input
'start" is a segmented pointer to the first byte in memory from which
these bytes will be written.

The output "count returned" is the actual number of bytes transferred.

RS-232-C

This call transfers data bytes from the specified memory buffer to the
RS-232-C port.

The meanings of the inputs and outputs is the same. If the port is not
ready to send, the driver will wait a timeout period, and then return an
error if nothing is sent.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-6 . ASSEMBLER USER GUIDE

Valid DID Numbers

1-15
17

20 - 24
19,25,26

disk files (BASIC)

console

disk files (PCOS)

Com (RS-232-C), Com1, Com2

14 ReadlLine

Reads and counts bytes input from the keyboard, until the first /CR/,
into a memory buffer (at a specified address).

Input/Output Parameters

Input: R8 <«——DID
R9 <e——count
RR10 @——destination

Output: R6 — count returned
RS & error status

Characteristics

This function reads a specified number of bytes from the standard input
device into memory. Input will be terminated when the next input byte is
equal to /CR/ or if the maximum "count" is exceeded. The /CR/ 1is not
put into the string.

The input DID (17) identifies the standard input. It is the only valid
DID for this call. The input "count" specifies the maximum number of
bytes to be read, and the input "destination" is a pointer to address of
the first byte of memory where these bytes will be stored.

The output 'count returned" is the actual size, in bytes, of the input
string. 1f a /CTRL//C/ is pressed, R6 will return a 'FFFF'. Characters
are echoed to the standard output device (DID 17) and editing
features, (/CTRL//H/ 1i.e.:backspace and /CTRL//1/, i.e.: TAB) and hide
mode /CTRL//G/ are implemented.

Errors

If there are any errors, the status code is returned in R5. If there

are no errors, a zero (0) will be returned.

Valid DID Numbers

17 Console (keyboard) only

8-8 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

16 Eof

Checks if an input character is available from a device.

Input/Output Parameters

Input: R8 -+=—— DID

Output: R9 — returned status
RS 4 error status

Characteristics
The function "EOF'" (end of file) will return a zero (0) if an 1input
character is available from the selected device.

It returns a one (1) in each of the following cases:

1. The selected file is not open.

2. The file is open for output only.

3. The console has been selected but no key has been struck.
4. The end of the disk file has been reached.

The input 'DID" identifies the device; valid DIDs are listed below.
RS-232-C

For use with the RS-232-C, this call returns a zero (0) if the 1input
buffer is not empty, and a one (1) if the buffer is empty.

Errors

1If there are any errors, the status code is returned in R5. If there are
no errors, a zero (0) will be returned.

8-9

Valid DID Numbers

1-15 disk files (BASIC)
17 console
19,25,26 Com (RS-232-C), Com1, Com2

8-10 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

18 ResetByte

Resets an input file or device.

Input/Output Parameters

Input: R8 <«—— DID
Output: R5 ——w error status
Characteristics

This function is used to reset an input device. In the case of the con-
sole, it will clear the keyboard ring buffer, and initialize the screen
driver. It can also be used with communications (RS$-232-C), 1in which
case it re-initializes the hardware and clears the input buffer. The
input '"DID" identifies the device.

Errors

1f there are any errors, the status code is returned in RS5. If there
are no errors, a zero (0) will be returned.

Valid DID Numbers

17 console
19,25,26 Com (RS-232-C), Coml, Com2

19 Close

Closes a specified disk file or device.

Input/Output Parameters

Input: R8 <e—— DID number
Output: RS =———= error status
Characteristics

This call closes the specified file or device and then releases both
buffer and table space. The input "DID" is an integer representing the
file or device.

Note: This call is not used to close screen windows (see CloseWindow, SC
51).

RS-232-C

When used with the RS-232-C, the call disables the hardware interrupts,
and the input buffer is removed from the heap.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

Valid DID Numbers

1 - 15 disk files (BASIC)
20 - 24 disk files (PCOS)
19, 25, 26 Com (RS-232-C), Com1, Com2

8-12 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

20 SetControlByte

Writes a word into the Device Parameter Table.

Input/Output Parameters

Input: R8 <e—— DID
R9 <@—— word number
R10 <e—— word

Output: RS —— error status
Characteristics

This call allows a single word to be written into the Device Parameter
Table (see appendix H). The input to R9 is the word number to be written
to; the input to R10 is the word to be written to the Device Parameter
Table.

Errors

If there are any errors, the status code is returned in R5. 1f there are
no errors, a zero (0) will be returned.

Valid DID Numbers

19, 25, 26 Com (RS-232-C), Com1, Com2,

8-13

21 GetStatusByte

Reads a single word from the Device Parameters Table.

Input/Output Parameters
Input: R8 <e—— DID
R9 <e—— word number

Output: R10 — = word read
R5 —— error status

Characteristics

This call allows a single word to be read from the Device Parameter
Table (see appendix H). The input to R9 is the word number to be read.
The outputs are the words read from the Device Parameter Table (in R10),
and the error status (in R5).

Errors

1f there are any errors, a non-zero number will be returned in R5. 1f
there are no errors, a zero (0) will be returned.

Valid DID Numbers

19, 25, 26 Com(RS-232-C), Coml, Com2

8-14 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

22 OpenFile

Opens a specified file or device for read, write, etc.

Input/Output Parameters

Files RS-232-C
Input: R6 <e——extent length
R7 <ea——mode
R8 <=——DID R8 <«—— DID
R9 «——file identifier length
RR10-«——address
Output: RS <e——error status R5 —— error status

Characteristics

DEVICES

The function of this call is to open the specified device; its charac-
teristics, however, depend upon the device. For example, for the RS-232-
C there are no parameters except the input DID.

FILES
In this case the function of this call is to open the designated file,
specify the mode (append, read, write, or read/write), and to allocate
sectors (write or append modes only).
The input 'file identifier length" is the number of characters 1in the
file identifier. The input '"address" is the address of the file iden-
tifier.
The input 'mode' designates whether the file will be opened for read,
write or append, as follows:

0: Read, always from current position.

1: Write, always placing a new end of file.

2: Read/Write, allocating sectors beyond old EOF.

3: Append, seeks to end upon open, and then writes.

A file that does not exist cannot be opened in the read mode. A non-

existent file, if opened by write or read/write, will be created. If it
does exist, write mode will write over the old file.

If an existing file has been opened in the read/write mode, the user can
then position the file pointer to its end,to extend it, using Dseek (SC
23). However, Append mode does this automatically, and then operates the
same as the write mode.

The input "extent length' designates the number of sectors to be allo-
cated if the file 1is to be created. The request should always be one
sector larger then the data requirements. 1f a zero 1is entered, the
number of sectors will be the default value (usually 8). The input DID
number identifies the file (see list below).

Errors
If there are any errors, the status code is returned in R5. 1f there are

no errors, a zero (0) will be returned.

Valid DID Numbers

1-15 disk files (BASIC)
20 - 24 disk files (PCOS)
19,25,26 Com (RS-232-C), Com1, Com2

8-16 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

23 DSeek

Positions a file pointer as specified.

Input/Output Parameters

Input: R8 <e——DID
RR10e——position

Output: R5 —— error status

Characteristics

This will position the file pointer for the specified stream
(opened file) to the position specified. The input '"DID" identifies
the device. The input "position™ is a 32-bit pointer. Zero 1is the
first byte.

Seeking past the EOF while the file is opened for read/write will
automatically allocate new sectors.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

Valid DID Numbers

1-15 disk files (BASIC)
20 - 24 disk files (PCOS)

24DGetlen

Returns either the length of a file or the number of bytes in the input
buffer.

Input/Output Parameters

Files Devices
Input: R8 <e—— DID R8 <«w——DID
Output: RR10——==length R10 —— zero status
RS ——aerror R11 —— number
status R5 ——# error status

Characteristics

DEVICES

This call returns the number of bytes currently in the input
buffer. There are no inputs except the DID number.

FILES

This call returns the length of the file as a 1long word. The output
"length" is the length of the file.

Errors

1f there are no errors, a zero (0) will be returned in R5. 1f the
disk file is not open, a -1 is returned in RR10 and error code (hex) 4E
is returned in R5. 1f a bad parameter is input, error (hex) 4C is
returned in R5.

Valid DID Numbers

1 -15 disk files (BASIC)
20 - 24 disk files (PCOS)
19,25,26 Com, Com1, Com2

8-18 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

25 DGetPosition

Gets the position of the next byte to be read or written.

Input/Output Parameters

Input: R8 <«—— DID

Output: RR10——position
R5 ——error status

Characteristics

This call returns the position, in bytes, of the next byte to be
read or written. The input "DID" identifies the file. A list of valid
DIDs is given below.

The output "position" contains the position in the file, in bytes, where
the next byte will be read or written.

Errors

If there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

Valid DID Numbers

1-15 disk files (BASIC)
20 - 24 disk files (PCOS)

26 DRemove

Removes a specified file name from a disk directory.

Input/Output Parameters

Input: R9 <e——— length

RR10<e=——address
Output: R5 —— error status
Characteristics

This call is used only for disk files. It removes the specified disk
file (and related data) from the directory of the volume.

The input "address' points to the file identifier. The 1input 'length"
is the length of the file identifier.

Errors

1f there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-20 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

27 DRename

Renames a specified file.

Input/Output Parameters

Input: RR6 <#—— 0ld address
R8 e—— 0ld length
RR10<@—— new address
R9 <«——new length

Output: RS ——error status

Characteristics

This call is used only for disks. It will rename the file specified by
the old file identifier with the new file name.

The input addresses point to the old file identifier and to the new file

name respectively. The inputs called "length" are the lengths of the
old file identifier and new file names, and are given in words.

Errors

If there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

28 DDirectory

Displays a list of files from a specified disk.

Input/Output Parameters

Input: R9 <e——file identifier length
RR10<e——file identifier address

Output: R5 ——= error status

Characteristics

This call is used only for files. It 1lists the contents of the
directory of the specified volume, on the current window of the M20
screen. The input "length" is the number of bytes in the file identif-
ier. The input 'address" is the address of the file identifier. The
file identifier may contain a volume identifier and/or wild card
characters ("*' and "?"). 1If R9 is zero, DDirectory assumes the name
"t and will list the entire directory.

The display lists the names of the specified files on the specified
(or default) volume in compact form.

Errors

1f there are any errors, the status code is returned in R5. 1f there
are no errors, a zero (0) will be returned.

8-22 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

29 BSet

Sets a block of bytes to a specified value.
Input/Output Parameters
Input: RL7 @——n (byte value)

RR8 <#— start

R10 <«@—— length
Output: R5 ——error status
Characteristics
This call sets a block of memory to the indicated byte value. The
input '"start" is a segmented pointer to the first byte of memory to
be set. The input "length" is the number of bytes to be set.
Errors
1f there are any errors, the status code is returned in RS5. If there

are no errors, a zero (0) will be returned.

30 BWSet

Sets a block of words to a specified value.

Input/Output Parameters

Input: R7 -e——n (word value)
RR8 <e—— start
R10 <«—— length

Output: RS —p error status

Characteristics

This routine sets the block of memory specified to the input wvalue, n.
The input "n" is the word value to be loaded into each memory location.
The input "start" is a segmented pointer to the first word of memory to
be set. The input "length'" is the number of words to be set.

Errors

1f there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-24 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

31 BClear

Sets a specified block of memory to zero.

Input/Output Parameters

Input: RR8 «—— start
R10 «—— length

Output: R5 —— error status

Characteristics

A block of bytes, of the length specified, and starting at a speci-
fied source, 1is set to zero. The input "start" is a segmented pointer
to the first byte of memory to be set. The input called 'length" is
the number of bytes to be set to zero.

Errors

If there are any errors, the status code is returned in RS5. If there
are no errors, a zero (0) will be returned.

32 BMove

Moves a block of bytes from one location to another.

Input/Output Parameters

Search R7 <e——1length
RR8 «w«——start
RR10 =——destination

Output: R5 ——serror status

Characteristics

A block of bytes, of specified length, and starting at a specified
source, 1is moved to a block starting at a specified destination. The
input "start" is a segmented pointer to the first byte of memory
to be moved. The input "length'" is the number of bytes to be moved.
The input "destination" 1is a segmented pointer to the first byte of
the destination memory block.

Errors

1f there are any errors, the status code is returned in R5. 1f there
are no errors, a zero (0) will be returned.

8-26 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

33 NewSameSegment

Allocates a block of bytes from heap in the current segment.

Input/Output Parameters

Input: RR8 <e—— address of block pointer
R10 <e—— length

Output: R5 ——error status
@RR8——block pointer

Characteristics

This call allocates blocks in the "SameSegment". This is segment 2
unless the program has done a "BrandNewAbsolute" system call, in which
case the segment number is that specified in the most recent "Brand-
NewAbsolute".

This call is a subset of System Call 120 "New". It has been maintained
for compatibility with preceding releases.

A simple way to change the segment number for a program is to do a SC
121 "BrandNewAbsolute" with a block length of 0.

The input 'address of block pointer is the address of a long word which
specifies the start address where NewSameSegment will store the block.
The input 'length' is-the number of bytes to be allocated. 1If the
block cannot be allocated, @RR8 will contain a nil (hex FFFFFFFF)
pointer, without returning an error in RS5.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-27

34 Dispose

Releases heap.space.

Input/Output Parameters

Input: RR8 <e—— address of block pointer
R10 <«@—— length

Output: @RR8——hex FFFFFFFF
RS ——p-error status

Characteristics

This routine releases memory space. The input address is a long word,
pointing to the start address of this space. It is important that this
be a valid heap space. Once the call has been executed, the address
specified in RR8 will contain hex FFFFFFFF (nil).

EXAMPLE :
In this example assume that addptr is a long variable which has been

initialized as in the example for New (SC 120):

LDA RR8,addptr
LD R10,#length
sc #34

Errors

If 'addptr' does not point to the start of a valid heap space, the sys-
tem issues an error. 1f there are any errors, the status code is
returned in R5. 1f there are no errors, a zero (0) will be returned.

8-28 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

35 Cls

Clears the current window.

Input/Output Parameters

This call has no parameters.

Characteristics

This routine clears the current window to the current background colour
(usually black). There are no parameters. The call sets the position
of the text cursor to the top left of the window, and sets both
the graphics cursor and the accumulator to the center of the window.

Errors

No error checks are made and no errors are reported.

8-29

36 ChgCur0

Positions the text cursor.

Input/Output Parameters

Input: R8 <—— column
R9 «—— row

Output: R5 —— error status

Characteristics

This routine sets the position of the text cursor, on the current win-
dow, to the column and row specified. The upper left corner position
of the current window is (1,1). The position of the lower right
corner depends upon the display character size (64 by 16 or 80 by 25),
and the size of the window (see example below).

(1,1)

(32,16)

* current window, 64 by 16 mode

Errors

1f there are any errors, the status code is returned in R5. 1If there
are no errors, a zero (0) will be returned.

8-30 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

37 ChgCuri

Positions the graphics cursor.
Input/Output Parameters
Input: R8 = x

R #—— y
Output: there is no output
Characteristics
This routine sets the position of the graphics cursor, of the

current window, to the x-position and y-position specified.

The lower left corner position of the current window is always (0,0).
The position of the upper right corner will depend upon the size of the
window and the display character size (64 by 16 or 80 by 25). The exam-
ple below shows the coordinates for a full screen in 64 by 16 characters
format.

(512, 256)

(0,0)

Errors

Range checking is done, and if out of bounds the cursor is not
moved; however no error code is returned.

8-31

38 ChgCur2

Sets the blink rate of the text cursor.

Input/Output Parameters

Input: R8 <«—— rate
Output: there is no output
Characteristics

This routine changes the blink rate of the cursor of the current window
to a new value. The value will be the blink rate per second.

Valid values are 0 to 20, with a resolution of 50 ms. A zero value is
non-blinking.

Errors

No error codes are returned.

8-32 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

39 ChgCur3

Sets the blink rate of the graphics cursor.

Input/Output Parameters

Input: R8 e—— rate
Output: there is no output
Characteristics

This routine changes the blink rate of the cursor of the current window
to a new value. The value will be the blink rate per second.

Valid values range from 0 to 20, with a resolution of 50 ms. A zero
value is non-blinking.

Errors

No error codes are returned.

8-33

40 ChgCur4

Sets the shape of the text cursor.

Input/Output Parameters

Input: RR8 <e—— address
Output: there is no output
Characteristics

This call is used to change the shape of the text cursor of the current
window. The input "address' points to the address of the new byte array
which describes the new shape of the cursor. This array is 12 bytes
long, the first byte being the first scan line of the cursor.

It is suggested that the most significant bit of each byte is not used
as part of the cursor as it would then touch the previous character.

1f the text cursor is being displayed at the time this call is made,
it will be turned off, updated, and then turned back on.

EXAMPLES:

For a solid cursor:

array = %7F %7F %7F %7F

For a checkerboard:

array = %00 %55 %2A %55

Errors

No errors are returned.

8-34 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

41 ChgCur5

Sets the shape of the graphics cursor.

Input/Output Parameters

Input: RR8 <«—— address
Output: there is no output
Characteristics

This call is used to change the shape of the graphics cursor of the
current window. The input "address' points to the address of the new
byte array which describes the new shape of the cursor. This array is 12
bytes long, the first byte being the first scan line of the cursor.

It is suggested that the most significant bit of each byte is not used
as part of the cursor as it would then touch the previous character.

If the graphics cursor is being displayed at the time this call is
made, it will be turned off, updated, and then turned back on.

Errors

No errors are returned.

42 ReadCur0

Returns the position (column and row), and the blinkrate of the current
window's text cursor.

Input/Output Parameters

Input: RR10<e——address

Output: R7 — blinkrate
R8 — column

R ——p rOW
R5 ——p error status

Characteristics

This call is the same as ReadCurl (SC 43), except that it returns
the blinkrate and position (column and row) of the current window's
text cursor. The input 'address' points to the byte array for the
current shape.

Errors

No errors are returned.

8-36 ' ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

43 ReadCur1

Returns the position (column and row), and the blinkrate of the current
window's graphics cursor.

Input/Output Parameters

Input: RR10 «——address

Output: R7 —— blinkrate
R8 — x position
R9 —— y position
R5 ——p error status

Characteristics

This call is the same as ReadCur0 (SC 42), except that it returns the
X,y position and blinkrate of the current windows graphics cursor.
The input 'address' points to the byte array for the current shape.

Errors

No errors are returned.

8-37

44 SelectCur

Selects the graphics or the text cursor, or turns off the current cur-
sor.

Input/Output Parameters

Input: R8 <e—— select
Output: there is no output
Characteristics

This routine chooses the state of the cursor for the current window,
according to the value of the input "select' as follows:

0: Turns off the cursor for the current window.
(selecting another window will also turn off
the cursor).

1: Selects and displays the graphics cursor in
the current window.

2: Selects and displays the text cursor in the
current window.

Note that only one cursor can be displayed at a given time,
regardless of the number of windows.

Errors

No errors are returned.

8-38 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

45 Grflnit

Initializes the screen and sets defaults.

Input/Output Parameters
Input: there are no inputs

Output: R8 ——p colour flag
RR10=—— pointer

Characteristics

This function must be called to initialize the screen. It sets the
screen to contain one window (number 1), sets default global attributes
for the screen, and default attributes for the window.

Default conditions are: one window for a full screen, green or white
colour (depending upon hardware) on a black background and cursor off.

The outputs are a pointer and a colour flag. The latter is '"0" for a
black and white system, and "1" for a colour system. These values are
determined by hardware jumpers.

The pointer is the address of a mailbox area (8 bytes), also used by
the IEEE driver, and declared globally by PCOS. These 8 bytes (0-7)

are used by the 1EEE-488 and keyboard drivers. On calling Grflnit,
the interpreter will be passed the address of this area in RR10.

Errors

No errors are returned.

8-39

46 PaletteSet

Selects a global four colour set (only for four colour systems).

Input/Output Parameters

Input: R8 <e—— colour A
R9 «@—— colour B
R10 <«=—— colour C
R11 <¢—— colour D
Output: R5 —— error status

Characteristics

This call selects 4 colours out of a possible 8 for the global
colour set. The four inputs are chosen from the following set:

black
green
blue
cyan
red
yellow
magenta
white

NoubwhNh =0

and a check is made that the inputs are in the range from 0 to 7, but no
check is made for colour duplications.

The BASIC COLOUR statement is implemented by a call to this routine.
Also, this routine 1is called by Grflnit to initialize to the default
colours.

Note: This system call has no effect on black and white and eight colour
systems.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-40 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

47 DefineWindow

Creates a new window.

Input/Output Parameters

Input: R8 <e—— quadrant
R9 <e——position
R10 <«—— vertical spacing
R12 <«—— horizontal spacing

Output: R11 —— window number
RS —— error status

Characteristics

This routine is used to create a new window by splitting the
current window 1into two parts. A unique window number is returned
for the new window and the current window remains selected.

The input 'quadrant' indicates that part of the old window from which
the new one is to be created. The choices are as follows:

0 TOP PORTION

1 BOTTOM PORTION
2 LEFT PORTION
3 RIGHT PORTION

The value and meaning of the input 'position' depends upon
whether the split 1is done horizontally or vertically. If the split
is to be on a horizontal line (quadrant = 0 or 1), ‘'position' is meas-

ured in scanlines, from the top of the current window. The allowable
range is then:

(Vspace + 1) to (Height - Vspace);

where 'Vspace' is the text line spacing of the existing window. 1f
the split is to be on a vertical line (quadrant = 2 or 3), 'position' is
measured in the number of characters, counting from the 1left. The

allowable range is then from 1 to width minus 1.

