ASSEMBLER Language
User Guide

NN

ASSEMBLER Language
User Guide

PREFACE

This manual is produced for programmers
using the M20 to create Assembly Lang-
uage programs. The Assembly Language
of the 28001 cpu of the M20 is des-
cribed in the '"M20 278000 Assembler
Reference Manual'. The Reference manual
gives the complete instruction set
and deals with other aspects of the
cpu like operational characteristics,
architectural features, etc. This man-
ual supplies additional information
to enable the programmer to create
Assembly Language programs to run
on the M20.

This manual is divided in two parts:
Part 1 illustrates the characteristics
of an M20 scurce file and describes
how an executable binary file can
be obtained from a source file.

Part 11 details all the M20 System
Calls.

© 1983, by Olivetti, all rights
reserved.

REFERENCES:

ZB000 Assembler Reference
Manual
(code 3982410 M(0))

PCOS (Professional Com-
puter Operating System)
User Guide '
(code 3982980 P(0))

Basic Language Reference
Manual
(code 3982430 P(2))

1/0 with External Peri-
pherals User Guide

(code 3982300 N(0))

DISTRIBUTION General (G)

EDITION: March 1983
RELEASE : 2.0

PUBLICATION 1SSUED BY:

Ing. C. Olivetti & C., S.p.A.
Servizio Centrale Documentazione
77, Via Jervis - 10015 IVREA (Italy)

S NA

L

CONTENTS

PART 1

PAGE
1. INTRODUCTLON
1-1 CREATING AN EXECUTABLE FILE
1-2 THE M20 ASSEMBLER PACKAGE
1-2 SYSTEM CONFIGURATION
. 2. THE ASSEMBLER SOURCE FILE
2-1 INTRODUCTION
2-1 ASSEMBLER CONVENTIONS
2-1 ASSEMBLER LANGUAGE STATEMENT FORMAT
2-5 SYMBOLS, CONSTANTS AND STRINGS
2-7 ARITHMETIC OPERANDS
2-7 SYMBOLIC VALUES
2-8 EXPRESSIONS AND OPERATORS
2-13 78000 ADDRESSING MODES
2-20 ASSEMBLER DIRECTIVES
2-20 DATA GENERATION DIRECTIVES
2-23 CONTROL DIRECTIVES
2-28 THE PCOS_STANDARD
3. THE ASSEMBLER (ASM) COMMAND

3-1 ASM

4. THE LINK COMMAND
4-1 LINK

4-1 PARAMETERS

PAGE

4-3

4-4

4-4

4-5

4-5

4-5

5-5

5-6

5-6

TERMS EXPRESSIONS AND OPERATORS
COMMENTS
MINIMUM COMMAND. ELEMENTS

THE KEYWORDS

MULTI-FILE KEYWORDS
FILE KEYWORDS

VALUE KEYWORDS
ENTRY KEYWORDS
MESSAGE KEYWORDS
SIMPLE KEYWORDS
BLOCK DESCRIPTOR
KEYWORD ORDER
ERRORS

5. THE PDEBUG UTILITY

INTRODUCTION

LOADING AND INVOKING PDEBUG

PDEBUG
/CTRL/ /B/
TERMINATING A PDEBUG SESSION

ENTERING PDEBUG COMMANDS

CALCULATOR FACILITY

THE COMMANDS

BREAKPOINT

CLEAR BREAKPOINT

/‘\

f—
N

a

PAGE
5-7
(—_ 5-7
o 5-8
5-9
5-11
5-12
5-13

5-14
5-16

5-18
(- 5-19
5-19
5-20

5-20

6-2

6-3

CHANGE 1/0

COMPARE MEMORY

DISPLACEMENT REGISTER

DISPLAY MEMORY
FILL MEMORY

G0

Jump

MOVE MEMORY
OFFSET REGISTER
NEXT

PORT (1/0) READ
PORT (1/0) WRITE
PRINT QUTPUT
QUIT

REGISTER

TRACE

6. TEXTDUMP HDUMP AND MLIB

TEXTDUMP

HDUMP

ML1B

PART 11

7. INTRODUCTION TO SYSTEM CALLS

INTRODUCTION

PAGE

7-1

7-2

7-2

7-3

7-4

7~5

7-7

7-7

8-2

8-3

8-4

8-6

8-8

8-9

8-11

SYSTEM CALL DESCRIPTIONS

REGISTER ASSIGNMENTS
INPUT/OUTPUT PARAMETERS
ERROR MESSAGES

FUNCTIONAL GROUPS

BYTESTREAM CALLS

BLOCK TRANSFER CALLS

STORAGE ALLOCATION CALLS

GRAPHIC CALLS

TIME AND DATE CALLS

USER CODE CALLS

1EEE 488 CALLS

MISCELLANEOUS CALLS

8. THE M20 SYSTEM CALLS

9 LookByte

10 GetByte

11 PutByte

12 ReadBytes
13 WriteBytes
14 ReadlLine

16 Eof

" 18 ResetByte

19 Close

20 SetControlByte

S RA

™

~

e

PAGE

8-14

8-15

8-17

8-18

8-19

8-20

8-21

§-22

8-23

8-24

8-25

8-26

8-27

8-28

8-29

8-30

8-31

8-32

8-33

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

11

42

43

44

GetStatusByte
OpenFile
DSeek

DGetlLen
DGetPosition
DRemove
DRename
DDirectory
BSet

BuWSet

BClear

BMove
NewSameSegment
Dispose
Cle
ChgCuraQ
ChgCur1l
ChgCur2
ChgCur3
ChgCur4
ChgCurb
ReadCur0
ReadCur1