The input ‘'vertical spacing' is the number of scanlines between the
tops of the characters in two consecutive text lines. It may be a

number from 10 to 16.
The input 'horizontal spacing' is the number of pixels between the

right ' edges of two consecutive characters. It can have a value of 6
or 8. If the values for vertical or horizontal spacing are omitted or

8-41

entered as zero, their spacing defaults to the values for the parent
window.

When a window is created, it will have the same foreground and back-
ground colours as its parent window (window 1 is always initialised
with foreground and background colours of 1 and 0, respectively
i.e. green and black in a colour system, and white and black in a
monochrome system). The new window will have its text cursor
placed at the top left of the window. The graphics cursor and graphics
accumulator positions will be set at the center of the new window,
with no cursor displayed.

The parent window's cursor and graphics accumulator positions will
automatically be adjusted by the amount taken by the new window. The
parent window remains selected.

1n the graphics coordinate system supported by the PCOS, the lower
left-hand corner of a window is the origin, with coordinates (0,0);
the coordinates will be scanlines vertically and pixels (bits) hor-
izontally. The origin of the text coordinate system is the upper left-
hand character position of the window, with coordinates (1,1).

Calling DefineWindow with quadrant = 0 and position = 0 will have the
effect of setting the spacing of the current window. If window 1 is the
only window and its spacing 1is changed, then the display character
size is changed from the current format to the other. If horizontal
spacing is 6 then the system goes into 80x25 format. The size of the
screen is reduced from 512 by 256 pixels to 480 by 256 (with 2-byte mar-
gins on the right and left). If horizontal spacing 1is given as 8,
then the system goes into 64x16 mode, and the screen is expanded back
to 512 by 256 pixels.

Errors

An error condition leaves the returned window number equal to -1, and
returns a (hex) 24 in R5. 1If there are no errors, a zero (0) will be
returned.

8-42 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

48 SelectWindow

Selects another window.

Input/Output Parameters

Input: R8 <e«—— window number
Output: R5 ——» error status
Characteristics

This routine is used to change the current window to another
already existing window. The input "window number" is the number of the
window (1 to 16) to be selected. Any screen output routines which have
a window number as a parameter must call SelectWindow.

Errors

If there are any errors, a status code 1is returned in R5. If there
are no errors, a zero (0) will be returned. A hex value of 23 will be
returned in RS if the window specified does not exist.

49 ReadWindow

Returns the attributes of the current window.

Input/Output Parameters

Input: there are no inputs

Output: R7 —— window number
R8 — x
R — ¥
R10—— foreground
R11——= background
R5 —— error status

Characteristics

This routine returns the attributes of the current window. The outputs
are:

'window' -- current window identifier number
et -- window width in bytes

'y! —- window hight in pixels

'foreground' -- foreground colour of current window
'background' -- background colour of current window

Colour Attributes

The colour values returned will belong to one of the sets shown below.

8-44 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

The colour selection of four (A - D) is originally made from the
listed under PaletteSet (SC 46):

Monochrome
0 black
1 white

Errors

No errors are returned.

Four-Colour
Systems

0 colour A
1 colour B
2 colour C

3 colour D

Eight-Colour

Systems
0 black
1 green
2 blue
3 cyan
4 red
5 yellow

6 magenta

7 white

eight

8-45

50 ChgWindow

Changes window colours.

Input/Output Parameters

Input: R8 <«—— foreground
R9 <e—— background

OQutput: R5 ——# error status
Characteristics
This routine changes the colour attributes for the current window. The

inputs 'foreground' and 'background' are integers specifying the fore-
ground and background colours respectively. They are chosen from those
listed under "Colour Attributes'" (see below).

Colour Attributes

The colour values selected must belong to ome of the sets shown below.
The colour selection of four (A - D) is originally made from the eight
listed under PaletteSet (SC 46):

Four-Colour Eight-Colour
Monochrome Systems Systems
0 black 0 colour A 0 black
1 white 1 colour B 1 green
2 colour C 2 blue
3 colour D 3 cyan
4 red
5 yellow
6 magenta
7 white
Errors

If there are any errors, the status code is returned in RS. 1f there
are no errors, a zero (0) will be returned.

8-46 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

51 CloseWindow

Closes the selected window.

Input/Output Parameters

Input: R8 <e—— window
Output: there are no outputs
Characteristics

This routine is used to close an existing window.

The input 'window' is the window number. The area of the window is
returned to the parent window, and the background colour is cleared to
that of the parent window.

It should be noted that window 1 cannot be closed.

Errors

No errors are returned.

52 ScaleXY f—

Checks coordinates against the current window boundaries.

Input/Output Parameters

Input: R8 <@— x
R @— V¥

Output: R10 —— return_value
e
Characteristics
The inputs 'x' and 'y' are graphics coordinates.
The system call checks their values against the window size of the
current window,and returns a true value in R10 if and only if the coor-
dinates are within the boundaries of the window. The 'return' is 1 for
true.
Errors
No errors are returned.
-
-

8-48 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

53 MapXYC

Converts x-y to absolute coordinates and stores the result in the graph-
ics accumulator.

Input/Output Parameters

Input: R8 e—— x

R e——y
Output: there are no outputs
Characteristics

The inputs 'x' and 'y' are the specified screen coordinates.

The system call converts these coordinates to the absolute screen posi-
tion (of C-type) for the current window, and stores the resulting value
in the graphics accumulator.

Note: The input values are not checked for being within range. ScaleXY
should be called first.

Errors

No errors are returned.

8-49

54 MapCXY

Converts the C-value in the graphics accumulator to x-y coordinates.

Input/Output Parameters
Input: there are no inputs

Output: R8 ——p X
R — y

Characteristics
This call converts the current value in the graphics accumulator to x-y
coordinates for the current window.

1f the value in the graphics accumulator is outside the current window,
the results are undefined.

Errors

There are no errors returned.

8-50 ; ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

55 FetchC

Returns the contents of the graphics accumulator.

Input/Output Parameters

Input: there are no inputs
Output: RR8 —— C-value
Characteristics

This call saves the current value of the graphics accumulator for future
use.

There are no input parameters. The output "C-value'" is the contents of
the 32-bit graphics accumulator.

Errors

No errors are returned.

56 StoreC

Sets the graphics accumulator to a specified C-value.

Input/Output Parameters

Input: RR8 <e—— C-value
Output: there are no outputs
Characteristics

This call sets the graphics accumulator to a specified C-value.

The structure of the C-value is described in chapter 7. 1f the C-value
input is outside the current window, the results are undefined.

Errors

No errors are returned.

8-52 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

57 UpC

Moves the position of the graphics accumulator up by one pixel.

Input/Output Parameters

This call has no parameters

Characteristics
This call moves the graphics accumulator up by one pixel position.
There is no checking with respect to window boundaries or the screen

boundary; it is expected that the calling program will perform a check
before executing a sequence of code using these routines.

Errors

No errors are returned.

Remarks

For the routine which does perform checks, see TUpC (SC 70).

8-53

58 DownC

Moves the position of the graphics accumulator down by one pixel.

Input/Output Parameters

This call has no parameters

Characteristics

This call move the graphics accumulator down by one pixel position.

There is no checking with respect to window boundaries or the screen
boundary; it is expected that the calling program will perform a check
before executing a sequence of code using these routines.

Errors

No errors are returned.

Remarks

For the routine which does perform checks, see TDownC (SC 69).

8-54 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

59 LeftC

Moves the position of the graphics accumulator left by one pixel.

Input/Output Parameters

This call has no parameters

Characteristics
This call move the graphics accumulator left by one pixel position.
There is no checking with respect to window boundaries or the screen

boundary; it is expected that the calling program will perform a check
before executing a sequence of code using these routines.

Errors

No errors are returned.

Remarks

For the routine which does perform checks, see ScaleXY (SC 52).

8-55

60 RightC

Moves the position of the graphics accumulator right by one pixel.

Input/Output Parameters

This call has no parameters

Characteristics
This call move the graphics accumulator right by one position.
There is no checking with respect to window boundaries or the screen

boundary; it is expected that the calling program will perform a check
before executing a sequence of code using these routines.

Errors

No errors are returned.

Remarks

For the routine which does perform checks, see ScaleXY (SC 52).

8-56 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

61 SetAtr

Sets the current colour attribute.

Input/Output Parameters

Input: R8 @——— colour
Output: RS —— error status
Characteristics

The input "colour" is the desired current attribute, or brush colour.
This call sets the current attribute to that colour.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

62 SetC

Plots a single point.

Input/Output Parameters

Input: R8 w—— operation
Output: there are no outputs
Characteristics

This system call plots a single point. If the input 'gperation' is
equal to 0, a point having the current colour attribute is plotted
at the position specified by the graphics accumulator.

For other values of ‘'operation', logical operations are per formed
(see table below). These are between the current attribute and the
attribute of the pixel at the specified point; the result is then
stored for the specified location.

0 PSET The current attribute is stored.

1 XOR The current attribute is XORed with the pixel.
2 AND The current attribute is ANDed with the pixel.
3 NOT The complement of the pixel is stored.

4 OR The current attribute is ORed with the pixel.
5 PRESET The current background colour is stored.

For example, the XOR function with a current attribute of 1 for mono-
chrome or 3 for colour can be used for plotting a temporary point or
line on the screen; repeating the function will then restore the
screen to its original state.

Errors

No errors are returned.

8-58 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

63 ReadC

Returns the colour attribute of the current point.

Input/Output Parameters

Input: there are no inputs
Output: R8 ———p colour
Characteristics

This routine returns the attribute of the current point ("colour") as
an. integer (0..7) for eight colour systems, (0..3) for four colour sys-
tems, or (0..1) for monochrome, and stores it in register RS.

Colour Attributes

The colour values returned will belong to one of the sets shown below.
The colour selection of four (A - D) is made from the eight listed under
PaletteSet (SC 46):

Four-Colour Eight-Colour
Monochrome Systems Systems
0 black 0 colour A 0 black
1 white 1 colour B 1 green
2 colour C 2 blue
3 colour D 3 cyan
4 red
5 yellow
6 magenta
7 white

Errors

No errors are returned.

8-59

64 NSetCX

Draws a horizontal line.

Input/Output Parameters
Input: R8 «@—— count
R9 <e—— operation

Output: there are no outputs

Characteristics

This call draws '"count" number of pixels along a horizontal line, start-
ing from the position specified by the current value of the graphics
accumulator towards the right. The inputs are ‘''count" (the number of
points to be plotted) and "operation'" which has the same meaning as used
in SetC (62).

This call is the same as calling SetC (62) and RightC (60) ‘count'
times, but it has been optimized for speed.

Errors

No error checking is done. It is assumed that range checking is done by
the caller.

8-60 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

65 NSetCY

Draw a vertical line.

Input/Output Parameters

Input: R8 «e—— count

R9 <«—— operation
Output: there are no outputs
Characteristics

This call draws '"count' number of pixels along a vertical line, starting
from the position specified by the current value of the graphics accumu-
lator downwards. The inputs are "count" (the number of points to be
plotted) and 'operation" which has the same meaning as used in SetC
(62).

Using this call is the same as calling SetC (62) and DownC (58) ‘count'
times, but it has been optimized for speed.

Errors

No error checking is done. It is assumed that range checking is done
by the caller.

8-61

66 NRead

Reads a screen rectangle into an array.

Input/Output Parameters

Input: R8 we——width (in pixels)
R9 e——height (in pixels)
RR10 ««——pointer to byte array

Output: @RR10——s=address of byte array
RS —s-always cleared (no error conditions)

Characteristics

This call reads a screen rectangle into an array in memory.

The size (in pixels) of a rectangle on the screen is specified by the
first two coordinates. The position of the upper left-hand corner of the
rectangle is determined by the current Graphics Accumulator (which can
be set using system call 53 MapXYC).

The third parameter is a pointer to a byte array which consists of a 6-
byte header followed by an array of two-byte entries, each of which is a
sixteen-bit integer.

The byte array is structured as follows:

byte contents

0 width (high byte)

1 " (low byte)

2 hight (high byte)

3 " (low byte)

4 colour flag (high byte - always 0)
5 u " (low byte)

6

picture data
n picture data

The colour flag is equal to 0 for a monochrome system, 1 for a 4-colour
system and 2 for an 8-colour system.

8-62 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

If the width of the rectangle is W pixels, each scanline of the rectan-
gle (for each colour plane) is stored in INT((W+15)/16) two-byte integer
entries in the byte array, with the bit array left-justified in the
integer array, so that the last two-byte entry for each scanline may
have up to fifteen undefined bits.

The screen data is stored starting from top to bottom, with data for
various colour memory planes interleaved scanline by scanline.

In other words, the integer array for the top scanline, plane 0 is
stored first, followed in succession by the integer arrays for screen
memory planes 1 and 2, if they exist on the system; these are followed
in turn by the data for successive scanlines.

Errors

The caller is assumed to have done error checking.

67 Nurite

Transfers a graphics rectangle from an array to the screen.

Input/Output Parameters

Input: R7 <e—— logical function
R8 <e—— maximum width of rectangle in pixels
R9 <—— maximum height of rectangle in scanlines
RR10<e-—— pointer to a byte array

Output: RS ——p always cleared (no error condition)

Characteristics

This system call is used for inserting screen data, previously read from
the screen using the NRead system call, somewhere on the screen.

Values of logical function for NWrite system calls:

0 overwrite what is already there

1 XOR (exclusive OR) array contents with destination
2 AND array contents with destination

3 COM: complement destination, no copy

4 OR array contents with destination

5 INVERT: complement text, copy

The logical function is useful in a variety of situations. For example,
XOR may be used to display an object which can be erased with another
XOR, leaving the screen as it was before the first XOR. AND may be used
to selectively erase parts of the screen to colour 0, using a specially
constructed array. OR may be used similarily to erase parts of the
screen to all white.

The height and width parameters are used to determine what proportion of
the rectangle saved in the array is actually written onto the screen;
this has dimensions which are the minima of the parameters and the
height and width values saved in the array; the rectangle written
includes the upper left-hand corner of the saved rectangle in all cases.

8-64 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

As with NRead, the upper left-hand corner of the rectangle is determined
by the current Graphics Accumulator.

Compatibility exists between colour and monochrome systems in the fol-
lowing sense:

if screen data is read with NRead on a monochrome system, and written
with NWrite on a colour system, the data is written only into screen
plane 0; screen plane 1 (or 2 for the 8-colour system) is left
unchanged. On the other hand, if screen data is read on a colour system
and written from the same array on a monochrome system, only data for
colour memory plane 0 is written on the monochrome system.

Errors

The caller is assumed to have done error checking.

68 PntInit

Specifies the global colour attributes for paint routines.

Input/Output Parameters

Input: R8 <e—— paint colour
R9 <e—— border colour

Qutput: R5 ——p error status

Characteristics

The inputs 'paint' and 'border' must be legal screen colours as shown
below. The colour selection of four (A - D) is made from the eight
listed under PaletteSet (SC 46):

Four-Colour Eight-Colour
Monochrome Systems Systems
0 black 0 colour A 0 black
1 white 1 colour B 1 green
2 colour C 2 blue
3 colour D 3 cyan
4 red

5 yellow

6 magenta

7 white

The attributes set are globals, like the main screen attribute, not win-
dow attributes.

This routine must be called before doing "ScanL" (SC 71) or "ScanR" (SC
72) or they will be undefined. (Usually, both paint colour and border
colour are 1).

Errors

1f there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-66 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

69 TDownC

Moves the graphics accumulator down by one pixel after checking the win-
dow boundary.

Input/Output Parameters

Input: there are no inputs
Output: R8 —— check value
Characteristics

This has the same effect as DownC, except that the position of the
graphics accumulator is checked against the lower boundary position of
the current window before it is changed.

If the new position 1is out of bounds, a false 'check value' 1is
returned in R8 and the graphics accumulator is unchanged. 1f the new
position 1is within bounds, the position is moved down one pixel and a
true value is returned.

Errors

No errors are returned.

8-67

70 TupC

Moves the graphics accumulator up by one pixel after checking the window
boundary.

Input/Output Parameters

Input: there are no inputs
Output: R8 -—— check value
Characteristics

This has the same effect as UpC, except that the position of the graph-
ics accumulator is checked against the lower boundary position of the
current window before it 1is changed.

If the new position 1is out of bounds , a false ‘'check value' is
returned in R8 and the graphics accumulator is unchanged. If the new
position is within bounds, the position is moved up one pixel and a true
value is returned.

Errors

No errors are returned.

8-68 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

71 ScanlL

Paints left on a scanline up to a border.

Input/Output Parameters
Input: there are no inputs

Output: R9 —— count-1
R10 — margin flag
R11 —— painted flag

Characteristics

The purpose of this routine is to paint part of an enclosed region
in the current window, moving left along a scanline.

All points starting at the initial position of the graphics accumulator
are painted to the paintcolour. If any points painted were not
already painted, the 'painted flag' is set.

The routine stops when the border colour has been reached or when the
left margin of the window has been reached. The 'margin flag' is
set if the left margin has been reached.

The output called 'count-1' is the number of pixels scanned (painted),
regardless of whether their original colour was the paintcolour.

The graphics accumulator position is left at the end of the scan.

Errors

No errors are returned.

72 ScanR

Paints right on a scan line up to a border.

Input/Output Parameters
Input: R8 <«e—— maxcount

Output: RR6 ——= C-type
R8 —— maxcount
R9 —— count-r
R10 — 4 margin flag
R11 —— painted flag

Characteristics

The purpose of this routine is to paint part of an enclosed region
in the current window, moving right along a scanline. At first the rou-
tine skips over a maximum of "maxcount' points of the border
colour.

1f more than 'maxcount' border points are skipped, then ScanR stops
immediately and returns R8 = 0 and R9 = 0 (and RRé undefined).

All points following the initial border region are then painted to the
paintcolour. 1If any points painted were not already painted, the
‘painted flag' is set.

The routine stops when the border colour has been reached or when the
right margin of the window has been reached. The 'margin flag' is set if
the right margin has been reached. The output called 'count-r' value is
the length in pixels of the painted segment.

The output 'C-type' points to the position of the first pixel

painted. The graphics accumulator position is left at the end of the
scan.

Errors

No errors are returned.

8-70 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

73 SetTime

Sets the system clock.

Input/Output Parameters
Input: RR8 <e—— address
R10 @—— length

Output: RS —p error status

Characteristics

The input 'address' points to an address in the caller's data area

which contains the time of day. The input 'length' gives the length

of the ASCII string. The format of the data 1in the string must be:
hh:mm:ss

where 'hh' is the hour (in 24-hour time), 'mm' is minutes, and ‘'ss' is

seconds. Leading zeros need not be supplied. Any non-numeric character

can be selected for delimiter as shown in examples below, using the PCOS
SSYS (set system) command.

ss 04/15/82,13:12:45
ss "04 15 82'",08:10:00

Time is initialized to 00:00:00 at system startup. If blanks are
selected for delimiters, as in the second example, the expression must
be put in quotes.

Errors

The value returned in R5 is zero if the clock was correctly set.

8-71

74 SetDate

Sets the system date-clock.

Input/Output Parameters

Input: RR8 <«—— address
R10 <=—— length

Output: R5 ——error status

Characteristics

The input ‘'address' points to an address in the caller's data area
which contains the date. The input 'length’ gives the length of
the ASCII string.

The format of the data in the string, except for the delimiter, must be:

dd:mm:yyyy

where 'dd' is the day, 'mm' is the month, and 'yyyy' is the year; lead-
ing zeroes need not be supplied.

Any non-numeric character may be used in place of the colon, as shoun in
the examples for SetTime (73).

The date is initialized to January 1, 1982 at system startup. 1f only
two digits are input for the year, the century is assumed to be 19.

Errors

The value returned in R5 is zero if and only if the date was
correctly set.

8-72 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

75 GetTime

Returns the system time.

Input/Output Parameters

Input: RR8 <e—— address
R10 <«—— length

Output: R5 ——error status

Characteristics

This call returns the ASCII string giving the system time. The two
inputs are the address and maximum length of the string, which is
stored in the BASIC data area.

The format of the time returned is:

hh:mm:ss

where 'hh' is the hour (in 24-hour time), 'mm' is the minutes, and
'ss' is the seconds.

There will be leading zeroes to make each field 2 characters in length,
and the character separating the various fields for the time will be

that used in the last call to 'SetTime'. The system initializes the
separator character to Tels

Errors

1f there are any errors, a non-zero value is returned in R5; & zero
is returned if there were no errors.

8-73

76 GetDate

Returns the system date.

Input/Output Parameters

Input: RR8 <—— address
R10 <-—— length

Output: RS ——perror status
Characteristics
This call returns the ASCII string giving the system date. The two

inputs are the address and maximum length of the string, which is
stored in the BASIC data area.

The format of the returned date is:

dd:mm:yyyy

where 'dd' is the day, 'mm' is the month, and 'yyyy' is the year.

There will be leading zeroes to make each field two characters in length
and the character separating the various fields for the date will be
that used in the last call to 'SetDate'. The system initializes the
separator character to ':'.

Errors

If there are any errors, a non-zero value is returned in R5; a zero
1s returned if there were no errors,

8-74 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

calls a user or a PCOS utility or command.

1nput/Output Parameters

Input:

Qutput:

Characteristics

This SC allows the Assembler programmer to invoke
utilities and other utilities resident on disk or in memory.
to RR14 points to an area in the stack
tine being called have been stored.

must prepare his parameters in the stac

High Memory

parameters
passed 10
the user

position of
the stack
pointer

a3t the start

of the CallUser
routine

=k

RR14 «—— stack pointer

R5 —error status

type of command

(must be string type)

le— ptr to command

e— type of parameter 1

le— prt to parameter 1

|+ type of parameter 2

| e— ptr to parameter 2

type (byte) 00
2 words
type (byte) 1 00
— l . o
2 words
|
i
type (byte) 00

le— type of parameter n

2 words

e— ptr to parameter n

e— no. of parameters (n)

Low Memory

77 CallUser

from his programs PCOS

The input

where the parameters to the rou-
Before invoking the SC 77 the user
k in the following way:

8-75

As far as the "types" are concerned, the same rules apply as previously
stated in chapter 2 in the section which deals which the PCOS standard.
In this case however the command parameters will have to be obtained
using a series of "push"es rather than a series of "pop"s. The parame-
ter pointers will be of the Z-8001 format.

The following table illustrates schematically the types already dealt
with in chapter 2.

Data Types
Data Pointer
Category Type Value Description
null 0 %0000FFFF for null parameters
integer 2 segmented ptr integers occupy one word
string 3 segmented ptr pointer to a 3-byte

descriptor: 1-byte for
the string length &
2-byte unsegmented ptr
to the actual string

The following is an example of an Assembler source file, which, (by
means of SC 77) makes use of the PCOS utility "filenew", which allocates
a certain number of blocks on disk under the name of a given file.

In practice, it is a question of invoking from an assembler utility,

that which can be invoked from PCOS in the following way:

fn FILE,100

8-76 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

The following is a sequence of Assembler instructions

preparing the stack before the SC 77.

push
lda

lda
pushl
push
lda

lda
pushl
push
lda
pushl
push
sc

cmd ddb
ptrcmd dd
filenam ddb
ptri dd
nblock dd

Errors

" @rr14,#%0300

rr2,cmd
ptremd+2,r3
rr2,ptremd+1
@rr14,rr2
@rr14,#%0300
rr2,filenam
ptri1+2,r3
rr2,ptri+l
@rr14,rr2
@rr14,#%0200
rr2,nblock
@rr14,rr2
@rr14,#2

#77

nEn
0002,0000
"FILE"
0004,0000
0100

to be used

type 3(string)

store offset

type 3(string)

store offset

type 2(integer)

for

no. of parameters

no. of blocks

1f there are any errors, the status code is returned in R5. If there are

no errors a zero will be returned.

8-77

78 1BSrQoO

Disables the service request (SRQ) interrupt.

Input/Output Parameters

Input: there are no input parameters
Output: RS —= error status
Characteristics

The statement '"ON SRQ GOSUB 0" will cause the system call 1IBSrQ0 to be
executed; this system call will cisable the SRQ interrupt (for further
details on the interrupt system, see SC 79).

Errors

If the system does not have an IEEE option board, R5 will contain a Hex
OA. If there are no errors, a zero (0) will be returned.

8-78 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

79 1BSrQl

Enables the service request (SRQ) interrupt.

Input/Output Parameters

Input: there are no input parameters
Output: RS ——# error status
Characteristics

The statement '"ON SRQ GOSUB <line number>'" will cause the system call
IBSrQ1 to be executed; this system call enables the SRQ interrupt.

The 1EEE-488 interrupt service routine will set the global flag
"'srq_488" (byte) to 1 when an SRQ interrupt occurs. (This flag is
stored in the mailbox area).

This flag will be tested by the interpreter before the execution of each

source statement following the ON SRQ GOSUB. If set, it will be reset by
the interpreter, and the subroutine entered (see call Grflnit (SC 45)).

Errors

If the system does not have an 1EEE option board, R5 will contain a Hex
OA. If there are no errors, a zero (0) will be returned.

80 1BPoll

Polls a specified device on an instrument bus.

Input/Output Parameters

Input: R8 <e—— talker addr

Output: RR10——==ptr to status
R5 ———perror status

Characteristics

This call polls the device specified, within a serial service request
poll. The input 'talker addr' identifies the device.

The call tests the device address, reads the device status byte, and
saves it in an address pointed to by'ptr to status'.

Errors

If the system does not have an IEEE option board, R5 will contain a Hex
0A. If the talker address is invalid (ie., greater than 001E), R5 will
contain '09'. If there are no errors, a zero (0) will be returned.

(o 0 o) 1 § P e O R O ST LY S O ML s (Y IS

THE M20 SYSTEM CALLS

81 IBISet

Causes a remote enable (REN) or an interface clear (IFC) to be sent.

Input/Output Parameters

Input: R8 <e—— operand
Output: R5 —— error status
Characteristics

This call causes the remote enable (REN) message or the interface clear
(IFC) pulse to be transmitted, depending upon the value of the input
‘operand’.

If '0' is loaded into R8, then the REN message is sent true; if '1' is
loaded, then the IFC pulse is sent.

Errors

If the system does not have an 1EEE option board, R5 will contain a Hex
OA. If there are no errors, a zero (0) will be returned.

8-81

82 IBRSet

Causes the remote enable (REN) message to be sent false.

Input/Output Parameters

Input: there are no parameters
Output: RS —— error status
Characteristics

This call causes the remote enable (REN) message to be sent false.

Errors

1f the system does not have an 1EEE option board, RS will contain a Hex
OA. If there are no errors, a zero (0) will be returned.

8-82 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

83 1BPrnt

Checks the address and then causes output of data bytes.

Input/Output Parameters

Input: RR6 <e—— buffer addr
R8 <«a—— listener addr
R9 <e—— buffer len, in bytes
R10 <«—— delimiter

Output: RS —— error status

Characteristics

Before calling the driver, the BASIC interpreter will transfer the
output bytes to a buffer, from which they will be sequentially
transferred by the driver.

This call will test the listener address in R8; 1if less than 001F,
writes listener address, if specified.

The input to R10 is zero if END is to be specified as data-stream
delimiter, and 1 if it is not (CR, END as data-stream delimiter
sequence). 1f there are any output bytes for transfer, writes them to
bus, with ATN false.

Errors

1f the system does not have an 1EEE option board, R5 will contain a Hex
0A. 1f the listener address in R8 1is greater than 001F, this call
returns an error code of 09. If there are no errors, a zero (0) will
be returned.

8-83

84 1BWByt

Outputs commands (optional) and writes data bytes (optional).

Input/Output Parameters

Input: RR6 <e——numval addr
R8 <a——comlist length
R9 <=——numval length
RR10<e——comlist addr

Output: RS ——=error status

Characteristics

If there is a command list, asserts ATN and outputs commands. If there
are any data bytes to be output, writes them to bus with ATN false.

The input 'comlist addr' points to the address of the command 1list.
This list, if present, is stored as a sequence of bytes, 2 to the word.
The input 'comlist 1length' is the command list length in 15 low-
order bits; high-order bit: 1 if "@" option (END sent with last byte of
data as statement delimiter) specified, 0 if not (END with CR ter-
minates data).

The input 'numval addr' points to the address of the 1list of
numeric values . 1t, too, is stored as a sequence of bytes, 2 to a word.
The input 'numval length' is 0 if not specified.

Errors

If the system does not have an'IEEE option board, R5 will contain a Hex
OA. If there are no errors, a zero (0) will be returned.

8-84 ASSEMBLER USER GUIDE

R

‘ THE M20 SYSTEM CALLS

85 IBInpt

Places bytes received, into a buffer.

Input/Output Parameters

Input: R7 <e——=buffer length
R8 <e——talker addr
R9 <e——1listener addr
RR10 «——buffer addr

Output: R5 —— error status
R7 ———p number of bytes not read

Characteristics

This procedure calls 1IBLinpt. Both 1IBInpt and 1IBLinpt place bytes
received sequentially from a driver into a single buffer. They differ
in that, for 1BInpt, the BASIC interpreter transfers the buffer contents
to the variables in the variable list provided by the user; for IBLinpt
the user specifies the buffer for a single line of data.

On entry, the 'buffer length' (R7) is given in bytes; on exit, this
represents the number of bytes not read (buffer length minus number of
bytes read). The 'buffer addr' points to the buffer which will receive

the data bytes. The 'talker addr' (R8) and 'listener addr' (R9) will
both be 001F if not specified.

Errors

The error codes which can be returned in R5 are:

8-85

ERROR CODE MEANING

03 Invalid termination of input bytestream.

The two valid cases are:

- the number of data bytes received equals
the value provided in R7 (string variable
length, in bytes). The last data byte is
accompanied by the END condition (EOL
true, ATN false).

- the number of data bytes received equals
the value provided in R7 (string variable
length, in bytes). The last data byte is
followed by a CR, LF pair with the END
condition accompanying the LF.

09 Talker or Listener address greater than 1F.
0A IEEE board not present.
0B 15 second polling loop (for ‘byte in',

'byte out' , or 'input buffer empty'
condition) timed out; handshake could not
be completed within 15 seconds.

If there are no errors, a zero (0) will be returned.

8-86 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

86 IBLinpt

Places bytes received into a buffer as a single line of data.

Input/Output Parameters

Input: R7 <e——buffer length
R8 <w——talker addr
R9 e— listener addr
RR10<e——buffer addr

Output: R5 ——p error status
R7 ——— number of bytes not read

Characteristics

Both 1BLinpt and 1Blnpt place bytes received sequentially from a driver
into a single buffer. They differ in that, for 1BLinpt the user
specifies the buffer for a single line of data; for 1BInpt, the BASIC
interpreter transfers the buffer contents to the variables in the vari-
able list provided by the user.

On entry, the 'buffer length' (R7) is given in bytes; on exit, this
represents the number of bytes not read (buffer length minus number of
bytes not read). The 'buffer addr' points to the buffer which will
receive the data bytes. The 'talker addr' (R8) and 'listener addr' (R9)
will both be 001F if not specified.

Errors

The error codes which can be returned in R5 are:

ERROR CODE MEANING

03 Invalid termination of input bytestream.

The two valid cases are:

- the number of data bytes received equals
the value provided in R7 (string variable
length, in bytes). The last data byte is
accompanied by the END condition (EOI
true, ATN false).

- the number of data bytes received equals
the value provided in R7 (string variable
length, in bytes). The last data byte is
followed by a CR, LF pair with the END
condition accompanying the LF.

09 Talker or Listener address greater than 1F.

0A LEEE board not present.

0B 15 second polling loop (for ‘'byte in',
'byte out' , or "input buffer empty’

condition) timed out; handshake could not
be completed within 15 seconds.

If there are no errors, a zero (0) will be returned.

8-88 Almeigaminiaes 2~ S e T

THE M20 SYSTEM CALLS

87 1BRByt

Outputs commands (optional) and reads data bytes (optional).
Input/Qutput Parameters
Input: RR6 <e——buffer addr

R8 w——comlist length

R9 e——buffer len, in bytes

RR10e=——comlist addr
Output: RS ——perror status
Characteristics
If there is a command list, asserts ATN and outputs commands. It then

reads the assigned number of bytes, and places them sequentially in a
buffer.

The input 'comlist addr' points to the address of the command list.
This list, if present, is stored as a sequence of bytes, 2 to the word.

The input ‘comlist length' 1is the command list length in 15 low-
order bits; high-order bit is always zero (0).

The input 'buffer addr' points to the buffer which will receive the
data bytes. The input 'buffer len, in bytes' indicates the number of
bytes to be read.

Errors

If the system does not have an 1EEE option board, R5 will contain a Hex
OA. 1f any handshake is not completed within 15 seconds, R5 will contain
Hex '000B'. 1If there are no errors, a zero (0) will be returned.

88 Error

Displays standard error message.

Input/Output Parameters

Input: RH5 <¢—— parameter number
RL5 <e—— error code

Output: there are no outputs
Characteristics
This procedure is only called if there are errors. The routine

displays the message 'Error nn' in parameter xx' where nn is one of
the standard error codes and xx is the parameter number passed in
RH5. 1If xx is 00 then only the message 'Error nn' is displayed.

Note:

1f the EPRINT command is resident, then an error message "will be
displayed.

8-90 ASSEMBLER USER GUIDE

" y

.

THE M20 SYSTEM CALLS

89 DString

Displays a string message.

Input/Output Parameters

Input: RR12<e——address
Output: R5 ——error status
Characteristics

This routine displays a string message. The string must be terminated
with a null (0) byte.

The message may include any number of carriage returns, but note that a
linefeed will be automatically displayed after each carriage return in
the string.

The input 'address' is the address of the string.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-91

90 CrLf

Does a CR and a LF.

Input/Output Parameters

Input: there are no parameters

Qutput: ﬁS —p error status

Characteristics

This routine will do a carriage return and a line feed. There are no
parameters.

Errors

1f there are any errors, the status code is returned in R5. If there

are no errors, a zero (0) will be returned.

8-92 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

91 DHexByte

Displays a byte in Hex.

Input/Output Parameters

Input: R12 <-—— byte
Output: R5 —— error status
Characteristics

The byte supplied in the lower half of R12 is displayed as two hex
digits.

Errors

1f there are any errors, the status code is returned in RS. If There
are no errors, a zero (0) will be returned.

8-93

92 DHex

Displays a word in hex.

Input/Output Parameters

Input: R12 <¢—— word
Output: R5 —— error status
Characteristics

This routine displays the 16-bit number

digits.

Errors

If there are any errors, the status code is returned in R5.

are no errors, a zero (0) will be returned.

8-94

in R12 as four hex

If there

ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

93 DHexLong

Displays a long word in hexadecimal.

Input/Output Parameters

Input: RR12 <«——1long word
Output: R5 ——error status
Characteristics

The long word supplied in RR12 is displayed as eight hex digits.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

94 DNumlW

Displays a.number as an unsigned decimal integer.

Input/Output Parameters

Input: R12 <@——— integer
R13 <e—— field width

Output: R5 ——= error status

Characteristics
The number in R12 is displayed as an unsigned decimal integer. R13
specifies the field width for display.

The display is right-justified in the field, with leading zeroes changed
to spaces.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-96 ASSEMBLER USER GUIDE

)
J

THE M20 SYSTEM CALLS

Displays a number as an unsigned decimal integer.

Input/Output Parameters

Input: RR12 «——1ong integer
Output: R5 —error status
Characteristics

The number supplied in RR12 1is displayed as an unsigned
integer, left-justified with leading zeroes omitted.

Errors

95 DLong

decimal

If there are any errors, the status code is returned in R. If there are

no errors, a zero (0) will be returned.

8-97

96 DisectName

Parses a file or a volume name.

Input/Output Parameters

Input: R9 <e——string length
RR10 «——string address
RR12 «——names record address

Output: @RR12—names record
R7 ——#volume number
R5 .———p-error status

Characteristics

This call takes a file identifier of the form
"<volname>'/'<volpswd>':'<filename>'/'<filepswd>"

and parses it into its various components. A drive unit is acceptable as
<volname>.

Each component is placed into the appropriate compartment of the names
record as follows:

volname : 14 byte array
volpswd : 14 byte array
filename : 14 byte array
filepswd : 14 byte array

The input string length is the length of the file identifier string
(this 1includes the wvolume identifier), which in turn is input in the
address specified in RR10.

Errors

1f there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-98 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

97 CheckVolume

Forces a check of disk volumes

Input/Output Parameters

Input: there are no parameters

Output: RS —— error status

Characteristics

There are no input registers for this call. All volumes are forced
to read their verification codes on their access.

Errors’

If there are any errors, the status code is returned in R5. 1f there
are no errors, a zero (0) will be returned.

98 Search

Searches on a specified disk for a specified file name.

Input/Output Parameters

Input:
R6 <@——drive
R7 <a——search mode
R9 <e——1length
RR10<e——file pointer
RR12 <e——name pointer
Output: R9 ——p length of output filename
RR10——file pointer
RR12——=—p>modified
RS ———p-error status
Characteristics

This call searches on a disk for a file name supplied by the wuser. The
file name may contain wild card characters.

The input called 'drive' identifies the drive to be searched (input a
'-1' for the current drive). The input 'search mode' is either a '1' for
a search from the beginning, or a '0' for a search from the . last
file found. The input ‘length’' is the length of the file name, in
bytes. To search for any file, input a zero length.

The input 'file pointer' points to the memory location where the name
of the file, if found, will be written. The input 'name pointer' is
the address where the input string will be stored. 1If the file is
found, the address of the name of the file 1is returned in RR10. The
content of the register RR12 is modified by the Operating System.

Errors

If there are any errors, the status code is returned in R5. If the
file is found, a zero (0) will be returned.

8-100 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

99 MaxSize

Returns maximum free heap size

Input/Output Parameters

Input: there are no parameters

Output: R8 —— size
R5 ——s error status

Characteristics

This call returns the size of the largest free heap block in the current
segment. Size is returned in bytes.

This call operates in segment 2 unless the program has done a Brand-
NewAbsolute system call (121), in which case the segment number is that

specified in the most recent "BrandNewAbsolute'.

A simple way to change the segment number for a program is to do a SC
121 "BrandNewAbsolute" with a block length of 0.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-101

102 SetVol

Sets a specified volume for the next access.

Input/Output Parameters
Input: R7 <e—— vol number

Output: R5 ——= error status

Characteristics

This call sets the volume for the next access. The input 'vol
number' is the volume number to be used for the next access.

Errors

1f there are any errors, the status code is returned in R5. 1f there
are no errors, a zero (0) will be returned.

8-102 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

104 NewAbsolute

Allocates a block at a specified address.

Input/Output Parameters

Input: RR8 <#——— address of block pointer
R10 <«—— length
©@RR8-e—— block pointer

Output: RS —» error status

Characteristics

This call is similar to NewSameSegment (SC 33) except that the block
allocated will be at a specified address. The input address (RR8)
should be the address of a long (4-byte) memory location; this is where
the desired address is stored. The input to R10 is the number of
bytes requested, and must be even.

On exit from this call, the memory location that RR8 points to will
contain a 32-bit address of the actual block allocated. If the
requested value is too close to the end of a previous block, the actual
value may be two bytes lower than the requested value, but will still
include the requested length. If the space requested is not
available, a nil-pointer (hex FFFFFFFF) will be returned in the memory
location that RR8 points to, but no error will be returned in R5.

It is important to remember that RR8 does not contain the memory block
address specified.

This call allocates blocks in the ''SameSegment". This is segment 2
unless the program has done a "BrandNewAbsolute' system call, in which
case the segment number is that specified in the most recent 'Brand-
NewAbsolute'. A simple way to change the segment number for a program is
to do a SC 121 "BrandNewAbsolute' with a block length of 0.

This call is a subset of system call 121 "BrandNewAbsolute". It has been
maintained for compatibility with preceding releases.

Errors

If there are any errors, the status code is returned in RS5. If there
are no errors, a zero (0) will be returned.

8-103

105 Stringlen

Returns the length of the input string.

Input/Output Parameters

Input: RR12<e——pointer

Output: R7 ——= length
R5 —error status

Characteristics

This call returns the length of the input string. The input 'pointer'
points to the string; the output in R7 is the length read (until a null
encountered, or 14, if no null in that length).

Errors

1f there are any errors, the status code is returned in R5. If there are
no errors, a zero (0) will be returned.

8-104 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

106 DiskFree

Returns the number of free sectors on the disk.

Input/Output Parameters

Input: R7 <—— volume number

Output: RR10——=num of sectors
RS ———error status

Characteristics

This call returns the number of sectors that are available for use on
the disk. The input 'volume number' is the volume to be checked .(enter
-1 for the current volume).

The number of sectors that are free on the volume will be returned in
RR10.

Errors

If there are any errors, the status code is returned in RS5. 1If there
are no errors, a zero (0) will be returned.

8-105

107 BootSystem

Reboots (initializes) the system.

Input/Output Parameters

Input: this call has no parameters
Output: R5 —— error status
Characteristics

This system call can be used to reboot the system, exactly as does
pressing the blue shift plus reset keys. In other words, the system
reboots, but bypasses the diagnostic checks.

Errors

There are no error checks with this call. If an error occurs, the status
code 1is returned in R5. 1f there are no errors, a zero (0) will be
returned.

8-106 ' ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

108 SetSysSeg

Returns the caller to segmented system mode.

Input/Output Parameters

Input: this call has no parameters

Output:
R5 —— error status

Characteristics

This call will return the caller to the segmented system mode, regard-
less of which mode the system is in.

Errors

There are no error checks with this call. If an error occurs, the
status code will be returned in R5. If there are no errors, a zero (0)
will be returned.

8-107

109 SearchDevTab

Searches the system device table for a device name.

Input/Output Parameters

Input: RR10<e——ptr to device name
R9 <e——device name length

Output:

RL5 —— entry number
RH5 —— device type
RR8 —— ptr table entry
RS — error status

Characteristics

This command searches the system device table for the device named. The
input 'ptr to device name' is the address where the first ASCII charac-
ter of the name is stored; the input 'device name length' is the number

of bytes in the name.

I1f the call finds the device name, it returns the

entry number of the device in RL5 and the device type in RH5 (1 = Read,
2 = Write, 3 = Read/Write); it also returns a pointer to the first entry
in the particular device table in RR8.

EXAMPLE :

table pointer DSL '

device name DDB

1d
lda
sc
test
jr
1d1

Errors

1

‘'cons"'

r9,#4 search_devtab string length
rr10,device_name search_devtab string pointer
#109

r5 name not found

nz,command err
table_pointer,rr8

1f the device is not found, a Hex FFFF (nil) is returned in R5.

8-108

ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

111 CtlCharDisp

Enables or disables the display of special control characters.

Input/Output Parameters

Input: R8 on/off (nonzero/zero)
Output there is no output
Characteristics

This system call will enable the display of special control characters
if a nonzero value is input to R8. If R8 contains zero, then the display
of special control characters is disabled.

For a list of special control characters and their respective character
font definitions see the '"M20 PCOS User Guide'.

Errors

No errors are returned.

8-109

113 CloseAllWindows -

Closes any existing windows from 2 to 16.