SelectCur

PAGE

8-39

8-40

8-41

8-43

8-44

8-46

8-47

8-48

8-49

8-50

8-51

8-52

8-53

8-54

8-55

8-56

8-57

8-58

8-60

8-61

8-62

8-64

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Grflnit
PalettéSet
DefinelWindow
SelectWindow
ReadWindow
Chgllindow
CloseWindow
ScaleXY
MapXYC
MapCXY
FetchC
StoreC

UpC

DownC

LeftC
RightC
SetAtr

SetC

ReadC
NSetCX
NSetCY
NRead

NUWrite

N M

-
3

.

PAGE
B-66
8-67
8-68
8-69
8-70
8-71
8-72
8-73
8-74
8-75
8778
8-79
8-80
8-81
8-82
8-83
8-84
8-85
8-87

8-89

8-91

8-92

8-93

8-94

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Pntlinit
TDownC
TUpc
ScanL
ScanR
SetTime
SetDate
GetTime
GetDate
CallUser

1BSrQo

IBSrQ1
1BPol1l
IBTSet
IBRSet
IBPrnt
1BWByt
IBInpt
IBLinpt
IBRByt
Error
DString
Crif
DHexByte

DHex

PAGE

8-95

8-96

8-97

8-98

8-99

8-100
8-101
8-102
8-103
8-104
8-105
8-106
8-107
8-108
8-109
8-110
8-111
8-112
8-114
8-115
8-116

8-117

93 DHexlong

94 DNumW

95 DLong

96 DisectName

97 CheckVolume

98 Search

99 MaxSize

102

104

105

106

107

108

109

113

114

115

116

120

121

122

123

SetVol
NewAbsolute
StringlLen
DiskFree
BootSystem
SetSysSeqg
SearchDevTab
CloseAllWindows
KbSetlock
ClearText
ScrollText

New
BrandNewAbsolute
NewlLargestBlock

StickyNew

PAGE

APPENDICES

A. RESERVED WORDS

B. ASM ERRORS

C. FUNCTIONAL LIST OF SYSTEM CALLS

D. DEVICE 1D (DID) ASSIGNMENTS

E. SYSTEM ERRORS

F. M20 1/0 PORT ADDRESSES

G. MAILBOX

H. M20 - RS-232-C DEVICE PARAMETER TABLE

1. ASCII CODE

PART I

1. INTRODUCTION

INTRODUCTION

ABOUT THIS CHAPTER .

This part of the manual describes how to create Assembly Language pro-
grams on the M20. In this chapter a brief step by step description of
the process is given. ln each step of this description reference is made
to the relevant chapter or manual where it is described in detail.

CONTENTS

CREATING AN EXECUTABLE FILE 1-1
THE M20 ASSEMBLER PACKAG: 1-2
SYSTEM CONFIGURATION 1-2

INTRODUCTION

CREATING AN EXECUTABLE FILE

An Assembly Language program must be written in an Editor enviionment;
on +the M20 this can be done in the Video file Editor environment which
is described in the "M20 PCOS (Professional Computer Operating System)
User gquide''. This edited version of the program is known as the source
file. The source file is described in chapter 2, where the Directives
and +the Assembler Conventions for the M20 are defined. Chapter 2 ends
with a description of the PCOS Standard, which defines the format of a
source file meant to execute like any PCOS routine.

The next step is to assemble the program using the ASSEMBLER (ASM) com-
mand. This command takes a source file as input and outputs a z-type
object file. The ASM command is described in chapter 3.

The final step in creating an executable file is performed by the LINK
command which is described in chapter 4. LINK takes one or more object
files as input and outputs a single executable binary file. Note that
z-type object files created using other computer languages can be linked
to z-type object files output by the ASM command.

The process of creating an executable file is shown schematically in fig
1-1

Vijeo tie editor Video tie ednor ... Vuteo (s editor

Assemuiy tanguage Assemnbly 1anguee Assembly banugoage
source hte 11} sice hie (2 M source tie (n)

ASM A RSM

!

Olivery z-1ype Clwvettt 7-type et 7ty
object hie (1} ablect fie (2} A et tie

Executable binary
load fie

fig. 1-1 Creating an executable binary file

1-1

THE M20 ASSEMBLER PACKAGE

Y
-~

The M20 Assembler package-also includes the PDEBUG (Program DEBUG) util-
ity, detailed in chapter 5, and three auxilliary commands, TEXTDUMP,

HDUMP and MLIB described in chapter 6. All the Assembler and Video File
Editor routines must be invoked from the PCOS environment.

SYSTEM CONFIGURATION

The Assembler package can run on any M20 system configuration.

1-2 ASSEMBLER LANGUAGE USER GUIDE

2. THE ASSEMBLER SOURCE FILE

O

THE ASSEMBLER SOURCE FILE

ABOUT THIS CHAPTER

This chapter contains the main steps to be taken and the Assembler
ventions the programmer must adhere to, in order to build source files

for the user's own utilities.