Input/Output Parameters

This call has no parameters

Characteristics
-
This call will close all existing windows except for window 1.
Errors
No errors are returned.
-
-

8-110 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

114 KbSetlLock

Sets the state of both the shift lock and the cursor lock flags.

Input/Output Parameters

Input: R6 <w—— integer flag

Output: R7 — previous flag
R5 ——» error status

Characteristics

The "integer flag" input in Ré is in the range 0-3 and sets the shift
lock (for the alpha keys on the alphanumeric keypad) and cursor lock
(for the numeric keypad) as follows:

0 = Both flags reset

1 = Shift lock on and cursor lock off
2 = Shift lock off and cursor lock on
3 = Both flags set

Note: The cursor lock condition can also be obtained with the key combi-
nation '"Control /", while the shift lock with the key combination "Com-
mand /".

Errors

1f there are any errors the status is returned in R5. 1f there are no
errors, a zero will be returned in R5.

8-111

115 ClearText

Clears a rectangle of text in the current window.

Input/Output Parameters

Input: R10 <e—— column (left edge of cleared rectangle)
R11 <e—— row (top row of cleared rectangle)
R12 <«—— column count (width of rectangle)
R13 <«—— row count (height of rectangle)

Output: RS —— error status

Characteristics

ClearText simply clears the specified rectangle to the current back-
ground colour of the window. In a colour system, ClearText always clears
all screen planes in the specified rectangle, which have corresponding
bits set in the Colour Plane Mask parameter (see ScrollText SC 116).

In this system call, the Colour Plane Mask parameter is set to 7, so
that a complete clear of the rectangle is done, no matter what system
this is executed on.

The range of a column parameter is from 1 to the width of the
current window, and the range of a row parameter is from 1 to the number
of text lines in a window, i.e.

1 <= Column + Column count -1 <= width of window, and
1 <= Row + Row_count - 1 <= number of text lines in the window

Errors

The ranges of the above parameters are checked. An error is returned in
R5 if the specified rectangles are not entirely within the window.

8-112 ASSEMBLER USER GUIDE

THE‘ M20 SYSTEM CALLS

116 ScrollText

Copies a rectangle of text characters in a window to another position of
the same window.

Input/Output Parameters

Input: R6 <a—— colour plane mask
R7 <e—— logical function (0 for normal copy)
R8 e—— source column (left edge of source)
R9 <«—— source row (top row of source)
R10 <—— destination column (left edge of destination)
R11 <e—— destination row (top row of destination)
R12 <e—— column count (width of rectangle)
R13 ««—— row count (height of rectangle)
Output: R5 ——— error status
Characteristics

ScrollText is used for copying a rectangular block of text from one
portion of a screen window to another. (Note that this cannot be used
for copying from one window to another window.) The source and
destination areas may overlap; 1in this case, copying is done in such
a way that the overlapped area is copied last: the destination will
be a true copy of the the original source, even though the source has
been overwritten.

The values for the '"logical function' input in R7 are:

0 Copy text

1 XOR (exclusive OR) source with destination
2 AND source with destination

3 COM: Complement destination, no copy

4 OR source with destination

5 INVERT: Complement text, copy

The "colour plane mask' parameter determines which memory planes are

8-113

affected by the ScrollText call. It only applies when logical functions
1, 3, or 5 are used, otherwise this parameter is ignored, and its value
is preserved. This contains a bit for each memory plane to be written
in: bit 0 denotes the first 16K block of screen memory, bit 1 denotes
the second 16K block (in 4-colour and 8-colour sytems), and bit 2
denotes the third block used in the 8-colour system. Bits higher than
appropriate for a particular system will be ignored: for example, bits 1
and 2 will be ignored on monochrome hardware.

Any program which does not make use of colour (i.e. which only uses
colours 0 and 1) should use the value 1 for the 'colour plane mask
parameter'; this will prevent writing in the second (or third) screen
planes of a colour system, if the XOR or COM functions are used.

On the other hand, programs which do use colours other than 0 and 1
should use values 3 (bits 0 and 1) for a 4-colour system, and 7 (bits 0,
1, and 2) for an 8-colour system (actually, 7 may be used for all sys-
tems, in this case, the apparent effect of certain logical functions
will vary between different types of display).

If the logical function is 0, 2 or 4, ScrollText will obey the same
convention regarding the number of screen memory planes written as the
screen text and graphics driver: e.g. if the foreground colour is
1 and the background is 0, only the first screen memory plane will be
written in.

The range of a column parameter is from 1 to the width of the
current window, and the range of a row parameter is from 1 to the number
of text lines in a window, i.e.

1 <= Column + Column count -1 <= width of window, and

1 <= Row + Row_count - 1 <= number of text lines in the window.

Errors

The ranges of the above parameters are checked by these system calls;
an error is returned if the specified rectangles are not entirely within
the window. No clipping 1is done the rectangles specified must be
entirely within the window.

8-114 ASSEMBLER USER GUIDE

s

THE M20 SYSTEM CALLS

119 GetVol
Returns the current default volume number.
Input/Output Parameters
Input: RR12 <e—— pointer to volume identifier buffer

R6 e—— buffer size

Output: R7 —— size of volume identifier
R5 —— error status

Characteristics

This call returns the current default volume identifier in the
pointed to by RR12.

Errors

buffer

If there are any errors, the status code is returned in R5. If there are

no errors, a zero (0) will be returned.

8-115

120 New

Allocates a block of bytes from heap.

Input/Output Parameters

Input: RR8 <@——— address of block pointer
R10 == length

Qutput: R5 —— error status
@RR8 —# block pointer

Characteristics

This call allocates a block of bytes from the heap, returning a pointer
to the location of the first byte of the block. The input "address of
block pointer" is the address of a long (4byte) memory location, that
is, the address where 'New' stores the block. The input 'length' is the
number of bytes to be allocated.

EXAMPLE :

addptr . DSL 1
length ASSIGN ...
LDA " RR8,addptr
LD R10,#1ength
sC #120

LOL RR6 ,@RR8

In this example, RR6 contains the block starting address. 1f the block
cannot be allocated,@RRB contains a nil pointer (hex FFFFFFFF), but no
error will be returned in R5.

Errors

If there are any errors, the status code is returned in R5. If there are
no errors, a zero (0) is returned.

8-116 ASSEMBLER USER GUIDE

—

THE M20 SYSTEM CALLS

121 BrandNewAbsolute

Allocates a block at a specified address.

Input/Output Parameters

Input: RR8 <e——address of block pointer
R10 <-—— length
©@RR8-e——block pointer

Output: R5 ———error status

Characteristics

This call is similar to a New (SC 120) except that the block allocated
is at a specified address.

The input address (RR8) is the address of a long (4-byte) memory loca-
tion; this is where the desired address is stored. The input to R10 is
the number of bytes requested, and must be even.

On exit from this call, the memory location that RR8 points to contains
a 32-bit address of the actual block allocated. 1If the space requested
is not available, a nil-pointer (hex FFFFFFF) 1is returned in the memory
location pointed to by RR8, but no error is returned in R5.

It is important to remember that RR8 does not contain the memory
address specified.

Errors

If there are any errors, the status code is returned in R5. If there are
no errors, a zero (0) is returned.

8-117

122 NewlLargestBlock

Allocates the largest block of bytes from heap.

Input/Output Parameters

Input: RR8 <«—— address of block pointer

Output: @RR8——>block pointer
R10 ——>length
R5 —perror status

Characteristics

This procedure allocates a the largest free block in memory, returning a
pointer to the location of the first byte of the block and the length of
that block.

The input pointer should be the address of a long (4byte) memory loca-
tion; that is the address where 'NewLargestBlock' stores the block start
~ address.

1f the block cannot be allocated,@RR8 contains a nil (hex FFFFFFFF)
pointer but no error is returned in RS5.

Errors

1f there are any errors, the status code 1is returned in R5. 1f
there are no errors, a zero (0) is returned.

8-118 ASSEMBLER USER GUIDE

THE M20 SYSTEM CALLS

123 StickyNew

Allocates a block of bytes from heap that remains allocated after the
program doing this call terminates.

Input/Output Parameters

Input: RR8 <e—— address of block pointer
R10 <e—— length

Output: @RR8——block pointer
RS ——error status

iH 4 "Characteristics'" This call allocates a block of bytes from the
heap, returning a pointer to the 1location of the first byte of the
block.

The input "address of block pointer" is the address of a long (4byte)
memory location, that is, the address where the block start address is
stored. The input 'length' is the number of bytes to be allocated.

This call is just like "New", but is used for those rare occasions when

the allocated block is not to be de-allocated when the 'calling" program
terminates.

Errors

If there are any errors, the status code is returned in R5. If there are
no errors, a zero (0) is returned.

8-119

-~ 9. INTRODUCTION TO GRAPHICS

ABOUT THIS CHAPTER

This chapter is an introduction to the graphics facilities available in
the M20 Graphics Package. 1t includes a summary of features and an
explanation of graphics concepts; the graphics routines are listed in
functional groups. A list of the default conditions for the M20 is given
and error reporting is explained.

CONTENTS

INTRODUCTION 9-1
SUMMARY OF FEATURES 9-1
CONCEPTS 9-2
FUNCTIONAL GROUPS 9-4
ERRORS 9-6

DEFAULT CONDITIONS 9-6

INTRODUCTION TO GRAPHICS

INTRODUCTION

The M20 Graphics Package is implemented in the form of a library. This
M20 Graphics Library is available in the file ''graph.lib", which is an
integrated package of over forty routines offering a set of functionali-
ties for two dimensional graphics applications. This library may be
called by the PASCAL and Assembly programming languages (for more detail
see Chapter 6). Chapter 10 contains a detailed description of each rou-
tine, in alphabetical order.

SUMMARY OF FEATURES

The M20 Graphics Package presents a consistent and easily comprehensible
structure that reflects proposed international standards for such pack-
ages.

Besides the full complement of standard output primitives, including
lines, polylines, markers, etc., there are several added features:

- line drawings and move operations may be optionally specified as an
offset from the current position

- circle, ellipse and rectangle functions are available

- output primitives may be drawn in any of eight colours (on eight-
colour systems) or four colours (on four-colour systems)

- polygons, circles and ellipses may be solid filled
- intercharacter spacing for text may be adjusted.

The screen may be subdivided into rectangular regions called view areas.
View areas are independent from one another and there may be a maximum
of 16 on the screen. 1f the user tries to draw a picture which does not
fit within the view area then only the visible portion of the drawing is
displayed and the rest is discarded (clipped).

Pictures, or parts of pictures, may be stored and redrawn when neces-
sary. For every feature that may be set by the M20 Graphics Package,
there is an inquiry function which permits the user to request its
current state. The inquiry functions return:

- the colour, logic operator and line class for the current view area
- the number of the current view area

- the position and blink rate of the graphics cursor for the current
view area

- the location at which graphics output will begin
- the colour number of the pixel which is nearest to a specified point

- the device coordinates of a given point expressed in world coordi-
nates

- the next text entry point and the text cursor blink rate for the
current view area

- the size and text parameters of the current view area
- the world coordinate space for the current view area.
The M20 Graphics Package defaults to an operating mode that automati-
cally makes all format decisions (see Default Conditions). The user may

change these default conditions to other values which will better suit
the specific problem.

CONCEPTS

Graphical output generated by the M20 Graphics Package comprises two
general classes of functions: output primitives and primitive
attributes.

Output primitives are abstractions of basic actions that graphics dev-
ices can perform, like drawing lines and locating cursors. Qutput primi-
tives are defined in a two-dimensional user coordinate space (known as
world coordinates, see below). The units and the coordinates of the user
coordinate space are established by the application program.

Primitive attributes determine the characteristics that an output primi-
tive will possess when displayed on an output device; e.g., line class,
colour, intercharacter spacing, etc. Primitive attributes are set
modally; i.e., they establish a current value that is assigned to subse-
quently generated output primitives.

Coordinate data is subjected to transformations that perform a mapping
between two coordinate systems, namely:

- world coordinates, defined by the user that establish the scaling
basis on which the graphical output is described. The world coordi—
nate space definition determines how the coordinates from the appli-
cation program shall be placed within a view area. When a new view
area is created, it will have the same world coordinate space defini-
tion as the parent view area, but since the proportions of the two
view areas have changed, the shape of subsequent output to those view
areas will change too. The world coordinate space defines a view area
within the Cartesian plane. DivideViewArea defines a rectangular

9-2 ASSEMBLER USER GUIDE

INTRODUCTION TO GRAPHICS

surface on which the scale of two axes (the x axis and the y axis) is
determined. The view area may or may not contain the plane's origin,
that 1is the point of crossing of the two axes at which the coordi-
nates are (0, 0);

- device coordinates range from 0 to 511 pixels on the x axis (pixel =
picture element, the smallest visible entity on the screen) and from
0 to 255 scanlines on the y axis (scanline = a row of pixels), where
each coordinate pair addresses only one specific pixel.

Output primitives and attributes are automatically mapped from the
user's world coordinate space to the device coordinates via a
transformation which need not concern the user.

The M20 Graphics Package maintains two current positions, one for
text and one for graphics, and two cursors, one for text and one for
graphics. Only one of the two cursors (or neither, if so specified)
is displayed at any one time. The text current position and the text
cursor are always at the same logical location: the point at which
the next text output will appear. The graphics current position (the
point from which the next graphies output will begin) and the graph-
ics cursor do not coincide. The graphics cursor may be used as an
echo symbol to indicate a position on the screen that reflects the
values entered by an input device. The current graphics position is
used in many but not all graphics output routines, e.g., Polyline
will establish its own starting point, but moves the current position
along as it draws, leaving it at the final point. The circle and
ellipse routine (GDP) leaves the current position unaffected.

Some graphics routines use absolute coordinates, others use relative
coordinates. The distinction is that absolute coordinates are dis-
tances along the x and y axes from the origin of the Cartesian plane,
while relative coordinates are distances along the x and y axes from
the current point.

Most of the output routines are affected by the current colour
attributes and the colour logic-operator attribute. There is a fore-
ground colour which determines the colour of text output, and a back-
ground colour. There 1is a graphics colour which determines the
colour of graphic output (lines, circles, dots, etc.). These attri-
butes are selected from the range of colours available on the
specific M20 configuration. The colours available on the M20 eight-
colour system are: black, red, green, yellow, blue, magenta, cyan and
white. The colours available on the M20 four-colour system are four
colours chosen from the eight just mentioned. The monochrome system
provides two colours, black and white.

The eight colours are numbered from 0 to 7. On four-colour systems,
the colours chosen in the range 4 to 7 map to a value in the range 0
to 3 via a logical operation. Bits 0 and 2 of the binary representa-
tion are OR'd, e.g. the values 4 (100 binary) and 5 (101 binary) give
TORO0=1and 1 OR1 =1 respectively. This sets the least signifi-
cant bit (bit 0) and bit 1 remains unchanged. Thus, the values 4 and
5 will become 1 after the logical operation (4 decimal = 100 binary
which becomes 01 binary = 1 decimal and 5 decimal = 101 binary which
becomes 01 binary = 1 decimal) and the colour 1is green (if the

9=9

default value has not been changed). The values 6 and 7 will become 3
after the logical operation (6 decimal = 110 binary which becomes 11
binary = 3 decimal and 7 decimal = 111 binary which becomes 11 binary
= 3 decimal) and the colour is red.

The logic-operator attribute determines the resultant output colour,
considering the type of graphics routine (text or graphics), the set-
ting of the foreground, background or graphics colour attribute and
the colour of the target pixels in the view area. There are six logic
operators and each one acts on all pixels 1in determining what the
final colour shall be. The action occurs one pixel at a time, using
the colour of the target pixel and that of the new graphics output as
operands.

FUNCTIONAL GROUPS

The functional capabilities of the M20 Graphics Package may be divided
into four general classes, as follow.

- Transformation and control.

ClearViewArea : clears the specified view area.
CloseGraphics : closes the graphics session.
CloseViewTrans : closes the specified view area.
DiviceViewArea : creates a new view area.

Escape : colours an area.

OpenGraphics : opens the graphics session.

SelectViewTrans : activates the selected view area.
SetWorldCoordSp : defines the world coordinate space.

- Graphics Output.
GDP : Generalised Drawing Primitive, creates a circle

or an ellipse.
GraphCursorAbs : moves the graphics cursor to a specified absolute

position.

GraphCursorRel : moves the graphics cursor to a specified relative
position.

GraphPosAbs . redefines the current graphics position
(absolute).

GraphPosRel : redefines the current graphics position
(relative).

LineAbs : draws a line from the current graphics position
to a specified absolute position.

LineRel : draws a line from the current graphics position

to a specified relative position.

9-4 ASSEMBLER USER GUIDE

INTRODUCTION TO GRAPHICS

MarkerAbs : displays a point at a specified absolute position.
MarkerRel : displays a point at a specified relative position.
PixelArray : transfers an image onto the screen.

Polyline : draws a connected sequence of lines.

Polymarker : displays the specified points.

TextCursor : moves the text cursor.

Graphics Attributes.

SelectCursor
SelectGrColour

SelectTxColour
SetColourlLogic

SetColourRep
SetGrCsrBlnkrate
SetGrCsrShape

SetLineClass

SetTextline

SetTxCsrBlnkrate :

SetTxCsrShape
Inquiry.

Errorlnquiry

IngAttributes

InqCurTransNmbr
IngGraphCursor

IngGraphPos
IngPixel
IngPixelArray
IngPixelCoords
InqTextCursor
IngViewArea

IngWorldCoordSp

: chooses which cursor (if any) is to be
displayed.

: selects the colour for subsequent graphics
output.

: selects the colours for subsequent text output.

: defines a logic operator that influences the
output colour.

: sets one of the four colour indices to one of
the eight M20 colours (four-colour systems
only).

: sets the blink rate for the graphics cursor.

: defines the graphics cursor shape.

: determines the graphics output for the LineAbs,
LineRel and Polyline routines.

: sets the character width and text line height.

sets the blink rate for the text cursor.

: defines the text cursor shape.

returns the error status for the most recently
called graphics routine other than the inquiry
routines.

1 returns the colour, logic operator and line

attributes for the current view area.

: returns the number of the current view area.

returns the position and blink rate of the
graphics cursor for the current view area.
returns the location at which new graphics
output will begin.

returns the colour number of the pixel which is
nearest to the specified point.

retrieves a rectangular image from the current
view area and stores it.

returns the device coordinates of a given (x,y)
pair of world coordinates.

returns the next text entry point and the text
cursor blink rate for the current view area.
returns the size and text parameters of the
current view area.

returns the world coordinate space parameters
for the current view area.

9-5

ERRORS

Error reporting is handled in two ways. For all routines, an error
status is reported; the value zero means no error. If an error has
occurred, a value in the range 1 to 255 inclusive is returned. The code
numbers used are the standard PCOS error codes with the same meanings
(see Appendix E).

For most routines, this status value is transferred to an error status
variable maintained by the M20 Graphics Package. There is a routine
(Errorlnquiry) which returns the current value of this variable (that
is, the error status of the most recent Graphics Package routine called
other than the inquiry routines).

The inquiry group of routines handles error reports differently. These
never touch the error status variable (except for Errorlnquiry which
retrieves its value). They report any error directly through an error
parameter, and they do not generate an error status.

DEFAULT CONDITIONS

The following is a list of the default conditions that will be assumed
unless otherwise specified:

- world coordinates range from 0.0 to 511.0 on the X axis and from 0.0
to 255.0 on the Y axis, coinciding with the device coordinates except
that the latter are integer values

- view area number 1 is the full screen, with device coordinates rang-
ing from 0 to 511 on the X axis and from 0 to 255 on the Y axis

- colour depends on the system configuration

a) the monochrome system sets the background colour to 0 = black and
the text and graphics colours to 1 = white

b) the four-colour system sets the background colour to 0 = black;
the text and graphics colours to 1 = green; 2 = blue; 3 = red

c) the eight-colour system sets 0 = black to the background colour, 1
- green +to the text and graphics colour, 2 = blue, 3 = cyan, 4 =

red, 5 = yellow, 6 = magenta, 7 = white

- the logic operator is PSET, which displays graphics output in the
chosen colour

- the line class is solid line

9-6 ASSEMBLER USER GUIDE

INTRODUCTION TO GRAPHICS

no cursor is displayed

there is one cursor blink per second (one blink includes two changes
of state, one from ON to OFF and one from OFF to ON)

the text cursor shape is 7 pixels wide x 11 scanlines high (within an
8x12 space) and is displayed as a rectangle having alternate pixels
set

the graphics cursor shape is 2 pixels wide x 2 scanlines high

the graphics position is (0.0, 0.0)

the graphics cursor is at the centre of the screen, 1i.e. the upper
left hand corner of the graphics cursor is at (255, 127)

there are 16 scanlines per text line and 8 pixels per character

there are 16 textlines (rows) and 64 characters (columns) per screen.

10. THE M20 GRAPHICS ROUTINES

ABOUT THIS CHAPTER

This chapter describes in alphabetical order all the

by the M20 Graphics Package.

CONTENTS

ClearViewArea

CloseGraphics

CloseViewTrans

DivideViewArea

Errorlnguiry

Escape

GDP

GraphCursorAbs

GraphCursorRel

10-11

10-12

GraphPosAbs
\GraphPosRel
IngAttributes
IngCurTransNmbr
IngGraphCursor
IngGraphPos
IngPixel
IngPixelArray

IngPixelCoords

routines

provided

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-21

10-23

InqTextCursor

InqViewArea

IngWor1dCoordSp

LineAbs

LineRel

MarkerAbs

MarkerRel

OpenGraphics

PixelArray

Polyline

Polymarker

SelectCursor

SelectGrColour

SelectTxColour

SelectViewTrans

SetColourlLogic

SetColourRep

SetGrCsBlnkrate

SetGrCsrShape

10-24

10-25

10-26

10-27

10-28

10-29

10-30

10-31

10-32

10-34

10-35

10-36

10-37

10-39

10-41

10-42

10-44

10-45

10-46

SetLineClass

SetTextline

SetTxCsrBlinrate

SetTxCsrShape

SetWorldCoordSp

TextCursor

10-47

10-48

10-49

10-50

10-51

10-52

THE M20 GRAPHICS ROUTINES

ClearViewArea

Clears the specified view area.

Input/Output Parameters

Input: R4-<e— view area number (in the range 1 to 16, intager)

Output: R5 — error code (integer)

Characteristics

This function clears the specified view area, created via Divide-
ViewArea. The view area is not closed, this call merely removes all its
current contents. The background colour 1is wunchanged and fills the
whole view area.

Errors

1f there are any errors, the status code is returned in RS5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-1

CloseGraphics

Closes the graphics session.

Input/Output Parameters

none

Characteristics

If this routine is called it must be the last graphics package call.
Calls to graphics routines must be ' bracketed by the
OpenGraphics/CloseGraphics pair, otherwise results are far from
guaranteed.

View area definitions and graphics package tables are cleared. The ini-

tial default conditions are reset (for these conditions see OpenGraph-
ics).

10-2 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

CloseViewTrans

Closes the specified view area.

Input/Output Parameters

Input: RB <e—— view area number (in the range 0 to 16, integer)

Output: none

Characteristics

This routine closes the specified view area created via DivideViewArea.
The view area is joined to the one(s) next to it and takes on the same
background colour(s) as the adjacent view area(s). The resulting view
areas must be rectangular. The enlarged view area(s)' coordinate defin-
itions are adjusted to map the view area's new dimensions.

If the current view area is closed then view area number 1 becomes the
current view area. If register R8 is loaded with the value zero then
all the view areas are closed and view area number 1 becomes the current
one, filling the entire screen.

View area number 1 cannot be closed. If the input parameter specifies
the value 1, the value of a view area which has not been opened, or a

value not within the range § to 16, no error message is generated and
the attempt to close the view area has no effect.

Errors

No error messages are returned from this routine.

DivideViewArea

Creates a new view area.

Input/Output Parameters

Input:

Output:

R8 <«e— division/orientation (in the range 0 to 3, integer)
R9 «w— division point (integer)

R7 = view area number (in the range 2 to 16, integer)
RS —> error code (integer)

Valid Input Values

R8:

RG:

defines which part of the view area will become the new

view area

0: horizontal split; the upper view area is the new one
1: horizontal split; the lower view area is the new one
2: vertical split; the left view area is the new one

3: vertical split; the right view area is the new one.

defines the division point

if R8 is loaded with the value 0 or 1 (horizontal split)
then R9 is loaded with the number of scanlines (min = 1,
max = current view area height - 1) counting from the
top scanline of the current view area

if R8 is loaded with the value 2 or 3 (vertical split),
then R9 is loaded with the required view area width
expressed as a number of characters, in the range 1 to
63 or 1 to 79, counting from the left side of the
current view area.

Characters may be six or eight pixels wide, but the
width in pixels of the left view area must be a multiple
of 8 and is calculated from the following formula:

1eft_viewﬁarea=truncate[(num of_chars*char_width+3)/8]*8

where "num of chars" is equal to the number of charac-
ters specified by R9 and 'char_width" is the current
character width in pixels (6 or 8).

When the character width is eigth pixels, this calcula-
tion will always give exactly sufficient pixels to con-
tain the number of characters specified in R9, as the
formula reduces to :

ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

left view area = num of chars * 8

However, when the character width has been set (via Set-
Textline) to 6 pixels, there is nearly always a right
margin (of the left view area) of less than six pixels,
and this formula does not round up the view area width
to allow space for the final character. Hence, in this
case, the number of characters allowed will be one less
than the value specified in R9, 1i.e. one less than
required unless the user has added one to his input to
cover this eventuality.

- if R9 is loaded with the value -1, then the current view
area is divided as equally as possible.

Output Values

R7: this register contains the number of the new view area. The value
is within the range 2 to 16.

Characteristics

This routine creates a new view area by splitting the current one as
specified by the values loaded in R8 and R9. R7 contains the number of
the new view area.

The new view area inherits the following attributes from its parent view
area: text spacing, colour, and world coordinate space definition.

The initial state is the full screen defined as view area number 1. This
can be split into other view areas; adjacent view areas may be closed
and joined with it, as long as the resultant view area is rectangular.
View area number 1 always exists, it can not be closed. There may be a
maximum of 16 view areas at a time. A new view area 1is assigned the
lowest available number in the range 2 to 16 (e.g., if 6 view areas are
created and view area number 3 is closed, 3 will be assigned to the view
area next created).

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero 1s returned.

10-5

Errorlnquiry

Returns the error status for the most recently called graphics routine.

Input/Output Parameters

Input: none

Qutput: RS = error code (in the range 0 to 255, integer)

Output Values

The output value of this function may be:
0: no error for the most recently called graphics routine
1 to 255: an error has occured in the most recently called graphics

routine. The code numbers used are the standard PCOS error
codes, with the same meanings.

Characteristics

This routine returns the error status for the most recently called
graphics routine other than the Inquiry (Ing ...) routines.

The Inquiry class of routines does not alter or test the error status
variable: each one has its own error parameter, through which it
transmits error messages.

Routines, other than the Inquiry routines, clear the error status vari-
able before execution, and upon completion this variable reflects the
error status of the routine. If the value is zero, then no error has
occurred.

Errors

This routine does not generate errors.

10-6 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

Escape

Colours an area.

Input/Output Parameters

Input: R1 <e—— function number (1)
RRZ w—— data structure pointer

Output: R5 —— error code (integer)

Characteristics

This routine paints an area in accordance with the parameters in the data
structure pointed to by the input value.

The data structure (e.g., array, record, etc.) must contain the following
information:

- an x coordinate (two 16-bit words, IEEE single-precision real number,
high-order word first)

- a y coordinate (two 16-bit words, 1EEE single-precision real number,
high-order word first)

- two colour numbers, one for painting the area identified by the point
(x, y) and one for the border (each colour number is a 16-bit word,
integer, high-order first).

The area surrounding the point (x, y) is painted with the colour speci-
fied in the data structure, within a contiguous border. No colouring will
occur if the point happens to fall on the border. The border must be of
only one colour.

The colour numbers have different effects on the monochrome, four-colour
and eight-colour systems. However, integers in the range 0 to 7 will work

for both colour parameters without generating errors on all three types
of systems. On the monochrome system, O=black and a value in the range 1
to 7=white. On four-colour systems, the two colour numbers are indices
into a table of four pre-selected colours (see SetColourRep). On eight-
colour systems, the values in the range 0 to 7 have the following mean-
ings : O=black, 1=green, 2=blue, 3=cyan, 4=red, 5=yellow, b=magenta,
7=white.

10-7

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero 1is returned.

10-8 ' ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

GDP

Generalised Drawing Primitive, creates a circle or an ellipse.

Input/Output Parameters

Input: RRé<e— X array pointer
RR2<e——Y array pointer
R4 <e—1 (circle) or
2 (ellipse)

Output: R5 — error code (integer)

Characteristics

The application program must declare and allocate the two coordinate ar-
rays. fach array contains single-precision numbers; the high order word
must precede the low order word. The size of each array must be at least
large enough to store as many double-word numbers as there are points (2
points for the circle and 3 for the ellipse).

Default values will be assumed for colour, world coordinate space defin-
ition, and logic operator.

This function does not affect the current graphics position.

Circle: This routine draws a circle if R4 is loaded with the value 1.

The world coordinates of the centre point must be stored in the first
element of the two arrays X[1)] and Y[1]. The second element of the two
arrays X[2] and Y [2] is the world coordinate of a point on the cir-
cumference. The GDP circle function determines the radius by calculat-
ing the distance from the centre of the circle to this absolute location
X [2] and Y [2].

The output generated by this function is always a circle, regardless of
the coordinate space definition.

If the coordinates generate a circle larger than the view area then the
portions that lie outside the view area are clipped.

10-9

Ellipse: This routine draws an ellipse (parallel to the x or y axis) if
R4 is loaded with the value 2.

The world coordinates of the centre point must be stored 1in the first
element of the two arrays X [1] and Y [1]. The second and third elements
contain the world coordinates of one end of the minor axis (either one
will do), and of one end of the major axis. (It does not matter which
axis point comes first.)

1f the coordinates generate an ellipse larger than the view area then
the portions that lie outside the view area are clipped.

The exact shape of the ellipse may vary depending on the coordinate
space definition.

Errors

1f there are any errors, the status code is returned 1in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero 1s returned.

10-10 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

GraphCursorAbs

Moves the graphics cursor to the specified absolute position.

Input/Output Parameters

Input: RRO-<e— x (single-precision real)
RR2 e— y (single-precision real)

Output: RS — error code (integer)

Characteristics

This routine moves the graphics cursor to the absolute position speci-
fied 1in world coordinates. The graphics cursor is displayed only if the
SelectCursor routine has been previously invoked with R8 loaded with the
value 1.

If the coordinates specify a point which is outside the current view
area then the current position of the graphics cursor remains unchanged
and an error code is generated.

The current graphics position is not associated with the position of the
graphics cursor. The position of the graphics cursor coincides with that
of the current graphics position only when both are assigned the same
coordinates. This separation allows the application program to use the
graphics cursor as an echo symbol to indicate a position on the screen
that reflects the values entered by an input device.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero is returned.

10-11

GraphCursorRel

Moves the graphics cursor to a specified relative position.

Input/Output Parameters

Input: RRO<e— dx (single-precision real)
RR2<e— dy (single-precision real)

Output: R5 —error code (integer)

Characteristics

This routine moves the graphics cursor to a new position which 1is
obtained by adding the input values dx, dy (which specify the distance
between the old position and the new one in world coordinates) to the
old graphics cursor position. The resulting position must fall within
the user's word coordinate space definition.

The graphics cursor is displayed only if the SelectCursor routine has
been previously invoked with R8 loaded with the value 1.

1f the resulting position is outside the current view area then the
current position of the graphics cursor is unchanged and an error code
is generated.

The current graphics position is not associated with the position of the
graphics cursor. The position of the graphic cursor coincides with that
of the current graphics position only when both are assigned the same
coordinates. This separation allows the application program to use the
graphics cursor as an echo symbol to indicate a position on the screen
that reflects the values entered by an input device.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-

ings. See APPENDIX E for the error descriptions. If there are no

errors, a zero 1is returned.

10-12 : ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

GraphPosAbs

Redefines the current graphics position (absolute).

Input/Output Parameters

Input: RRO<— x (single-precision real)
RR2 @— y (single-precision real)

Output: R5 — error code (integer)

Characteristics

This routine redefines the current graphics position for subsequent
graphics output. The input values specify an absolute location in world
coordinates. Any subsequent graphics output that uses the current
graphics position as a starting point will use this redefined position.

The current graphics position not associated with the position of the
graphics cursor. The position of the graphic cursor coincides with that
of the current graphics position only when both are assigned the same
coordinate. This separation allows the application program to use the
graphics cursor as an echo symbol to indicate a position on the screen
that reflects the values entered by an input device.

The specified point becomes the current graphics position even if it is
not within the current view area.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-13

GraphPosRel

Redefines the current graphics position (relative).

Input/Output Parameters

Input: RRO-e— dx (single-precision real)
RR2 — dy (single-precision real)

Qutput: R5 —== error code (integer)

Characteristics

This routine redefines the current graphics position for subsequent
graphics output. The new graphics position is obtained by adding the
input values dx,dy (which specify a distance in world coordinates) to
the previous graphic position. The next graphics output that uses the
current graphics position as a starting point will use this redefined
position.

The current graphics position is not associated with the position of the
graphics cursor. The position of the graphic cursor coincides with that
of the current graphics position only when both are assigned the same
coordinate point. This separation allows the application program to use
the graphics cursor as an echo symbol to indicate a position on the
screen that reflects the values entered by an input device.

The specified point becomes the current graphics position even if it is
not within the current view area.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero is returned.

10-14 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

IngAttributes

Returns the colour, logic operator and line attributes for the current
view area.

Input/Output Parameters

Input: none

Output: RS —# error code (integer)
R7 — logic operator (in the range 0 to 5, integer)
R8 = line class (in the range 0 to 2, integer)
R9 = current graphics colour in the range 0 to 7, integer)
R10 —» text foreground colour (in the range 0 to 7, integer)
R11 —» background colour (in the range 0 to 7, integer)

Characteristics

This routine returns the following information for the current view
area:

- current graphics colour (see SelectGrColour)

- text foreground colour (see SelectTxColour)

- background colour (see SelectTxColour and ClearViewArea)

- line class (see SetlLineClass)

- logic operator for colour (see SetColourlLogic).

If the view area is undefined (see DivideViewArea) an error code is
returned.

Errors

If there are any errors, the status code is returned in RS. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-15

IngCurTransNmbr

Returns the number of the current view area.

Input/Output Parameters
Input: none

Output: R5 —# error code (integer)
R7 —» view area number (integer, in the range 1 to 16)

Characteristics

This routine returns the identification number of the current view area.
This number may be used for:

selecting a different view area

- redefining the view area's world coordinate space
- clearing the view area's contents

- closing the view area

_ retrieving information about the view area (e.g., colour, coordi-
nates).

Errors

The only value returned in RS is 0, no error.

10-16 - ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

IngGraphCursor

Returns the position and blink rate of the graphics cursor for the
current view area.

Input/Output Parameters

Input: none

Output: RRO — X (single-precision real)
RR2 — Y (single-precision real)
R5 —s error code (integer)
R9 —= blink rate (in the range 0 to 20, integer)

Characteristics

This routine returns the location (X,Y) 1in world coordinates of the
graphics cursor and its blinkrate expressed in state changes per second
(from OFF to ON or from ON to OFF), rounded to the nearest 50 mil-
liseconds. See SetGrCsrBlnkrate.

The graphics cursor is placed with its upper left hand corner of its
8x12 pixel shape at this (X,Y) position.

The graphics cursor position and the graphics position are generally not
the same; the graphics cursor merely marks a position within the view
area.

The graphics cursor position and the text cursor position are entirely

independent of each other. Only one of these two cursors (or neither, if
so specified) appears at any one time.

Errors

The only value returned in R5 is 0, no error.

10-17

IngGraphPos

Returns the location at which new graphics output will begin.

Input/Output Parameters
Input: none
Output: RR2 —Y (single-precision real)

R5 —serror code (integer)
RR6 —e X (single-precision real)

Characteristics

This routine returns the location (X,Y), in world coordinates, within
the current view area at which new graphics output will begin (e.g., a
LineRel call would generate a line with the first end at this point).

Errors

The only value returned in R5 is 0, no error.

10-18 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

IngPixel

Returns the colour number of the pixel which is nearest to the specified

point.

Input/Output Parameters

Input: RRO <=— X world coordinate
(single-precision real)

RR6 <=— Y world coordinate
(single-precision real)

Output: R3 — colour number (in the range 0 to 7, integer)
R5 —= error code (integer)

Output Values

R3 : this register contains the colour number.

On monochrome systems:

colour number colour
0 black
1 white

On four-colour systems, R3 returns a value in the range 0 to 3
SetColourRep). The default values are: ’

colour number colour
0 black
1 green
2 blue
3 red

(see

10-19

On eight-colour systems:

colour number colour

black
green
blue
cyan
red
yellow
magenta
white

~NouUhWN —2O

Characterisitcs

This routine returns the colour number of the pixel which is nearest to
the specified world coordinate (X,Y) , in the current view area.

In the monochrome and eight-colour systems, the colour numbers are pre-
defined; in four-colour systems, the value is an index into a table (see
SetColourRep) of pre-selected colours (four colours selected from the
eight available).

Errors

1f there are any errors, the status code is returned inm R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-20 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

Ian{xelArray

Retrieves a rectangular image from the current view area and stores ik

Input: RRO-<— X width (single=-precision real)
RR2 <— Y height (single-precision real)
RR6 e— array pointer

Output: R4 —= invalid code (0 or 1, integer)
RS — error code (integer)

Valid Input Values

RRO: width of the rectangle to be retrieved, expressed in
world coordinates, single-precision real

RRZ: height of the rectangle to be retrieved, expressed in
world coordinates, singlee-precision real.

Output Values

R4: this register reports discovery of invalid pixel colour
values 1if 1it is set to 1; if all pixel values are valid
this register is set to O.

Characteristics

This routine retrieves a rectangular image from the current view area,
and stores it in the array pointed to by RRé to be displayed later. The
inverse function is accomplished by PixelArray.

The upper left-hand corner of the rectangle to be retrieved from the
screen is placed at the current graphics position.

The two registers RRO and RR2 specify the rectangle's dimensions in
world coordinates. These dimensions are transformed into device coordi-
nates (pixels). The size of the storage array depends on the total
number of pixels in the rectangle. The user may calculate this total
number of pixels by:

1. retrieving the device coordinates for each corner of the rectangle
(via 1ngPixelCoords) only if the default world coordinates have been
changed

3. applying the "array size'" formula (see below).

The application program is responsible for knowing the required array
size and allocating space for it.

The array cantains the bit images of the scanlines within the rectangle,
packed 16 bits for array entry. Each scanline image will begin with the
first bit of the scanline in bit 15 of the first array entry (left-
justified). The size of the array (in words) may be calculated according
to the following formula:

array size=truncate[(pixel width+15)/16]*pixel height*colour planes+3

where ''colour planes' is the number of colour planes in the system con-
figuration. ~Each colour plane provides one bit (i.e. two states) per
pixel. With two colour planes, each pixel is represented by two bits
and thus four states are possible. By extension, three colour planes
provide eight states. Therefore, monochrome has 1-colour plane, four-
colour has 2 colour planes and eight-colour has.3 ‘colour planes.

The extra 3 words in the array (at the beginning) contain the
rectangle's width, height and special codes related to the conditions in
which the array was created (number of colour planes, etc.). The array
is one dimensional. The maximum size of the array is that needed for a
full screen rectangle, assuming that there is sufficient memory in the
system configuration for an array that large.

Errors

If there are any errors, the status code is returned in R5. The code
pumbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

THE M20 GRAPHICS ROUTINES

IngPixelCoords

Returns the device coordinates (expressed in pixels) of a given point
expressed in world coordinates.

Input/Qutput Parameters

Input: RRO <— X world coordinate
(single-precision real)

RR2 <«— Y world coordinate
(single-precision real)

Output: R5 —== error code (integer)
R6 — X device coordinate (in the range 0 to 511, integer)
R7 — Y device coordinate (in the range 0 to 255, integer)

Characterisitcs

This routine returns the device coordinates, expressed in pixels, for
the input world coordinates. The device coordinates are calculated with
respect to the borders of the current view area.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

InqTextCursor

Returns the next text entry pom% and the tex curjw1 J L i
current view area.

Input/Output Parameters

Input: none

Output: R5 —s=error code (integer)
R7 —a=blink rate (in the range 0 to 20, integer)
R8 —» text column (in the range 1 to 64 or 1 to 80, integer)
R9 =~ text row (in the range 1 to 16 or 1 to 25, integer)

Characterisitcs

This routine returns the next text entry point, which coincides with the
location of the text cursor, and the text cursor blink rate for the
current view area. See SetTxCsrBlnkrate.

The text cursor position is given in number of columns (e.g., number of
characters) from the view area's left edge and of rows (e.g., number of
text lines) from the view area's top edge.

The cursor blink rate is expressed in state changes per second (from OFF
to ON or from ON to OFF), rounded to the nearest 50-milliseconds.

1f the information is not available it is because the view area 1is too
small to contain text. An error code is returned and the other output

parameters remain undefined.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero is returned.

—

THE M20 GRAPHICS ROUTINES

IngViewArea

Returns the current view area's size definition and text parameters.

Input/Output Parameters

Input: none

Output: R5 —p- error code (integer)

R8 —p view area width (in the range 1 to 64 bytes,
integer)

R9 — view area height (in the range 1 to 256 scanlines,
integer)

R10 — text character width (6 or 8 pixels, integer)

R11 —» text line height (in the range 10 to 16 scanlines,
integer)

Characteristics

This routine returns the current view area's width (in bytes) and height
(in scanlines) and the current character's width (in pixels) and height
(in scanlines).

Errors

The only value returned in RS is 0, no error.

10-25

IngWor1dCoordSp

Returns the world coordinate space parameters for the current view area.

Input/Output Parameters

Input: none

Output: RS —s error code (integer)
RR6 —s X0 (single-precision real)
RR8 —s= Y0 (single-precision real)
RR10 —» X1 (single-precision real)
RR12 —p Y1 (single-precision real)

Characteristics

This routine returns the world coordinates of the lower left—hand corner
(X0,Y0) and of the upper right-hand corner (X1,Y1) respectively, of the
current view area.

These coordinates do not determine the proportions of the view area;
they determine how points in world coordinates will map to the current
view area.

Errors

The only value returned in R5 is 0, no error.

10-26 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

LineAbs

Draws a line from the current graphics position to the specified abso-
lute position.

Input/Output Parameters
Input: RRO<— x (single-precision real)
RR2<e— y (single-precision real)

Output: RS —error code (integer)

Characteristics

This routine draws a line from the current graphic position to the abso-
lute (x,y) position which is specified in world coordinates.

Default values will be assumed for coordinate space, colour, logic
operator, and line class.