CONTENTS

INTRODUCTION

ASSEMBLER CONVENTIONS

ASSEMBLER LANGUAGE STATEMENT FORMAT

SYMBOLS, CONSTANTS AND STRINGS

ARITHMETIC OPERANDS

SYMBOL1IC VALUES

EXPRESSIONS AND OPERATORS

Z8000 ADDRESSING MODES

ASSEMBLER DIRECTIVES

DATA GENERATION DIRECTIVES

CONTROL DIRECTIVES

THE PCOS STANDARD

2-1

2-1

2-1

2-5

2-7

2-7

2-8

2-13

2-20

2-20

2-23

2-28

O

THE ASSEMBLER SOURCE rILE

INTRODUCTION

As previously mentioned, to construct the source file, the programmer
will make use of the Video File Editor (as described in the "PCOS (Pro-
fessional Computer Operating System) User Guide'), by means of which he
can insert the instructions and the Assembler directives. The instruc-
tion set used is precisely that of the Z-8001 CPU, described in detail
in the '"M20 78000 Assembler Reference Manual", which is useful to the
programrer for what regards mnemonics, addressing and machine code. As
far as the Assembler conventions and directives are concerned, however,
(which are M20 specific), these will be examined in more detail in the
next two sections entitled ''Assembler Conventions' and '"'Assembler Direc-
tives'. ,

The section on "Assembler Conventions'' describes in depth the way to
represent operands, numerical constants, strings, comments, arithmetic
operations, which may appear on a source program line.

The next section provides a description of the 'Assembler Directives"
i.e. those instructions which are not translated by the Assembler in
executeable machine code, but which are used by the Assembler itself to
leave uninitialised space in the object program, define strings within
the program, make references to variables outside the program and to
perform operations which facilitate the programmer's work.

The last section 'The PCOS Standard' deals with the structure an Assem-
bler source file must have, so that the user can build himself a utility
which is coherent with the PCOS utilities standards, for invoking and
for passing parameters.

ASSEMBLER CONVENTIONS

ASSEMBLY LANGUAGE STATEMENT FORMAT

The most fundamental component of an assembly program 1is the assembly
language statement, a single line of text consisting of an instruction
and its operands, with an optional comment. The instruction describes
an action to be taken; the operands supply the data to be acted upon.

An assembly language statement can include four fields in the following
order, from left to right on the line:

- Symbolic Label;
- Instruction Mnemonic;
- Operands;

- Comment.

All fields can be optional depending on the 1instruction chosen. Each -

field of the statement must be separated from the others by white space
(one or more spaces or tabs). If a field other than the symbolic label
is to be omitted but subsequent fields on the line are not, it may be
coded as a solitary comma (,). Fields other than the comment field may
not contain white space except for the case of character constants or
strings in operands (which are enclosed 1in apostrophes or quotation
marks respectively).

Symbolic Label Field

Any statement may contain a symbolic label. Some instructions require
it. If provided, the label must begin with the first character of the
text line. The absence of the field is indicated by the first character
of "the line being a white space character. The only way in which a sym-
bol may be defined anywhere in the assembly is for it to appear in the
label field of a statement. A particular symbol may appear only once in
a label field within one module. Note: a comment line, which is not an
assembly instruction, 1is 1indicated by the first character of the line
being an asterisk (*).

Instruction Field

The instruction is the assembly-language mnemonic describing a specific
action to be taken. This may represent either a 28000 machine instruc-
tion or an assembler directive instruction. The instruction must be
separated from its operands by white space (one or more spaces or tabs).

LD R2,ALPHA Load register 2 from memory location ALPHA

JP BETA JUMP to location BETA

Many of the operations of the 78000 can be applied to word, byte, or
long operands. A simple naming convention has been adopted to distin-
guish the size of the operands for these particular 1instructions:
the suffix 'B'" designates a byte instruction, the suffix '"L'" designates
a long word 1instruction, and no suffix designates a word instruc-
tion:

ADD RO, R1 Add word operands
ADDB RHO,RLO Add byte operands
ADDL RRO,RR2 Add long operands

2-2 ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

Operand Field

Depending on the instruction specified, this field can have zero or
more operands. If two or more operands are needed, each must be

separated by a comma with no intervening white space. 1f . there

“are no operands and a comment field is to be placed on the same state-

ment, the operand field must be a single comma standing alone.

RET , No operand
TEST R2 One operand

LD R2,R1 » Two operands
LDM R2,ALPHA #7 Three operands
CPD R2,2R4,R6,EQ Four operands

Operands supply the information the instruction needs to carry out
its action. An operand of a Z8000 machine instruction can be:

- Data to be processed (immediate data);

- The address of a location from which data 1s to be taken (source
address):

- The address of a location where data is to be put (destination
address);

- The address of a program location to which program control is to be
passed; '

A cohdition code, used to direct the flow of program control.

Although there are a number of valid combinations of operands, there
is one basic convention to remember: the destination operand
always precedes the source operand. Refer - to the specific
instructions in the Reference Manual for valid operand combinatons.

Immediate data can be in the form of a constant , an address , or an
expression (constants and/or addresses combined by operators).

LD R2 #7 Load 7 into register 2

LD R2 ,#ALPHA Load address of ALPHA into register 2

LD - R4A#BETA/2 Load value of expression [BETA/2] into
Ty ' register 4 '

As far as the conventions are concerned, for expressing numeric con-
stants and alphanumeric strings, these will be dealt with later in the

appropriate section. ’

Source, destination, and program addresses can also take several forms.
Addressing modes are described in detail later. Some examples are:

2-3

LD R1,8R2 Load value whose address is in register 2

’ ’ into register 1 .
-

LD R1,ALPHA Load value located at address labeled

’ , ALPHA into register1
LD R1,ALPHA+1 Load value at location following that

v addressed by ALPHA into register 1
JP EQ,BETA Jump to program address labeled BETA if
y ’ ; EQ flag is set
JP NE,BETA+16 Otherwise, jump to location sixteen bytes
’ ’ following BETA

Condition codes are listéd in the Reference Manual.

Operands of an assembler directive instruction can be:

- A numerical. value or expression;

'

ExpreSsions or strings representing initialization data;

A string such as a file name, a module name, or a section name
(such strings cannot be referenced elsewhere in the program);

A keyword.

Examples of assembler directives:

MODULE device.1,segmented
AT BETA+16

DsB 27

ODL %7FO1FFF,'AB"

The assembler directives are dealt with later in the appropriate sec-
tion. .

Comments

Comments are used to document program code as a guide to program logic
and also to simplify present or future program debugging A text line
which begins with an asterisk as the first non-white-space character
is copied as it appears to the listing file but is 1gnored by the assem-
bler for all other purposes.

Examples of comment lines: -

2-4 ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

This routine is used to compare two strings. The operands are

*

* pointers to the first characters of each string. The

* strings are of variable length with a zero byte marking
* the end of the string.

* The returned value of this routine is:

* -1: first string less than second
* 0: strings equal
* 1: first string greater than second

Comments may also be placed on the end of each assembler statement All

text which appears after the operand field on the line is a comment and

is reproduced in the listing file but ignored otherwise. 1f the operand

field or the instruction field are to be omitted the comment field may

?n}y be included if the omitted field(s) are coded as a solitary comma
0).

Examples of on-statement comments:

CLR R2 | Initialize register 2

IRET ’ return from the interrupt NOW!
START.UP , ' THIS 1S THE ENTRY POINT OF THE PROGRAM

Jp Z,BETA+12 this is a close comment |

SYMBOLS, CONSTANTS, and STRINGS

Symbols

A symbol may consist of the letters A-Z (upper or lower case), the
digits 0-9, the underscore character (_), or a period (.). A symbol may
not begin with a digit (0-9). The maximum length of a symbol 1is 16
characters.

Upper and lower case letters are considered different characters. Thus
"Start" and 'start" are different symbols.

fhe following are valid symbols:

ValueAssignments -
Initial values
start_up
Pass 2
~ sort

2-5

Constants

A
A constant is a value which stands for itself. 1t may be either a
number or a character sequence.

Numbers can be written in decimal, hexadecimal, binary, or octal nota-
tion. The 1latter three are preceded by a percent sign (%) and, in
the case of binary and octal, by a base specifier enclosed in
parentheses. 1If a number has no prefix, decimal is assumed.

42 decimal
%42 hexadecimal
%(8)42 octal

%(2)10110010 binary

A character sequence is a sequence of one to four characters
enclosed in. apostrophes. Any ASCII character can be included in the
character sequence, for example;

IAI
'Open’
A character can also be represented in a character sequence in the

form "%hh," where "hh" is the hexadecimal equivalent of the ASCI1 code
for the character, for example;

'E=%18B"'

For convenience, certain ASCI1 characters have been assigned
shorter, more mnemonic codes as follows:

%L or %1 Linefeed

%T or %t Tab

%R or %r Carriage Return
%P or %p Page (Form Feed)

%% Percent Sign

%Q, %q, %' Apostrophe (Single Quote)
Example:

*1%r2%r’ represents the ASCIl sequence: 1 /CR/ 2 /CR/
and '%Qt=%Q’ represents the ASCI1 sequence: 't='
Strings

Strings are sequences of any length of ASCII characters, enclosed in
uotation marks. They can be defined only by using the DDB directive
see Data Generation Directives).

Strings also use the above ASCI1 mnemonic forms. Since strings ére

enclosed in quotation marks, the mnemonic %" is used for embedded quota-
tion marks.

2-6 | ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

ARITHMETIC OPERANDS

Run=Time and Assembly-Time Arithmetic

Arithmetic is performed in two ways in an assembly language program.Run-
time arithmetic is done while the program is actually executing.

ADDB RHO,RL2 Add the contents of register
' ’ RL2 to the contents of register RHO

Assembly-time aritﬁmetic;is,doneﬁby the assembler when the program is
assembled and involves the evaluation of arithmetic expressions in
operands, such as the following: :

LDL RR14,#[2*one+%10]
JP Z,BETA+34
“AND R5,ALPHA-3
Assembly-time arithmetic is more limited than run-time arithmetic.