If the (x,y) coordinates specify a point which is outside the view area
but within the range of a single-precision floating-point number, then a
line is drawn in the direction of the specified point but is clipped on
the view area boundary.

The specified point becomes the current graphics position, even if it is
outside the view area.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions, If there are no
errors, a zero is returned.

10-27

LineRel

Draws a line from the current graphics position to a specified relative
position.

Input/Output Parameters

Input: RRO<e— dx (single-precision real)
RR2<e— dy (single-precision real)

Qutput: R5 —==error code (integer)

Characteristics

This routine draws a line, the length and direction of which are speci-
fied in world coordinates by the dx and dy input parameters, starting
from the current graphics position.

Default values will be assumed for coordinate space, colour, logic
operator, and line class.

1f the point, resulting from the input distances, is outside the view
area but within the range of a single-precision floating-point number,
then a line is drawn in the specified direction but is clipped on the

view area boundary.

The resulting point becomes the current graphic position, even if it 1is
outside the view area.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero is returned.

10-28 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

MarkerAbs

Displays a point at the specified absolute position.

Input/Output Parameters

Input: RRO<e— x (single-precision real)
RR2<—y (single-precision real)

Output: RS — error code (integer)

Characteristics

This routine displays a point at the absolute (x,y) position which is
specified in world coordinates.

Default values will be assumed for coordinate space, colour, and logic
operator.

If the (x,y) coordinates specify a point which is outside the view area
but within the range of a single-precision floating-point number, then
no point is displayed. The resulting point becomes the current graphic
position, even if it is outside the view area.

Errors

Lf there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-29

MarkerRel

Displays a point at a specified distance from the current graphics posi-
tion.

Input/Output Parameters

Input: RRO=e— dx (single-precision real)
RR2<e— dy (single-precision real)

Qutput: R5 —®=error code (integer)

Characteristics

This routine displays a point at a specified (dx,dy) distance from the
current graphics position. The distance is specified in world coordi-
nates.

Default values will be assumed for coordinate space, colour, and logic
operator.

1f the point, resulting from the input distances, 1is outside the view
area but within the range of a single-precision floating-point number,
then no point is displayed. The resulting point becomes the current
graphic position.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero is returned.

10-30 ASSEMBLER USER GULDE

o

—

THE M20 GRAPHICS ROUTINES

OpenGraphics

Sets up the M20 for creating graphics.

Input/Output Parameters

none

Characteristics

This procedure must be the first graphics call. The default conditions
are set:

- a single view area, labelled 1

- world coordinates coincide with device coordinates (0.0-511.0 pixels
x 0.0-255.0 scanlines)

- black as the background colour

- white as the foreground and text colours for the black and white sys-
tem and green for the colour system

- no cursor displayed

- a blank screen.

It may also be used to reinitialise the graphics environment, thus
clearing the effects of all the preceding graphics calls. The applica-

tion program handles subsequent graphics functions and procedures and
their output as if starting afresh.

19-31

PixelArray

Transfers an image onto the screen.

Input/Output Parameters

Input: RRO <e— X width (single-precision real)
RR2- <e— Y height (single-precision real)
RR10 <«— array pointer

Qutput: R5 —— error code (integer)

Characteristics

This routine retrieves a rectangular image stored into a one-dimensional
array pointed to by RR10 and displays it on the screen. The rectangular
image stored in memory is part of (or all) a picture previously
displayed on a view area.

The size of the rectangular image to be displayed is loaded in RRO and
RR2. These two values are in world coordinates.

The image is displayed with the rectangle's upper left—hand corner at
the current graphics position.

The two values X width and Y height loaded in RRO and RR2 need not
correspond to the full size of the image implied by the array. If the
rectangular image stored in the array is relatively large compared to
this routine's arguments X width, Y height, then only part of the stored
image is displayed. The right and bottom edge of the image are clipped.

1f the rectangular image stored 1in the array is smaller than that
implied by the arguments X width and Y height of this routine, then the
full picture will appear. This will not extend to the right and bottom
borders implied by the two arguments.

1f the current graphics position is too close to the right and/or bottom
edge of the screen for the entire image to be displayed, then only part
of the image is displayed and the rest of it is clipped at the screen
edge.

The default value for logic operator is assumed.

10-32 ‘ ASSEMBLER USER GUIDE

—

THE M20 GRAPHICS ROUTINES

Errors

If there are any errors, the status code is
numbers correspond to the standard PCOS err
ings. See APPENDIX £ for the error descr
errors, a zero is returned.

returned in R5. The code
or codes, with the same mean-
iptions. If there are no

10-33

Polyline

Draws a connected sequence of lines.

Input/Output Parameters

Input: RR6=<e— X array pointer
RR2<e— Y array pointer
R4 <e— number of points (integer, equal to or greater than 2)

Output: R5 — error code (integer)

Characteristics

This routine draws lines connecting the points specified by the two
arrays. The two arrays are the same size and contain single-precision
real numbers. A coordinate is made up of element X[J] of the first array
and element Y[J] of the second array. Register R4 contains an integer
specifying the number of points to be connected. The points are absolute
locations in world coordinates.

Default values will be assumed for coordinate space, colour, logic
operator, and line class.

The application program must declare and allocate <the two coordinate
arrays. Each array contains single-precision real numbers; the high
order word must precede the low-order word. The size of each array must
be at least large enough to store as many double-word numbers as there
are points.

The figure will not be a closed polygon unless the first and last points
specified by the arrays coincide.

1f the coordinates specify points that are not within the view area,
then the figure will be clipped on the view area boundary. If the last
point is outside the view area, it nevertheless becomes the current
graphics position.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero is returned.

10-34 ASSEMBLER USER GUIDE

—

THE M20 GRAPHICS ROUTINES

Polymarker

Displays the specified points.

Input/Output Parameters

Input: RR6<e— X array pointer
RR2<w— Y array pointer
R4 <— number of points (integer, equal to or greater than 1)

Output: RS — error code (integer)

Characteristics

This routine displays the number of points specified by R4; each one is
identified by the coordinates specified by the two arrays. A coordinate
is made up of element X[J] of the first array and element Y[J] of the
second array. The two arrays are the same size and contain single-
precision real numbers. The points are absolute locations in world coor-
dinates.

Default values will be assumed for coordinate space, colour, and logic
operator.

The application program must declare and allocate the two coordinate
arrays. Each array contains single-precision real numbers; the high
order word must precede the low order word. The size of each array must
be at least large enough to store as many double-word numbers as there
are points.

The coordinates which specify points that are outside the view area will
not be displayed and no error message is generated. However, the current
graphics position will track these non-visible points and if the last
point is outside the view area it nevertheless becomes the current
graphics position.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-35

SelectCursor

Chooses which cursor is to be displayed.

Input/Output Parameters

Input: R8<— 0 (neither cursor) or
1 (graphics cursor) or
2 (text cursor)

Output: R5 —error code (integer)

Characteristics

This routine chooses which cursor (if any) is to be displayed.

1f selected, the text cursor is displayed and text will be displayed
starting from that position.

1f selected, the graphics cursor is displayed with its upper left hand
corner at the current cursor coordinates. However, subsequent graphics
output will not start from this point unless the current graphics posi-
tion has been updated to this same position.

The text and graphics cursor do not usually occupy the same position.
The two cursors cannot be displayed simultaneously.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-36 . ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

SelectGrColour

Selects the colour for subsequent graphics output.

Input/Output Parameters

Input: R8<e— colour code (in the range 0 to 7, integer)

Output: R5 —serror code (integer)

Valid Input Values

On monochrome systems, R8 (colour code) selects either black or white to
be the graphics colour attribute:

colour code graphics colour attribute
0 black
1 to 7 white

On four-colour systems, R8 (colour code) selects the colour attribute
indirectly by acting as an index into a table of four colours
preselected from the eight possible colours (see SetColourRep):

colour code graphics colour attribute

0 to 3 the colour attribute associated with
each one of the four values 0, 1, 2
and 3, depends on the values set by
default or via SetColourRep.

4 to 7 The values in this range map to a value
in the range 0 to 3 via a logical opera-
tion (see the following note).

Note: Bits 0 and 2 of the binary representation are OR'd, e.g., the
values 4 (100 binary) and 5 (101) give 1 OR 0 = 1 and 1 0R 1 =1 respec-
tively. This sets the least significant bit (bit 0) and bit 1 remains
unchanged. Thus, the values 4 and 5 will become 1 after the logical
operation (4 decimal = 100 binary which becomes 01 binary = 1 decimal
and 5 decimal = 101 binary which becomes 01 binary = 1 decimal) and the
colour is green (if the default value has not been changed). The values
6 and 7 will become 3 after the logical operation (6 decimal = 110
binary which becomes 11 binary = 3 decimal and 7 decimal = 111 binary
which becomes 11 binary = 3 decimal) and the colour is red.

10-37

On eight-colour systems, R8 (colour code) selects the colour attribute
directly, according to the following table:

colour code graphics colour attribute

black
green
blue
cyan
red
yellow
magenta
white

~N~NoubwhNh =20

Characteristics

This routine selects the specified colour for subsequent graphics out-
put. There are different effects on monochrome, four-colour and eight-
colour systems.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-38 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

SelectTxColour

Selects the colours for subsequent text output.

Input/Output Parameters
Input: R8-e— foreground colour code (in the range 0 to 7, integer)
R9 <—background colour code (in the range 0 to 7, integer)

Output: R5S—=error code (integer)

Valid Input Values

On monochrome systems, if the foreground colour is set to black (0), the
background colour may be set to any value in the range 1 to 7 (white).
The default value for the background colour is black.

On four colour systems, each parameter selects the colour attribute
indirectly by acting as an index into a table of four colours
preselected from the eight possible colours (see SetColourRep):

background colour code and text colour attribute
foreground colour code

0 to 3 the colour attribute, associated
with each one of the four values
0, 1, 2 and 3, depends on the
values set via SetColourRep.

4 to 7 the colours selected are not
easily predictable.

On eight colour systems, each parameters selects the colour attribute
directly, according to the following table:

Background colour code and text colour
foreground colour code attribute

black
green
blue
cyan
red
yellow
magenta
white

NoumsnwNn = O

10-39

Characteristics

This routine specifies the colours to be wused as the foreground and
background of the text output. Text is displayed in the foreground
colour. The background colour also affects the ClearViewArea routine and
the "PRESET" logic operator (see SetColourLogic).

The values set by this function hold until it is called again.

There are different effects on monochrome, four-colour and eight-colour
systems.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-40 ' ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

SelectViewTrans

Activates the selected view area.

Input/Output Parameters

Input: R8<— view area number (in the range 1 to 16, integer)

Output: RS —error code (integer)

Characteristics

This routine activates the specified view area which has previously been
defined via DivideViewArea. All text and graphics output will be
displayed on this view area and is entered in accordance with its attri-
butes (colour, world coordinate space, text spacing, current text and
graphics positions, etc.).

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-41

SetColourlLogic

Defines a logic operator that influences the output colour.

Input/Output Parameters

lnput: R10<e— logic operator code (in the range 0 to 5, integer)

Output: RS —s=error code (integer)

Valid Input Values

0 PSET: graphics output is displayed in the default colour or in
the colour specified via the last SelectGrColour call.

1 XOR: the graphics colour and the colour of the

target pixel

are logically XOR'd. Graphics output is drawn in the
resulting colour, e.g., if the current graphics colour is
blue (010 binary) and the pixels on which the geometrical

output will be drawn are yellow (101 binary),
resulting colour is white (010 XOR 101 = 111).

2 AND: the graphics colour and the colour of the

then the

target pixel

are logically AND'd. Graphics output is drawn in the
resulting colour, e.g., if the current graphics colour is
blue (010 binary) and the pixels on which the geometrical

output will be drawn are yellow (101 binary), then the
resulting colour is black (010 AND 101 = 000).
3 NOT: this is a unary operator that complements the colour of

the target pixel (the current graphics

irrelevant), e.g., if the target pixel is

colour is

yellow (101

binary) then the resulting colour is blue (010 binary).

4 OR: the graphics colour and the colour of the

target pixel

are logically OR'd. Graphics output 1is drawn in the
resulting colour, e.g., if the current graphics colour is
blue (010 binary) and the pixels on which the geometrical

output will be drawn are yellow (101 binary) then the
resulting colour is white (010 OR 101 = 111).
5 PRESET: the graphics colour is set to-the background colour which

is black on the monochrome and eight colour systems if
the default values remain unchanged; it is also black on

the four-colour system if the default
unchanged.

values remain

10-42 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

Characteristics

This routine specifies a logic operator that will influence the output
colour (for all subsequent output except text) on a pixel-by-pixel
basis.

When new output is displayed the logic operation is applied one pixel at
a time. The logic operations deal with the numbers in the range 0 to 7,
as three-bit binary quantities.

The specific results vary depending on the system configuration. Mono-
chrome systems transform the numbers in the range 2 to 7 to the value Ts
thus the only operands are 0 and 1, which are the colours black and
white respectively.

Eight colour systems make no transformation and deal with the numbers
directly as colours, with corresponding results.

Four colour systems treat the numbers not directly as colours but as
indices 1into the four-colour table. Predicting the final result is pos-
sible but requires some calculation.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-43

SetColourRep

Sets one of the four colour indices to one of the eight M20 colours.

Input/Output Parameters

Input: Rl-e— colour index (in the range 0 to 3, integer)
R2<e— colour code (in the range 0 to 7, integer)

Output: RS —error code (integer)

Valid Input Values

The following table shows the corresponding colour attributes for the
colour code (R2):

colour graphics colour
code attribute
0 black
1 green
2 blue
3 cyan
4 red
5 yellow
6 magenta
7 white
Characteristics

This routine is used on four-colour systems and has no effect on mono-
chrome and on eight-colour systems. 1t sets one of the four colour
indices to one of the eight M20 colours.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-44 ASSEMBLER USER GUIDE

b 4

THE M20 GRAPHICS ROUTINES

SetGrCsrBlnkrate

Sets the blink rate for the graphics cursor.

Input/Output Parameters

Input: R8<—blink rate (in the range 0 to 20, integer)

Output: R5 —error code (integer)

Valid Input Values

R8 is loaded with a value in the range 0 to 20

0: the cursor is left ON continuously
1 to 20: the cursor blinks n/2 times per second.
Characteristics

This routine sets the blink rate for the graphics cursor, from the
steady state to the specified state changes per second (from OFF to ON
or from ON to OFF). The specified value is truncated to the nearest 50
milliseconds.

This routine does not affect which cursor is to be displayed. The
SelectCursor routine does this.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-45

SetGrCsrShape

Defines the graphics cursor shape.

Input/Output Parameters

Input: RRB<e—array pointer

Qutput: R5 —=error code (integer)

Characteristics

This routine defines the graphics cursor shape according to the contents
of the array pointed to by the array pointer. This array consists of 6
one-word (2 bytes) elements, each containing a 16-bit unsigned integer.
Each byte is a bit-map of a scanline of the cursor. The first element's
high-order byte is the top scanline of the new cursor; the sixth's ele-
ment low-order byte is the last scanline of the new cursor.

This routine does not effect which cursor 1is to be displayed. The
SelectCursor routine does this.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero is returned.

10-46 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

SetlLineClass

Determines the graphic output for the LineAbs and LineRel routines.

Input/Output Parameters

Input: R3<=—0 (line) or
1 (hollow rectangle) or
2 (solid rectangle)

Output: RS —=error code (integer)

Characteristics

This routine determines whether the graphic output for the LineAbs and
LineRel routines will be a line, a hollow rectangle or a solid rectan-
gle. In the latter two cases, the world coordinates specified in the
LineAbs and LineRel routines constitute the end points of the diagonal
of the rectangle.

The graphics output will be displayed in the current graphics colour.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-47

SetTextline

Sets the character width and text line height.

Input/Output Parameters

Input: R10<e— line height (in the range 10 to 16, integer)
R12 <e— character width (6 or 8, integer)

Qutput: RS == error code (integer)

Characteristics

This routine sets the width (in pixels) and the text line height (in
scanlines) of the character space. It is the space around each charac-
ter which grows or shrinks, the individual character size remaining
unchanged.

The values set by this routine hold for the current view area and all:
subdivisions of it, or until the routine is called again.

This setting influences the width of subsequent view area definitions.
In fact, DivideViewArea's second parameter 'division point" establishes
the division point of the view area. For vertical divisions, 'division
point" expresses the number of characters from the old view area's left
edge. 1f the character width is of 6 pixels rather than 8, then the left
view area will be smaller than it would have been with 8 pixel charac-
ters.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero is returned.

10-48 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

SetTxCsrBlnkrate

Sets the blink rate for the text cursor.

Input/Output Parameters

Input: R8<e— blink rate (in the range 0 to 20, integer)
Output: R5 —serror code (integer)

Valid Input Values

R8 is loaded with a value in the range 0 to 20

0: the cursor is left ON continuoulsy
1 to 20: the cursor blinks n/2 times per second.
Characteristics

This function sets the blink rate for the text cursor, from the steady
state to the specified state changes per second (from OFF to ON or from
ON to OFF), e.g., if R8 is loaded with the value 8, then there are 8
states per second, 4 ON states and 4 OFF states. The specified value is
truncated to the nearest 50 milliseconds.

This function does not select which cursor is to be displayed, the
SelectCursor function does this.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-49

SetTxCsrShape

Defines the text cursor shape.

Input/Output Parameters

Input: RR8<e— array pointer

Qutput: RS — error code (integer)

Characteristics

This routine defines the text cursor shape according to the contents of
the array pointed to by the input value. This array consists of 6 one-
word (2 bytes) elements, each containing a 16-bit unsigned integer. Each
byte 1is a bit-map of a scanline of the cursor. The first element's high-
order byte is the top scanline of the nmew cursor; the sixth element's
low-order byte is the last scanline of the new cursor.

1f the most significant bit of each byte is set then the leftmost column
of pixels will touch the character preceding it.

This routine does not effect which cursor is to be displayed. The
SelectCursor routine does this.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero is returned.

10-50 ASSEMBLER USER GUIDE

THE M20 GRAPHICS ROUTINES

SetWor1dCoordSp

Defines the world coordinate space.

Input/Output Parameters

Input: RRO-e— X0 (single-precision real)
RRZ<— Y0 (single-precision real)
R4 <e— view area number (integer, in the range 1 to 16)
RR6<— X1 (single-precision real)
RR8<— Y1 (single-precision real)

Output: R5 == error code (integer)

Characteristics

This routine defines the user coordinate space, known as the world coor-
dinate space. The routine may be called again to refined the user's
world coordinate space when required.

The input coordinates determine the scaling interpretation within the
specified view area and not the view area's size which is determined via
the DivideViewArea routine.

All subsequent graphic coordinates within the view area will be scaled
by a transformation routine using the input coordinates (X0, Y0) and
(X1, Y1), which define the endpoints of a diagonal of the entire view
area. (X0, Y0) are the coordinates of the lower left-hand corner and
(X1, Y1) are those of the upper right-hand corner of the view area.

Errors

If there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. If there are no
errors, a zero is returned.

10-51

TextCursor

Moves the text cursor.

Input/Output Parameters

Input: R8-e— text column (integer, in the range 1 to 64
or 1 to 80)

R9<e— text row (integer, in the range 1 to 16
or 1 to 25)

Output: RS-—s>error code (integer)

Characteristics

This function moves the text cursor and thereby determines the next
screen position at which text will be displayed in the current view
area. The text cursor is displayed only if the SelectCursor function

has been previously invoked, loading R8 with the value 2.

R8 is loaded with a number in the range 1 to 64 or 1 to 80, depending on
whether the character's width 1is 8 or 6 pixels respectively. R9 is
Joaded with a number in the range 1 to 16 or 1 to 25, depending on the
character's height (see SetTextline).

A full-screen view area may be 64 columns wide and 16 rows high or 80
columns wide and 25 rows high. The dimension which is current determines
the position of anything specified in terms of character counts. 1If the
current view area 1is smaller than full-screen then the amount of text
that it may contain depends on the dimensions of the view area.

1f the coordinates specify a point which is outside the current view
area then the current position of the text cursor is unchanged.

Errors

1f there are any errors, the status code is returned in R5. The code
numbers correspond to the standard PCOS error codes, with the same mean-
ings. See APPENDIX E for the error descriptions. 1f there are no
errors, a zero is returned.

10-52 ASSEMBLER USER GUIDE

APPENDICES
N

- A. RESERVED WORDS
a

RESERVED WORDS

The following symbols are recognized for their specific meanings by the
assembler. They cannot be used by the programmer as variable names. If
the programmer uses one of these symbols by mistake, the assembler flags
its occurrence with error 86, Multiple Definition.