All assembly-time arithmetic is computed using 32-bit representations of
the numbers. Any number in excess of 32 bits (4,294,967,296) loses the-
extra bits on the left, so all values are calculated 'modulc
4,294,967,296". Depending on the number of bits required by the particu-
lar instruction, only the rightmost 4, 8, 16, or 32 bits of the result-
ing 32-bit value are used. If the result of assembly-time arithmetic is
to be stored in four bits, the value is taken ‘'modulo 16" to give a
result in the range 0 to 15. 1If the result is to be stored in a single
byte location, the value is taken ''modulo 256" to give a result in the
range 0 to 255 (or -128 to 127 if signed representation is intended). 1f
the result is to be stored in a word, the value is taken "modulo 65536"
to give a result in the range 0 to 65535 (or -32768 to 32767 if signed
representation is intended).

LDB RH7,#one*2 Result of "one*2'" must be in
* range 0 to 255

JP BETA+2 Modulo 65536. Result is the
* address 2 bytes beyond BETA

SUBL RR2 #0ne*%80000 Result of "one*%80000" is taken
* modulo 4,294,967,296

SYMBOLIC VALUES

A symbol can be assigned a value other than that of the current assem-
bly location counter by means of the assembler directive instruc-
tions which are described later in this chapter. In this way a symbol

2-7

can be made"to represent an absolute constant value or a relocatable

memory location in the same section, in a differeat section of the same
module or in a completely different module. That symbol may then be
used-in- operand expmessions anywhere thfat~a-value of its type is pems
missible.

EXPRESSIONS AND OPERATORS

Expressions are formed using arithmetic, logical, shift, and rela-
tional operators in combination with constants and variables. These
operators allow both unary (one-operand) and binary (two-operand)
expressions, as shown below. '

Arithmetic Operators

The arithmetic operators are the following:
Operator) Operation
+ Unary plus, binary addition

- Unary minus, binary subtraction

* A Multiplication
/ Divison
Modulus

The division operator (/) truncates any remainder. The modulus opera-
tor (\) performs the modulo function (i.e. returns the remainder after
division) ,

9/2 = 4

FAVA

1

-9/2 = -4

1f zero is specified as the right operand for either of these opera-
tors, the result is undefined.

Examples:
SuBB RLO,#1 1 is subtracted from RLO

SUB R10,#one+[10-3] Value of one .+ 7 is subtracted
, ' from register 10

2-8 ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

Logical Operatars

The logical operators are the following:

Operator Operation
~ ; (Unary) Logical COMPLEMENT
& ~ Logical AND
! Logical OR
- Logical EXCLUSIVE OR |

Logical -COMPLEMENT (~) simply complements the bit pattern of “its single
operand (i.e. all one bits are changed to zero and vice-versa).

LD 'R11f#“CONSTANT1 Revegfe the bits of CONSTANT1 and load into
LI reg .

The effect of Logical AND, Logical OR, and Logical = EXCLUSIVE OR can
be seen from the following examples. Although 32-bit arithmetic would

actually be done by the assembler, 4-bit arithmetic is shown for
clarity. Assume two constants, CONSTANT1 and CONSTANTZ2, which have the

bit patterns 1100 and 1010, respectively. The expressions:
CONSTANTT&CONSTANT2
CONSTANT1 1CONSTANT2
CONSTANT1~CONSTANT2

will result in the following evaluations of the operands:

AND 1100 OR 1100 EXCLUSIVE OR 1100
1C10 1010 1010
1000 1110 0110

The assembly-time logical operations performed by Logical COMPLEMENT,
Logical AND, Logical OR and Logical EXCLUSIVE OR can alse be done at
run time by the Z8000-instructions COM, AND, OR, and XOR raespectively.
The assembly-time operations require less code and register manipula-
tion. The run-time operations allow greater flexibility, however. For
example, they can operate on registers (variables) whose contents are
not known at assembly time, as well as on known constant values.

éhift Operators

The shift operators are as follows:

{SHR } Logical shift right
{SHL } © Logical shift left

When used in expressions, the shift operators have the form

»
»

d operator n

where "d" is the data to be shifted and '"n" specifies the number of
bits to be shifted. Vacated bits are replaced with zeros. For exam-
ple, if CONSTANT1 has a value of 00001100, the statement

LD R10,#[CONSTANT1 {SHL} 2]

would load the value 00110000 into'regiéter R10. 1f the second operand
supplied is negative (that 1is, if'the sign bit is set), it has the
effect of reversing the direction of the shift.

LD R10:#{CONSTANT1{SHR}-2] - CONSTANTT is shifted
. T R . o two bit positions LEFT

Relational Operators

There are two basic types of relational operators: those which con-
sider their operands to be signed 32-bit integers, and those which
consider their operands to be unsigned 32-bit integers.

Signed:
< Less than
- <= Less than or equal
= Equal
< > Not.equal
> = Greater than or equal
S Greater than

2-10 ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

Unsigned:
{uLt} Less than
{uLe} Less than or equal
{uea} Equal
{UNE} Not equal
{uce} Greater than or equal
{ueT} Greater than '

The relationalloperators return a logical TRUE value (all ones) if the
comparison of the two operands is true, and return a logical FALSE value
(all zeros) otherwise.