Reserved Word Use

ADC mnemonic
ADCB mnemonic
ADD mnemonic
ADDB mnemonic
ADDL mnemonic
AND mnemonic
ANDB mnemonic
ASSIGN directive
AT directive
BIT mnemonic
BITB mnemonic
C condition code
CALL mnemonic
CALR mnemonic
CLR mnemonic
CLRB mnemonic
CoM mnemonic
COMB mnemonic
COMFLG mnemonic
COMMON directive
CP mnemonic
CPB mnemonic
CPD mnemonic
CPDB mnemonic
CPDR mnemonic
CPDRB mnemonic
CP1 mnemonic
CP1IB mnemonic
CPIR mnemonic
CPIRB mnemonic
CPL mnemonic
CPSD mnemonic
CPSDB mnemonic
CPSDR mnemonic
CPSDRB mnemonic
CPSI mnemonic
CPSIB mnemonic
CPSIR mnemonic
CPSIRB mnemonic
DAB mnemonic
DBINZ mnemonic
DD directive

A-1

Reserved Word Use

DDB directive
DDL directive
DEC mnemonic
DECB mnemonic

D1 mnemonic

DIV mnemonic
DIVL mnemonic
DJINZ mnemonic

DS directive
DSB directive
DSL directive

EL mnemonic
ENDIF directive

EQ condition code
EX mnemonic

EXB mnemonic
EXTERNAL directive
EXTS mnemonic
EXTSB mnemonic
EXTSL mnemonic
FALSE condition code
FCW control word
FLAGS control word
GE condition code
GLOBAL directive

GT condition code
HALT mnemonic

1F directive

IN mnemonic

INB mnemonic

INC mnemonic
INCB mnemonic
INCLUDE directive
IND mnemonic
INDB mnemonic
INDR mnemonic
INDRB mnemonic

INI mnemonic
INIB mnemonic
INIR mnemonic
INIRB mnemonic
IRET mnemonic

Jp mnemonic

JR mnemonic

LD mnemonic

LDA mnemonic
LDAR mnemonic

LDB mnemonic
LDCTL mnemonic
LDCTLB mnemonic

LDD mnemonic
LDDB mnemonic
LDDR mnemonic

ASSEMBLER USER GUIDE

RESERVED WORDS

Reserved Word Use

LDDRB mnemonic

LDI mnemonic

LDIB mnemonic

LDIR mnemonic
LDIRB mnemonic

LDK mnemonic

LDL mnemonic

LDM mnemonic

LDPS mnemonic

LDR mnemonic

LDRB mnemonic

LDRL mnemonic

LE condition code
LISTOFF directive
LISTON directive

LT condition code
MBIT mnemonic

M1 condition code
MODULE directive
MREQ mnemonic

MRES mnemonic

MSET mnemonic

MULT mnemonic
MULTL mnemonic

NC condition code
NE condition code
NEG mnemonic

NEGB mnemonic
NONSEGMENTED module type
NOP mnemonic

NOV condition code
NSP control word
NSPOFF .control word
NSPSEG control word
NVI interrupt

NZ condition code
OR mnemonic

ORB mnemonic

OTDR mnemonic
OTDRB mnemonic

OTIR mnemonic
OTIRB mnemonic

ouT mnemonic

0uTB mnemonic

ouTD mnemonic
ouUTDB mnemonic

0UT1 mnemonic
OoUTI1B mnemonic

ov condition code
P flag

PAGE directive

PE condition code
PL condition code

A-3

Reserved Word Use

PO condition code
POP mnemonic

POPL mnemonic

PSAP control word
PSAPOFF control word
PSAPSEG control word
PUSH mnemonic
PUSHL mnemonic

RO word register
R1 word register
R10 word register
R11 word register
R12 word register
R13 word register
R14 word register
R15 word register
R2 word register
R3 word register
R4 word register
RS word register
R6 word register
R7 word register
R8 word register
R9 word register
REFRESH control word
RES mnemonic

RESB mnemonic
RESFLG mnemonic

RET mnemonic

RHO byte register
RH1 byte register
RH2 byte register
RH3 byte register
RH4 byte register
RH5 byte register
RH6 byte register
RH7 byte register
RL mnemonic

RLO byte register
RL1 byte register
RL2 byte register
RL3 byte register
RL4 byte register
RL5 byte register
RL6 byte register
RL7 byte register
RLB mnemonic

RLC mnemonic

RLCB mnemonic

RLDB mnemonic

RQO quad register
RQ12 quad register
RQ4 quad register

A-4 ASSEMBLER USER GUIDE

—

RESERVED WORDS

Reserved Word

Use

RQ8

RR

RRO
RR10
RR12
RR14
RR2
RR4
RR6
RR8
RRB
RRC
RRCB
RRDB

S

SBC
SBCB
SC

SDA
SDAB
SDAL
SDL
SDLB
SDLL
SECTION
SEGMENTED
SET
SETB
SETFLG
SIN
SINB
SIND
SINDB
SINDR
SINDRB
SINI
SINIB
SINIR
SINIRB
SLA
SLAB
SLAL
SLL
SLLB
SLLL
SOTDR
SOTDRB
SOTIR
SOTIRB
SouT
SOUTB
SOUTD
SOUTI
SOUT1B

quad register
mnemonic

long register
long register
long register
long register
long register
long register
long register
long register
mnemonic
mnemonic
mnemonic
mnemonic

flag

mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
directive
module type
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic

A-5

Reserved Word Use

SRA mnemonic

SRAB mnemonic

SRAL mnemonic

SRL mnemonic

SRLB mnemonic

SRLL mnemonic

SUB mnemonic

SUBB mnemonic

SUBL mnemonic

TCC mnemonic

TCCB mnemonic
TEMPLATE directive

TEST mnemonic

TESTB mnemonic

TESTL mnemonic

TITLE directive

TRDB mnemonic

TRDRB mnemonic

TR1B mnemonic

TRIRB mnemonic

TRTDB mnemonic
TRTDRB mnemonic

TRTIB mnemonic
TRTIRB mnemonic

TRUE condition code
TSET mnemonic

TSETB mnemonic

UGE condition code
UGT condition code
ULE condition code
ULT condition code
v flag

Vi interrupt

XOR mnemonic

XORB mnemonic

A condition code

A-6

ASSEMBLER USER GUIDE

~ ‘ B. ASM ERRORS AND WARNINGS

ASM ERRORS AND WARNINGS

The following is a complete list of codes of errors and warnings that
can be returned by the ASM command during assembly time. The code mean-
ing refers to the source file line number in the context of the program.

Bad Statement:

Code Meaning

Bad Line

Bad Label/Mnemonic Field or Context
Bad IF/ENDIF

Bad Directive or Context

Bad Labelled Directive or Context
Bad Module/Section or Context

Bad Argument or Context

Bad Byte-Data Context

Bad Word-Data Context

Bad Long-Data Context

Source line truncated

IF not terminated by ENDIF

ENDIF with no matching IF

—_
um—\oom\!ombwm—\

Bad Character, Identifier or Constant:

Code Meaning

14 Identifier Too Long

15 Single-Quoted Text Too Long or bad use of %
16 Quote Not Closed or bad use of %

17 Illegal Number

18 Illegal Character

19 Illegal base specification in number
20 I1llegal Keyword

21 End of Line in number

22 Keyword in label field

23 Mnemonic not in mnemonic field

Bad Expression:

Bad Operand:

B-2

Code

24
25

26
27
28
29

30
31
32
33

35

Code

Meaning

Bad Parenthesis Use

Segment/Section/External mismatch in rela-
tional expression

11legal relational operands

Illegal Type Combination in Expression
1llegal operator in address term
Segment/Section/External mismatch in additive
term

T1llegal additive operand

Address type mismatch in additive term
1llegal multiplicative operand

I1llegal unary operand

Absolute segment number out of range

Illegal type in segment/offset of absolute
address

Meaning

. Bad Use of Short Address

Bad Argument or Context

Invalid Address Register

DD, DDB or DDL operand, Wrong Size
Index Register is Invalid

DD Repeat Nesting Error

Wrong Register Type

Indirect Register is Zero
Tmmediate Operand Wrong Size

Base Register zero not allowed
Index Register zero not allowed
Even address required

Invalid Relative Address

Relative out of Range

Invalid Short Extraction

Absolute Address too Large for Short Extrac-
tion

Invalid Segment or Offset Extraction
Tnvalid Small Immediate

Extra Operands Ignored

1llegal Operand

Truncation Warning

ASSEMBLER USER GUIDE

ASM ERRORS AND WARNINGS

Undefined Symbol:

Code

70

Bad Location or Definition:

Code

72
73
74
75

First Pass Errors:

Code
86

89
90

Section or Module Name out of place
Invalid Address

DD overflows 64K

No prior Section for SECTION *

Page size specified is too small
Undefined or non-numeric page size
Unexpected end of line

Bad Operator/Value

Meaning

Undefined Symbol (Second pass only)

Meaning

Symbol not defined until second pass
Symbol redefined in second pass
Location Counter overflowed 64K

Warning: Address incremented to even value

Meaning

Multiple Definition (First pass error)
IF Value Not Defined (First pass error)
Invalid ATparm, DSparm or DD Repeat Count
Undefined ATparm, DSparm Template Base or

DD

Fatal Errors:

Code Meaning
93 Symbol Table Full - Terminate
94 Unknown Character in file
95 Internal Object Table full
96 Internal Object Table full
97 Too many INCLUDEs
98 Binary data file absent or improper

B-4 ASSEMBLER USER GUIDE

~ C. FUNCTIONAL LIST OF SYSTEM CALLS

ABOUT THIS APPENDIX

This appendix lists the M20 System Calls in functional groups.

CONTENTS

BYTESTREAM CALLS C-1
BLOCK TRANSFER CALLS c-3
STORAGE ALLOCATION CALLS C-4
GRAPHICS SYSTEM CALLS C-5
TIME AND DATE CALLS c-8
1EEE-488 CALLS Cc-9

MISCELLANEOUS SYSTEM CALLS c-1

FUNCTIONAL LIST OF SYSTEM CALLS

BYTESTREAM CALLS

Name System Parameter
Call
LookByte 9 DID

returned byte
buffer status(00 or FF)
error status

s~ GetByte 10 DID
returned byte
error status

PutByte 1 DID
input byte value
error status

ReadBytes 12 DID
input count
input ptr to memory
returned count
error status

WriteBytes 13 DID
input count
input ptr to memory
returned count
error status

ReadLine 14 DID
input count
input ptr to memory
count returned
error status

Eof 16 DID
returned status
error status

ResetByte 18 DID
error status

Register

R8
RL7
RH7
RS

R8
R7
R5

R8
RL7
R5

R8

RR10
R7
R5

R8
R9
RR10
R7
RS

R8

RR10
R6
R5

R8
R9
R5

R8
R5

C-1

Name

Close

SetControlByte

GetStatusByte

OpenFile
(files)

OpenFile
(RS-232-C)

DSeek

DGetLen
(files)

DGetLen

(RS-232-C)

DGetPosition

DRemove

C-2

System
Call

19

20

21

22

22

23

24

24

25

26

Parameter

DID
error status

DID

input word number
input word

error status

DID

input word number
returned word read
error status

DID

input extent length
input mode

input file id. length
input ptr to addr
error status

DID
error status

DID
input position
error status

D1D
returned length
error status

DID

returned zero status
returned number of bytes
error status

D1ID
returned position
error status

input length
input ptr to name
error status

Register

R8
RS

R8
R9
R10
R5

R8
R9
R10
R5

R8
R6
R7
R9
RR10
R5

R8
RS

R8
RR10
R5

R8
RR10
R5

R8
R10
R11
R5

R8
RR10
R5

R9
RR10
RS

ASSEMBLER USER GUIDE

FUNCTIONAL LIST OF SYSTEM CALLS

Name System Parameter
Call
DRename 27 input old address

input old length
input new address
input new length
error status

DDirectory 28 input file id. length

input address
error status

BLOCK TRANSFER CALLS

Name System Parameter
Call
BSet 29 input n (byte value)

input ptr to memory
input length
error status

BWSet 30 input n (word value)
input ptr to memory
input length
error status

BClear 31 input ptr to memory
input length
error status

BMove 32 input length
input ptr to old memory
input ptr to new memory
error status

Register

Register

RL7
RR8
R10
R5

R7
RR8
R10
R5

RR8
R10
R5

R7
RR8
RR10
R5

C-3

STORAGE ALLOCATION CALLS

c-4

Name System

Call

NewSameSegment 33

Dispose 34
MaxSize 99
NewAbsolute 104
New 120

BrandNewAbsolute 121

NewLargestBlock 122

StickyNew 122

Parameter

address of block pointer
input length

error status

returned block pointer

address of block pointer
input length
error status
Hex FFFFFFFF

returned size
error status

address of block pointer
input length

input block pointer
error status

address of block pointer
input length

error status

returned block pointer

address of block pointer
input length

input block pointer
error status

address of block pointer
returned block pointer
returned length

error status

address of block pointer
input length

error status

returned block pointer

Register

RR8

R10

R5
RR8

RR8

R10

R5
RR8

R8
R5

RR8

R10
RR8

RS

RR8
R10

RR8

RR8

R10
RR8

R5

RR8
RR8

R10

R5

RR8

R10

R5
RR8

ASSEMBLER USER GUIDE

-

FUNCTIONAL LIST OF SYSTEM CALLS

GRAPHICS SYSTEM CALLS

Name

Cls
ChgCuro

ChgCur

ChgCur2
ChgCur3
ChgCur4
ChgCurs

ReadCur0

ReadCur1

SelectCur

Grflnit

PalatteSet

System
Call

35

36

37

38
39
40
41
42

43

44

45

46

Parameter

(no parameters)

input
input
error

input
input

input
input
input
input

input

column
row
status

X
y

blink rate

blink rate

ptr to
ptr to

ptr to

output blink

output column

output row

error

status

array
array

array
rate

input ptr to array
output blink rate
output x-position
output y-position

error

input

status

select

output colour flag

output ptr to m-box

input
input
input
input
error

colour
colour
colour
colour
status

A
B
C
D

Register

R8
R9
R5

R8
R9

R8

R8

RR10
R8
R10

R11
R5

Name

DefineWindow

SelectWindow

ReadWindow

ChgWindow

CloseWindow

ScaleXY

MapXYC

ManCXY

FetchC
StoreC
upC
DownC

LeftC

c-6

System
Call

47

48

49

50

51

52

53

54

55
56
57
58

59

Parameter

input quadrant

input position

input vert-spacing
input hor z-spacing
output window number
error status

input window number
error status

output window number
output x-size

output y-size

output foreground colour
output background colour
error status

input foreground colour
input background colour
error status

input window number
input x-position

input y-position

return value

input x-position
input y-position

returned x-position
returned y-position

returned C-value
input C-value
(no parameters)
(no parameters)

(no parameters)

ASSEMBLER USER GUIDE

Register

R8
R9
R10

R8
R9

R8
R9

RR8

RR8

FUNCTIONAL LIST OF SYSTEM CALLS

Name

RightC

SetAtr

SetC
ReadC

NSetCX

NSetCY

NRead

NWrite

Pntlnit
TDownC
TUpC

ScanL

ScanR

System
Call

60

61

62
63

64

65

66

67

68

69

70

7

72

Parameter

(no parameters)

input colour
error status

input operation
returned colour

input hor. line count
input operation

input vertical line count
input operation

input width (count)
input height (count)
input ptr to array
always cleared

returnec addr. of array

input logical function
input width (count)
input height (count)
input ptr to array
always cleared

input paint colour
input border colour
error status

returned check value
returned check value

returned count-1
returned margin flag
returned painted flag

input maxcount
returned C-type
returned maxcount
returned count-r
returned margin flag
returned painted flag

Register

R8
RS

R8

R8

R8
R8

R9
R10
R11

R8
RR6
R8
R9
R10
R11

C-7

Name System Parameter Register

Call

CloseAllWindows 113 (no parameters)

ClearText 115 input column R10
input row R11
input column count R12
input row count R13
error status RS

ScrollText 116 input color plane mask R6
input logical function R7
input source column R8
input source row R9
input destination column R10
input destination row R11
input column count R12
input row count R13
error status RS

TIME AND DATE CALLS
Name System Parameter Register
Call

SetTime 73 input addr of data RR8
input length of string R10
error status R5

SetDate 74 input addr of data RR8
input length of string R10
error status R5

GetTime 75 input addr of data RR8
input length of string R10
error status RS

C-8 ASSEMBLER USER GUIDE

FUNCTIONAL LIST OF SYSTEM CALLS

Name System Parameter Register
Call
GetDate 76 input addr of data RR8
input length of string R10
error status RS

USER CODE CALLS

Name System Parameter Register
Call
CallUser 77 input pointer RR14

(system stack has a
pointer to 2-character
symbol, list of parameter
pointers, number of

parameters)
error status R5
1EEE-488 CALLS
Name System Parameter Register
Call
IBSrQo 78 error status R5
1BSrQ1 79 error status R5
1BPoll 80 input talker addr R8
returned ptr to status RR10
error status R5

Name System Parameter Register

Call
1BISet 81 input operand R8
error status R5
IBRSet 82 error status R5
IBPrnt 83 input buffer addr RR6
input listener addr R8
input buffer length R9
input delimiter R10
error status R5
IBWByt 84 input numval addr RR6
input comlist addr R8
input numval length R9
input comlist addr RR10
error status R5
IBInpt 85 input buffer length R7
input talker addr R8
input listener addr R9
input buffer addr RR10
returned buffer length R7
error status R5
IBLinpt 86 input buffer length R7
input talker addr R8
input listener addr R9
input buffer addr RR10
returned buffer length R7
error status R5
1IBRByt 87 input buffer addr RR6
input comlist length R8
input buffer length R9
input comlist addr RR10
error status R5

ASSEMBLER USER GUIDE

FUNCTIONAL LIST OF SYSTEM CALLS

MISCELLANEOUS SYSTEM CALLS

Name System Parameter Register
Call
Error 88 input parameter num RH5
input error code RL5
DString 89 input addr of string RR12
error status RS
CrLf 90 error status RS
DHexByte 91 input byte R12
error status R5
DHex 92 input word R12
error status R5
DHexL ong 93 input long word RR12
error status R5
DNuml 94 input integer R12
input field width R13
error status R5
DLong 95 input long integer RR12
error status R5
DisectName 96 input string length R9
input string addr RR10
input names record addr RR12
error status RS
returned volume number R7
returned names record RR12
CheckVolume 97 error status R5

&),

-1

Name

Search

SetVol

StringlLen

DiskFree

BootSystem

SetSysSeg

SearchDevTab

CtlCharDisp

KbSetLock

GetVol

System
Call

98

102

105

106

107

109

M

114

119

Parameter

input drive

input search mode

input length

input file pointer
input file name pointer
returned length
returned file pointer
modified

error status

input volume number
error status

input pointer
returned length
error status

input volume number
returned num of sectors
error status

error status
error status

input ptr device name
input dev name length
returned entry number
returned device type
returned ptr table entry
error status

on/off (nonzero/zero)

input integer flag
returned previous state
error status

input ptr vol. id. buffe
input buffer size
returned size

error status

Registar

R6
R7
R9
RR10
RR12

RR10
RR12
R5

R5
RR10

RL5
RH5
RR8
R5

R8

R6
R7
RS

RR12
R6
R7
R5

ASSEMBLER USER GUIDE

/\

D. FUNCTIONAL LIST OF GRAPHICS ROUTINES
i

ABOUT THIS APPENDIX

This appendix gives a functional list of graphics routines, subdivided
into their logical groups. The list comprises the name, the parameters
and the registers used by each graphics routine.

CONTENTS

TRANSFORMATION AND CONTROL D-1

GRAPHICS OUTPUT D-2

GRAPHICS ATTRIBUTES D-3

INQUIRY D-4

FUNCTIONAL LIST OF GRAPHICS ROUTINES

TRANSFORMATION AND CONTROL

Name

ClearViewArea

CloseGraphics
~ CloseViewTrans

DivideViewArea

Escape

OpenGraphics

SelectViewTrans

SetWorldCoordSp

Parameter

view area number
error code

(no parameters)
view area number

division/orientation
division point

view area number
error code

function number (1)
data structure pointer
error code

(no parameters)

view area number
error code

X0

Y0

view area number
X1

Y1

error code

Register

R4
R5

R8

R8
R9

R5

R1
RR2
RS

R8
R5

RRO
RR2

RR6
RR8
RS

GRAPHICS OUTPUT

Name

GDP

GraphCursorAbs

GraphCursorRel

GraphPosAbs

GraphPosRel

LineAbs

LineRel

MarkerAbs

MarkerRel

PixelArray

D-2

Parameter

X array pointer
Y array pointer
1 (circle) or

2 (ellipse)
error code

X

y
error code

dx
dy
error code

error code

dx
dy
error code

error code

dx
dy

error code

X

y
error code

dx
dy

error code

X width

Y height
array pointer
error code

Register

RR6
RR2
R4

RS

RRO
RR2
R5

RRO
RR2
R5

RRO
RR2
R5

RRO
RR2
R5

RRO
RR2
R5

RRO
RR2
R5

RRO
RR2
R5

RRO
RR2

RRO
RR2
RR10
R5

ASSEMBLER USER GUIDE

FUNCTIONAL LIST OF GRAPHICS ROUTINES

Name

Polyline

Polymarker

TextCursor

GRAPHICS ATTRIBUTES

Name

SelectCursor

SelectGrColour

SelectTxColour

SetColourlogic

Parameter

X array pointer
Y array pointer
number of points
error code

X array pointer
Y array pointer
number of points
error code

text column

text row
error code

Parameter

0 (neither cursor) or
1 (graphics cursor) or

2 (text cursor)
error code

colour code
error code

foreground colour code
background colour code

error code

logic operator code

error code

Register

RR6
RR2

R5
RR6
RR2
R4
R5
R8

R5

Register

R8

R5

R8
RS

R8
R9

R10
R5

D-3

Name

SetColourRep

SetGrCsrBlnkrate

SetGrCsrShape

SetLineClass

SetTextline

SetTxCsrBlnkrate

SetTxCsrShape

INQUIRY

Name

Errorlnquiry

IngAttributes

Parameter

colour index
colour code
error code

blink rate
error code

array pointer
error code

0 (line) or

1 (hollow rectangle) or
2 (solid rectangle)
error code

line height
character width
error code

blink rate
error code

array pointer
error code

|Parameter

error code

error code

logic operator

line clase

current graphics colour
text foreground colour
background colour

Register

R1
R5

R8
R5

RR8
R5

R3

R5
R10
R12
R5

R8
R5

RR8
R5

Register

ASSEMBLER USER GUIDE

FUNCTIONAL LIST OF GRAPHICS ROUTINES

Name

IngCurTransNmbr

InqGraphCursor

IngGraphPos

IngPixel

IngPixelArray

IngPixelCoords

InqTextCursor

InqViewArea

IngWorldCoordSp

Parameter

error code
view area number

X
Y
error code
blinkrate

Y
error code
X

X

Y

colour number
error code

X width

Y height
array pointer
invalid code
error code

X world coordinate
Y world coordinate
error code

X device coordinate
Y device coordinate

error code

blink rate

text column
text row

error code

view area width

view area height
text character width
text line height

error code
X0
YO
X1
Y1

Register

R5
R7

RRO
RR2
R5
R9

RR2
R5
RR6

RRO
RR2

RS

RRO
RR2
RR6
R4
RS

RRO
RR2
R5
R6
R7

R5
R7
R8
R9

R5
R8
R9
R10
R11

R5
RR6
RR8
RR10
RR12

‘ E. SYSTEM ERRORS
N

SYSTEM ERRORS

ERROR CODE ERROR Error code in hexadecimal
(Decimal) Description (returned in R5)

0 no error 00
2 syntax error 02
3 invalid termination of 03

input bytestream
5 illegal function call . 05
6 over flow 06
7 out of memory 07
9 EITHER invalid listener or talker 09

address - when returned

by an 1EEE-488 system call

OR out of range - otherwise

10 EITHER no 1EEE board - when returned 0A

by an IEEE-488 system call

OR duplicate definition - otherwise

1 time out error 0B
13 type mismatch 0D
15 string too long OF
18 undefined function 12
22 missing operand 16
23 buffer overflow 17
35 window not open 23

ERROR CODE

ERROR Error code in hexadecimal
(Decimal) Description (returned in RS)
36 unable to create window 24
38 - parameter out of range 26
53 file not found 35
54 bad file mode 36
55 file already open 37
57 disk i/o error 39
58 file already exists 3A
59 disk type mismatcl'; 38
60 disk not initialized 3C
61 disk filled 3D
62 end of file 3E
63 invalid record numoer 3F
64 invalid file name 40
67 too many files 43
68 internal error 44
69 volume name not found 45
70 rename error 46
7 invalid volume number 47
E-2 ASSEMBLER USER GUIDE

SYSTEM ERRORS

ERROR CODE ERROR Error code in hexadecimal
(Decimal) Description (returned in R5)
72 volume not enabled 48
73 invalid password 49
74 illegal disk change 4A
75 write protected file 4B
76 error in parameter 4C
77 invalid number of parameters 4D
78 file not open 4E
79 printer error 4F
80 copy protected file 50
81 paper empty 51
82 printer fault 52
92 command not found 5C
99 bad load file 63
101 error in time or date 65
108 call user error 6C
110 time out =

111 invalid device 6F

~ ‘ F. M20 1/0 PORT ADDRESSES

ABOUT THIS APPENDIX

This appendix provides a list of M20 1/0 Port Addresses which can be
specified when using the two PDEBUG commands, PORT 1/0 READ and PORT 1/0
WRITE.