LD RO,#[1=2] Reg 0 is loaded with zeros

LD RO#([2+2]<5 Reg 0 is loaded with ones

Precedence of Operators

Expressions are generally evaluated left to right with operators having -
the highest precedence evaluated first. If two operators have equal
precedence, the leftmost is evaluated first.

The following lists the assembly-time operators in order of pre-
cedence:

- Unary operators: +, -, ~
- Multiplication/Division/Modulus/Shift/AND: *, /,\, {SHR}, {SHL},&
- Addition/Subtraction/OR/X0R: +, -, !,”

- Relational operators:)
<, <=, =<3 >=, >, {ULT} 1 {ULE} ’ {UEQ}) {UNE} ’ {UGE} ’ {UGT}

Square brackets ([]) can be used to change the normal order of pre-
cedence. Items enclosed in brackets are evaluated first. 1If brackets
are nested, the innermost are evaluated first.

100/4 - 48/2 = 1
100/[4 - 48/2]= -5

2-1

Note: .
Square brackets are used instead of the traditional parentheses.
This is done to avoid all confusion and conflict whether it be syntacti-
cal, semantical or conceptual, with-the indexed~ address operand forms~
described further on in this chapter.

Segmented Address Operators

Two special operators are provided to ease the manipulation of seg-
mented addresses. While addresses can be treated as a single value
with a symbolic name assigned by the programmer, occasionally it is
useful to determine the segment number or offset associated with a
memory location.

- i
The SEGMENT unary operator, { SEGMENT} , 1is applied to an address :]
expression that contains 'a symbolic name associated with an
address, and returns-a 16-bit value. This value is the 7-bit seg-
ment number associated with the expression and a one bit in the most
significant bit of the high-order byte, and all zero bits in the
low-order byte. '

The "OFFSET" unary operator, {OFFSET} , is applied to an address
expression and returns a 16-bit value which is the offset value asso-
ciated with the expression.

Example
* Load the segmented address of buffer_pointer into register pair RR12.
LD R12,#{SEGMENT} buffer pointer P
- LD R13,#{0FFSET}buffer pointer Q
* This is functionally equivalent to the following sfatement:

LDL RR12 #buffer pointer

Because of the special properties of these address operators, no other
operators can be applied to a subexpression containing a SEGMENT or
OF FSET operator, although other operators can be used within the subex-
pression to which the operator is applied:

. {SEGMENT} [buf fer pointer+4] Valid
{SEGMENT} buffer pointer]+4 Invalid
- [{OFFSET }buf fer pointer] lnvalid

-

2-12 ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

28000 ADDRESSING MODES

With the exception of immediate data and condition codes, all 18000
machine instruction operands are expressed as addresses: register,

memory, and 1/0 addresses. The various address modes recognized by
the Z8000 assembler are as follows: ' :

- Tlmmediate Data

- Register

- 1Indirect Register

- Direct Address

-~ Indexed Address}

- Relative Address

- Qaséd Address

- Ba#éd Inde*ed Address

Special characters are used in operands to identify some of these
address modes. The characters are:

"R preceding a word register number;
- “RH'" or "RL" preceding a byte register number;
- "“RR" preceding a register pair number;
- "RQ" preceding a register quadruple number;
- "@'" preceding an indirect-register reference;
- 'w" preceding immediate data;

- "()" used to enclose the displacement part of an indexed, based,
or based indexed address;

- "$" signifying the current program counter location, usually used in
relative addressing.

Iﬁmediate Data

The operand value used by the instruction in Immediate Data
addressing mode is the wvalue supplied in the operand field
itself. . .

Immediate data is preceded by the special character "#" and can be
either a constant (including character constants and symbols

2-13

representing constants) or an expression as previously dgscribgd.
Immediate data expressions are evaluated using, 32-bit arithmetic.
Depending on the instruction being used, the value represented by the

rightmost 4, 8, 16, or 32 bits is actually used. An.error message is

generated for values that overflow the valid range for the instruction.

ADDB RL7,#98 Add 98 to the contents of register RL7
LDL RR14 #6789*FOUR ‘

' ’ Load the value of the multiplication
’ ’ into register pair 14

1f a variable name or address expression is prefixed by '#', the . value
used 1is the address represented by the variable or the result of the
expression evaluation, not the contents of the corresponding data
location.

The assembler automatically creates the proper format for a long
offset address which includes the segment number and the offset in a 32-
bit value. It is recommended that symbolic names be used wherever
possible, since the corresponding segment number and offset for the
symbolic name will be automatically managed by the assembler and
can be assigned - values later when the module is 1linked or when the
program is loaded for execution.

For those cases where a specific segment is desired, the following
notation can be wused (the segment designator is enclosed in double
angle brackets):

<<segment>>offset

where "segment' is a constant expression that evaluates to a 7-bit
value, and "offset" is a constant expression that evaluates to a 16-bit
value. This notation is expanded into a long offset address by the
assembler,

LDOL _RRZﬁ#MESSAGE Load the address of MESSAGE into
. ’ register pair RR2

LOL RR2 ,#<2>>%10 Load the segmented address

' ’ , with segment 2, offset %10

' ' into register pair RR2

Register Address

In register addressing mode, the operand value is the content of the
specified general-purpose register. There are four different sizes of
registers on the Z8000:

2-14 ‘ : ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

- Word register (16 bits),

- Byte register (8 bits),

- Register pair (32 bits), and

- Register quadruple (64 bits).

A word register is 1nd1cated by the "R" folloued by a number from 0 to
15 (decimal) corresponding to the 16 registers of the machine.

Either the high or low byte of the first eight registers can be
accessed by using the byte register constructs "RH" or "RL'" followed by

a number from 0 to 7. Any pair of word registers can Dbe
accessed as a register pair by using "RR" followed by an even number
between 0 and 14. Register quadruples are equivalent to four

consecutive word registers and are accessed by the notation "RQ"
followed by one of the numbers 0, 4, 8, or 12.

If an odd register number is given with a register pair designator, or a
number other than 0, 4, 8, or 12 is given for a register ‘quadruple, an
assembly error will result. :

In general, the size of a register used in an operat1on depends on the
particular instruction. Byte instructions, which end with the suffix
“B'" are used with byte registers. Word registers are used with word
instructions, which have no special suffix. Register pairs are used

with long word instructions, which end with the suffix "L". .
Register quadruples are used only with three instructions (DIVL, EXTSL
and MULTL) which use a 64-bit value. An assembly error will

occur if the size of a register does not correspond correctly with the
particular instruction.

LD RS #%5A5A * Load register 5 with the

’ ’ : hexadecimal value 5A5A

LDB RH3,#%AS5 Load the high order byte of

s , word register 3 with the

, ' hexadecimal value A5

ADDL RR2,RR4 Add the register pairs 2-3 and
’ v 4-5 and store the result in 2-3
MULTL RQ8,RR12 Multiply the value in register
, y pair 10-11 by the value in

, , register pair 12-13 and store the
R ’ result in register quadruple

' ’ 8-9-10-11

Indirect Register Address
In Indirect Register addressing mode, the cperand value is the con-
tent of the location whose address is contained in the specified regis-

ter. A register pair is used to hold the address. Any general-purpose
register (register pair) can be used except RO or RRO.

2-15

Indirect Register addressing mode ' is also _ used with the 1/0
instructions and always indicates a 16%bit 1/0 address. Any
general-purpose word register can be used except RO. -

An Indirect Register address is specified by a "commercial at" symbo
(@) followed by either a word register or a register pair designator.
For Indirect Register addressing mode, a word register is specified by
an "R" followed by a number from 1 to 15, and a register pair is speci-
fied by an "RR'" followed by an even number from 2 to 14.

LD @RR2,#15 Load immediate value 15 into’
’ ' location addressed by register
’ ’ pair 2-3 ‘

Direct Address

The operand value used by the instruction in Direct addressing mode
is the comtent of the location specified by the address in the instruc-
tion. A direct.address can be specified as a symbolic name of a memory
or 1/0 location; or an expression that evaluates to an address. For all
1/0 instructions, the address is a 16-bit value. The memory address
is either a: 16-bit value (short offset) or a 32-bit value (long
offset). All assembly-time address expressions are evaluated
using 32-bit arithmetic.

LD R10,TABLE ' Load the contents of the

’ , ’ - location addressed by TABLE

R , into register 10

LD ARRAY+2,R2 Load the contents of register
v , 2 into the location addressed
. ’ by adding 2 to ARRAY

LDB RH5,55 Load the contents of the 1/0
. , location addressed by 55 into
' ’ RHS s

The assembler automatically creates the proper format which includes the
segment number and the offset. It is recommended that symbolic names be
used wherever possible, since the corresponding segment number and
offset for the symbolic name will be automatically managed by the assem-
bler and can be assigned values later when the module is linked or
loaded for execution.

For those cases where a specific segment is desired, the following nota--
tion can be used (the segment designator is enclosed in double angle
brackets):

<< segment->offset
where '"'segment" is a constant expression that evaluates to a 7-bit
value, and "offset" is a constant expression that evaluates to a 16-bit

value. This notation is expanded into a long offset address by the
assembler.

2-16 ASSEMBLER LANGUAGE USER GUIOZ

C

THE ASSEMBLER SOURCE FILE

To force a short offset address, the segmented address can be
enclosed in vertical bars (||). 1In this case, the offset must be in
the range 0 to 255, and the final address includes the segment number
and short offset in a 16-bit value.

LD R10, |TABLE] Load the contents of the

y "~ location addressed by TABLE
y ’ (short offset format) into
' , register 10

LD <<SEGMENT>>OFFSET,R10 Load the contents of reg-
ister 10 into the location
addressed by the segment
named SEGMENT offset by
OFFSET (long offset format)

JP |<<SEGMENT>»QFFSET| Jump to location addressed
’ ’ by segment, offset

' ’ {short offset format)

Indexed Address

An Indexed address consists of a memory address displaced by the con-
tents of a designated word register (the index). This displacement is’
added to the memory address and the resulting address points to the
location whose contents are used by the instruction. The memory address
is specified as an expression that evaluates to either a 16-bit value
(short offset) or a 32-bit value (long offset). All assembly-time
address expressions are evaluated using 32-bit arithmetic. This address
is followed by the index, a word register designator enclosed in
parentheses. For Indexed addressing, a word register is specified by an
"R'" followed by a number from 1 to 15. Any general-purpose word regis-
ter can be used except RO.