CONTENTS
MAIN MOTHERBOARD PORTS F-1
IEEE EXPANSION BOARD PORTS F-2

HARD DISK UNIT EXPANSION F=3
BOARD PORTS

RS-232-C TWIN EXPANSION F-3
BOARD PORTS

P ‘lOi quDRESSg; NN

: | | | | | |

‘Z?}S/\ (TT‘(PR\> wccp Dmﬁ ‘
HEEERR TN Lomox,

| - %253 (?RT [Tmm&) %AZ(@ P(lu&’r;,{} |
| LtAZL kk\d@@ﬁm)

)

‘bzb/t S\C(L\m Pomg

| 1‘:,\"“”? Dﬂﬂ”&iq)
L3 camolp A
L g DR P T

T i
| [| |

EERRLEE Qe@tsnaé/t -
o bRey Real ‘Su:(lsz

i mwr COM“MD it Reeﬂs“ea |
;; EREEEEE wm Dmae&(smﬁ
,UOPCM.SFW??P@T; | i%@i NENEEE

SR I [N N (R S i) e

T T N N A s i e S
| \‘\417};-

N

-

|
]

M20 1/0 PORT ADDRESSES

Port Addresses are here listed in 4 groups:
1. Main Motherboard Ports

2. 1EEE Expansion Board Ports

3. Hard Disk Unit Expansion Board Ports

4. RS-232-C Twin Expansion Board Ports

MAIN MOTHERBOARD PORTS

BEVICE ADDRESS COMMENT
FDC %001 Status/Command
%003 Track
%005 Sector
%007 Data
TTL Latch %021
CRTC (Video) %061 Address
%063 Data
8255A %081 Port A
(Centronics %083 Port B
Parallel %085 Port C
Interface) %087 Control
8251 %0A1 Data
(Keyboard) %0A3 Status/Control
8251 %0C1 Data
(TTY/PRTR) %0C3 Status/Control

F-1

8253

8259 (Master)

REG FILE
(4 colours)

IEEE EXPANSION BOARD PORTS

DEVICE

8292
(GP1B CTLER)

8291
(GP1B Talker/
Listener)

8259 (1EEE)

F-2

ADDRESS

%101
%103

%161
%163
%165
%167

%169
%168
%16D
%16F

%1A0
%1A2

Ctr 0 (TTY/printer timing)
Crt 1 (Keyboard timing)

Crt 2 (Real time clock-NVI)
Control register

Loc 1

Loc 2

Loc 3

Loc 4
COMMENT
A0 =0
A0 =1

Data in / Data out

Interrupt status / Mask 1
Interrupt status / Mask 2
Serial poll status / Mode

Address status / Mode

Cmd pass through / Aux mode
Address 0 / Address 0/1
Address 1 / EOS

ASSEMBLER USER GUIDE

M20 1/0 PORT ADDRESSES

HARD DISK UNIT EXPANSION BOARD PORTS

DEVICE

cyl hi
cyl lo
head

sector

- command
error
wr_prcomp

data
sec_cnt

RS-232-C TWIN EXPANSION BOARD

DEVICE

iy modem_prt

exp_int

tp 0

ADDRESS

%1cb
%1c9
%1cd

%1c7
%lcf
%1c3
%1c3

%1c
%1c5

ADDRESS

for the modem interface

%881

%841
%843
for the serial ports

%803
%801

PORTS

COMMENT

cylinder address high register
cylinder address low register
head select register (also
contains drive select and bytes
per sector)

sector for operation

command status register address
contains error information
value * 4 = cylinder to start
write precompensation

data port to the interface board
sector count for the format
command

COMMENT

modem status port

for the interrupt sub-system

8259 interrupt command
register
8259 data register

8251a 0 control port
82517a 0 data port

F-3

F-4

tp 1

exp_baud

%823
%821

%867
%861
%863
%865

8251a
8251a

8253
8253
8253
8253

1 control port
1 data port

control port

out 0 register
out 1 register
out 3 register

ASSEMBLER USER GUIDE

~ G. MAILBOX

MAILBOX

A mailbox area (8 bytes), used by the I1EEE driver, is declared globally
by PCOS. The first 6 bytes comprise the array "IEEE"; the next byte is
the flag ''srq 488" (see also section on IEEE calls and system calls 78
through 87). The next byte indicates which carriage return key, /S1/,
/S2/ or the standard /CR/, was pressed last (it should be noted that a
zero is returned for any key except /S1/ or /S2/).

On calling G6rflnit (SC 45), the interpreter will be passed the address
of this area in RR10.

Format of Mailbox Area

bytes description

0-5 "1EEE" Array; values set by 1EEE driver
for use by BASIC interpreter.

6 '"'srq_488 " flag; value set by IEEE
interrupt service routine " ibsrq92 ',
tested by the BASIC interpreter. This
indicates that a service request has
been received.

7 S1 and S2 key depression flag. Set in
keyboard driver; (0 = neither key de-
pressed, 1 =/S1/ depressed, 2 =/S2/ de-
pressed)

G-1

~ H. M20-RS-232-C DEVICE PARAMETER TABLE

s

M20 - RS-232-C DEVICE PARAMETER TABLE

This appeandix details the structure of the Device Parameter Table used
by System Calls 20 and 21. These system calls are used for reading and
writing device parameters for devices connected to the RS-232-C inter-
faces.

A knowledge of the hardware in question is useful for a deeper
comprehension of this appendix (see M20 hardware literature).

WORD NUMBER DESCRIPTION

0-1 Ring buffer address (long word)
2 Ring buffer input address (word)
3 Ring buffer output address (word)
4 Ring buffer count (word)
5 Ring buffer size (word)
6 75% of ring buffer size (word)
7 50% of ring buffer size (word)
8 8251A USART control port address (word)
9 8251A USART state and error flags (word)
10 8251A USART time out for data output (word)
11 (high) 8251A USART mode (byte)
11 (low) 8253 timer command (byte)
12 8253 timer control port address (word)
13 8253 timer baudrate data port address (word)
14 8253 timer baud rate count (word)
15 8259A PIC port A address (word)
16 8259A PIC SEOI command word (word)
17 8259A PIC - master interrupt mask bit (word)
18 8259A U - slave interrupt mask bit (word)

Word numbers 0 to 7 contain the state of the ring buffer. Words 8 to 11
(high) contain information relative to the 8251A (Programmable Communi-
cation Interface).

Word 8 contains the control port address. This can assume the following
values:

%00C3 : USART motherboard control port.
%0803 : USART expansion board 1 control port.

%0823 : USART expansion board 2 control port.

H-1

Word 9 represents the status and the error flags for the 8251 and is
organised in the following way:

STATUS BIT POSITION LEGAL VALUES MEANING
Duplex mode 15 1 full echoing of all
input
0 No echoing of input
(reserved) 14 0 (not used)
Framing 13 1 a valid stop bit has
Error not been detected at

the end of each
character. (Reported
from 8251A)

0 No Framing Error
Overrun 12 1 a character has not
Error been read before the

next one becomes
available. (Reported
from 8251A)

0 No Overrun Error
Parity 11 1 a change in parity
Error value has been

detected. (Reported
from 8251A)

0 No Parity Error
Timeout 10 1 a timeout has occured
Error while waiting for the

Transmit Ready line
on the 8251A

0 No Timeout Error
Memory 9 1 driver failed to open
Error to open buffer - no

Open Port call or
insufficient memory.

0 No Memory Error
Buffer 8 1 interrupt routine
Error tried to overwrite
the buffer.
0 No Buffer Error

H-2 ASSEMBLER USER GUIDE

M20 - RS-232-C DEVICE PARAMETER TABLE

STATUS
(reserved)

Free-running
protocol

XOFF /XON
Flag (M20
previously
acted as
trans-
mitter)

Hardware
State

XOFF /XON

(reserved)
(reserved)

(reserved)

BIT POSITION
7

6

LEGAL VALUES
0

1
0

MEANING
(not used)

free-running protocol,
Handshake protocol
using XON/XOFF

XOFF character, sent
in previous trans-
mission.

Buffer is 75% full.
XOFF is sent from

M20 i.e. other sender
should stop.

XON character, sent
in previous trans-
mission.

Input buffer is ready
to receive characters
(default state.) XON
is sent from M20 i.e.
other sender should
start again.

hardware present and
8259A passed interrupt
mask test.

No hardware or failed
test

XOFF character, de-
tected in current
reception.

XOFF character is
received from outside.
No characters will be
transmitted.

XON character, de-
tected in current
reception.

XON received from
outside. Characters
will be transmitted
(default state).

(not used)
(not used)

(not used)

H-3

Word 10 contains the time-out value for the transmission of data.

The high byte in word 11 is the 8251A Mode byte and is described below:

S2 S1

Number of Stop Bits:

Even Parity/
Parity Enable:

Character Length:

Baud Rate Factor:

EP

o= -=0Wwm

= 0 o0or- —_ =200

~n

—“—oo—w

PEN

-

o—_0-Wwuw

PEN

I =l I = I

-

—_ =00 w

3 2 1 g
L2 L1 B2 B1
1 stop bit
1.5 stop bits
2 stop bits (default)
TLLEGAL

Disable Parity/0dd Parity (default)
Enable Parity/0dd Parity

Enable Parity/Even Parity

Disable Parity/Even Parity

5 Data bits
6 Data bits
7 Data bits (default)
8 Data bits

Asynchronous Mode 16 x (default)
Synchronous Mode

Asynchronous Mode 1 x
Asynchronous Mode 64 x

The low byte in word 11, and words 12 to 14 concern the 8253 timer (Pro-
The low byte in word 11 is the 8253 command

grammable interval timer).

byte described below:

SC1 sce

H-4

M2 M1 BCD

ASSEMBLER USER GUIDE

M20 - RS-232-C DEVICE PARAMETER TABLE

Counter Select: SC1 SCO
0 0 Select Counter 0
0 1 Select Counter 1
1 0 Select Counter 2
1 1 ILLEGAL
Read/Load
Instruction: RL1 RLO
0 0 Counter Latching Operation
0 1 Read/Load most sig. byte only (ms
1 0 Read/Load least sig. byte only (1
1 1 Read/Load 1sb first, then msb
Mode: M2 M1 MO
0 0 0 Mode 0: Interrupt on Terminal Cou
0 0 1 Mode 1: Programmable One-Shot
X 1 0 Mode 2: Rate Generator
X 1 1 Mode 3: Square Wave Rate Generato
1 0 0 Mode 4: Software Triggered Strobe
1 0 1 Mode 5: Hardware Triggered Strobe
4 BCD's/ BCD
Binary 0 Binary Counter (16 bits)
Word 1 BCD Counter (4 decades * 4 bits/

decade)

Word 12 contains the 8253 control port address; this can be either
%0127 motherboard timer control port
%0867 expansion board timer control port

Word 13 contains a channel address of an 8253 timer. The address can
one of the following:

%0121 channel 0 motherboard timer
%0123 channel 1 motherboard timer
%0125 channel 2 motherboard timer
%0861 channel 0 expansion board timer
. %0863 channel 1 expansion board timer
%0865 channel 2 expansion board timer

b)
sb)

nt

r

be

H-5

Word 14 sets the transmission baud rate as follows:

1538 baud count for baud rate of 50
699 baud count for baud rate of 110
256 baud count for baud rate of 300
128 baud count for baud rate of 600

64 baud count for baud rate of 1200
32 baud count for baud rate of 2400
16 baud count for baud rate of 4800
8 baud count for baud rate of 9600
4 baud count for baud rate of 19200

Word 15 contains the 8259 control port address (Prgrammable Interrupt
Controller (PIC)). These can be:

%0140 mother board PIC control port address
%0840 expansion board PIC control port A address

Note that even addresses for programmable interrupt controller B data
port addresses are assumed to be 2 more than A control port addresses.

Word 16 contains the SEO1 (Specific End Of Interrupt) command to be
issued before exiting the interrupt routine. The SEOL is calculated
using the formula:

SEOI = %CO + (2% IR No.)

where IR No.is an interrupt routine number from 0 - 7.

The RS-232-C SEOI's are the following:

%00C6 master 8259A pic SEOL for IR3 (tty mother)
%00CE master 8259A pic SEOL for IR7 (expansion)
%00C0 slave 8259A pic SEOL for IR0 (port 1)
%00C4 slave 8259A pic SEOI for IR2 (port 2)

H-6 b ASSEMBLER USER GUIDE

M20 - RS-232-C DEVICE PARAMETER TABLE

The following table gives all the M20 interrupt assignments.

Master 8259A PIC Mother Board Interrupt Assignments:

1RO: Floppy Disk Controller

IR1: External Daisy Chain Request (potentially a slave 8259A)

IR2: External Daisy Chain Request (potentially a slave 8259A)

IR3: RxD: DTE TTY/Remote 8251A

IR4: RxD: keyboard 8251A

IR5: TxD: DTE/TTY/Remote 8251A (not used)

IR6: Parallel 8255A PCO or PC3

IR7: External Daisy Chain Request (used w/ RS-232-C Expansion Board)

Slave 8259A PIC Expansion Board Interrupt Assignments:

1RO: RxD: DTE/TTY port 1/Remote 8251A

IR1: TxD: DTE/TTY port 1/Remote 8251A (not used)
IR2: RxD DTE/TTY port 2/Remote 8251A

1IR3: TxD: DTE/TTY port 2/Remote 8251A (not used)
IR4: grounded (not used)

IR5: grounded (not used)

1IR6: grounded (not used)

Words 17 and 18 contain the masks relative to the interrupt levels. The
mask values are the following:

8259A PIC Interrrupt Assignments (by bit with data bus shift):

%0100 IR7 interrupt mask
%0080 IRé interrupt mask
%0040 IRS5 interrupt mask
%0020 IR4 interrupt mask
%0010 IR3 interrupt mask
%0008 IR2 interrupt mask
%0004 IR1 interrupt mask

%0002 IR0 interrupt mask

I. DEVICE ID (DID) ASSIGNMENTS

DEVICE 1D (DID) ASSIGNMENTS

The following table describes the allocation of DID's to various func-
tions. Some of these DID's represent devices which are always open, oth-
ers are assigned by system calls.

15
17
18
19
20

24
25
26

BASIC files

Console

Printer

Communications RS-232-C

System Disk Files (not accessible to BASIC)

Coml (RS-232-C)
Com2 (RS-232-C)

)

J. ASCII CODE

ASCIT CODE

This table shows decimal, hexadecimal, and binary representation of the

ASCIT code. (Boxed characters are different on national keyboards.)

c

0000 0000
0000 0001
00000010
00000011
00000100
00000101
00000110
00000111
0000 1000
0000 1001
0000 1010
0000 1011
0000 1100
0000 1101
0000 1110
0000 1111

0001 0000
0001 0001
00010010
0001 0011
00010100
0001 0101
00010110
00010111
0001 1000
0001 1001
0001 1010
0001 1011
0001 1100
0001 1101
0001 1110
0001 1111

0010 0000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
0010 1000
0010 1001
0010 1010
00101011
0010 1100
0010 1101
0010 1110
00101111

00110000
0011 0001
00110010
00110011
00110100
00110101
00110110
00110111
0011 1000
0011 1001
0011 1010
0011 to11
00111100
0011 1101
0011 1110,
0011 111)

SPACE

R

.

-~ o ~.

N I

11

12
113
114

116
1y

119
120
121
122
123
124
125
126
127

<

0100 0000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
0100 1000
0100 1001
0100 1010
0100 1011
0100 1100
0100 1101
01001110
01001111

0101 0000
0101 0001
0101 0010
01010011
01010100
01010101
01010110
01010111
0101 1000
0101 1001
0101 1010
0101 1011
0101 1100
01011101
0101 1110
o101 1111

01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
0110 1000
01101001
01101010
01101011
01101100
01101101
ola 1110
01101111

01110000
0111 0001
o111 0010
01110011
01110100
01110101
o1tio110
ot1ton
01111000
0111 1001
0111 1010
o1111011
01111100
0111 1101
oLl 1110
01111111

B

o}
D
E
F

G
H
1

J

K
L
M
N
e}
P
Q
R
s
T
u
v
w
X
¥
z

[

]
T
b
c
4
¢
‘
L
b
]

i
P
|
m
»
o
3
q
.
s
¢
v
w
x
y
i

[

[

[1]

=

DEL

149

151
152
133
154
155
156
157
158
159

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

c

1000 0000
1000 0001
10000010
10000011
10000100
10000101
10000110
10000111
1000 1000
1000 1001
1000 1010
1000 1011
1000 1100
1000 1101
10001110
1000 1111

1001 0000
1001 0001
1001 0010
10010011
10010100
10010101
1001 0110
1001 0111
1001 1000
1001 1001
1001 1010
1001 1011
1001 1100
1001 1101
1001 1110
10011111

1010 0000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
1010 1000
1010 1001
1010 1010
10101011
1010 1100
10101101
10101110
10101111

1011 0000
1011 0001
1011 0010
10110011
10110100
10110101
10110110
10110111
1011 1000
1011 1001
1011 1010
1011 1011
1011 1100
1011 1101
1011 1110
10111111

g

g

D:

D
D!
D9
DA
DB
DC
DI

RS

SR8

c

1100 0000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
1100 1000
1100 1001
1100 1010
1100 1011
1100 1100
11001101
1100 1110
1100 1111

1101 0000
1101 0001
11010010
1101 0011
11010100
11010101
1101 0210
11010111
1101 1000
1101 1001
1101 1010
1101 1011
1101 1100
1101 1101
1101 1110
not 11t

11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
1110 1000
11101001
1110 1010
11101011
11101100
11101101
1101110
1101111

1111 0000
11110001
i1110010
11110011
11110100
1110101
11110110
o
1111 1000
111 1001
L1y 1010
1011
1111 1100
1111 1101
1o
i

NOTICE

Ing. C. Olivetti & C. S.p.A. reserves the right to make improvements in
the product described in this manual at any time and without notice.

This material was prepared for the benefit of Olivetti customers.- It is
recommended that the package be test run before actual use.

Anything in the standard form of the Olivetti Sales Contract to the
contrary not withstanding, all software being licensed to Customer is
licensed "as is". THERE ARE NO WARRANTIES EXPRESS OR IMPLIED INCLUDING
WITHOUT LIMITATION THE TIMPLIED WARRANTY OF FITNESS FOR PURPOSE AMD
OLIVETTI SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES IN COMMNECTION WITH SUCH SOFTWARE.

The enclosed programs are protected by Copyright and may be used only by
the Customer. Copying for use by third parties without the express
written consent of Olivetti is prohibited.

GU Code 3987670 L (1)
Printed in Italy

GU Code 3987670 L (1)
Printed in Italy