LD R10,TABLE(R3) Load the contents of the
’ ’ location addressed by TABLE
’ ' plus the contents of reg-
, . ister 3 into register 10

The assembler automatically creates the proper format for the memory
address, which includes the segment number and the offset. As with
Direct addressing, symbolic names should be used wherever possible so
that values can be assigned later when the module is linked or loaded
far execution.

For those cases where a specific segment is desired, the following nota-
tion can be used (the segment designator is enclosed in double angle
brackets):

<«segment>>>offset(r)

where "segment" is a constant expression that evaluates to a 7-bit
value, "offset" 1is a constant expression which evaluates to a 16-bit

2-17

value, and "r'" is a word register designator. This notation is expanded
into a long offset address by the assembler. .

To force a short offset. address, the segmented address may bew
enclosed in vertical bars (|]). 1In this case, the cffset must be in the
range 0 to 255, and the final address includes the segment number and
short offset in a 16-bit value.

LD R10, |TABLE| (R3) Load the contents of the
location addressed by

TABLE (short offset format)
plus the contents of reg-
ister 3 into register 10

- @ w e
- W w -

LD «5>8(R13),R10 Load the contents of regis-
’ ter 10 into the location ad-
dressed by segment 5

offset by 8 (long off-

set format) plus the con-
tents of register 13

. @ wgpwe =
- v e -

Relative Address

Relative address mode is implied by its instruction. It is wused by
the Call Relativer (CALR), Decrement and Jump 1f Not Zero (DINZ),
Jump Relative (JR), Load Address Relative (LDAR), and Load Relative
(LDR) instructions and is the only mode available to these instructions.
The operand, in this case, represents a displacement that is added to
the contents of the program counter to form the destination address that
is relative to the current instruction. The original content of the
program counter is taken to be the address of the instruction byte fol-
lowing the instruction. The size and range of the displacement depends
on the particular instruction, and is described with each instruction in
the 28000 Assembler Reference Manual. :

The displacement value can be expressed in two ways. In the first case,
the programmer provides a specific displacement in the form "$+n" where
n is a constant expression in the range appropriate for the particular
instruction and $ represents the contents of the program counter at the
start of the instruction. The assembler automatically subtracts the
value of the address of the following instruction to derive the actual
displacement.

JR OV,5+ONE Add value of constant ONE to program
v e counter and jump to new location if
vy s overflow has occurred

In the second case, the assembler calculates the displacement automati-
cally. The programmer simply specifies an expression that evaluates to
a number or a program label as in Direct addressing. The address speci-
fied by the operand must be in the valid range for the instruction, and
the assembler automatically subtracts the value of the address of the
following instruction, to derive the actual displacement.

2-18 ASSEMBLER LANGUAGE USER GUIDE

PN
3

G

THE ASSEMBLER SOURCE FILE

DINZ R5,BETA Decrement register 5 and jump to

’ ' BETA if the result is not zero
LDR R10,ALPHA Load the contents of the location
' ’ addressed by ALPHA into register 10

Based Address

A Based address consists of a register that contains the base and a 16-
bit displacement. The displacement is added to the base and the result-
ing address indicates the location whose contents are used by the
instruction.

The segmented based address is held in a register pair that is specified
by an “RR" followed by an even number from 2 to 14. Any general-purpose
register pair can be used except RRO. The dispacement is specified as an
expression that evaluates to a 16-bit value, preceded by a '"#' symbol
and entlosed in parentheses.

LDL RR2,R1 (#255) Load into register pair 2-3 the
’ ’ long word value found in the

, R location resulting from adding

’ , 255 to the address in register?
LD RR4 (#%4000),R2 Load register 2 into the loca-

, , ~ tion addressed by adding %4000

’ ’ to the segmented address found

, , ' in register pair 4-5

Based Indexed Address

Based Indexed addressing is similar to Based addressing except that the
displacement (index) as well as the base is held in a register. The con-
tents of the registers are added together to determine the address used
in the instruction.

The segmented based address is held in a register pair that is specified
by an "RR" followed by an even number from 2 to 14. Any general-purpose
register pair can be used except RRO. The index is held in a word regis-
ter that 1is specified by an "R" followed by a number from 1 to 15. Any
general-purpose word register can be used except RO.

LDB RR14(R4),RH2 Load register RH2 into the

, , location addressed by the seg-

. . mented address in RR14 indexed by
, , the value i1n R4

2-19

ASSEMBLER DIRECTIVES

»
»

Assembler Directives-aresprogram stavements which have the same: format~

as machine instructions but whose operation field does not correspond to
any machine instruction mnemonic. These are used to control the opera-
tion of the assembler with regard to functions other than producing the
machine code for an instruction.

‘Directives fall into two major categories: data generation directives
which allocate and possibly initialize program data areas, and control
directives which control and affect the operation of the assembler.

DATA GENERATION DIRECTIVES

These cause data space to be reserved at the current assembly location.
Directives differ in element size and ability to initialize the data
space.

DS

This directive is used to define uninitialized data. It takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). No forward referencing of symbols is
allowed in the expression. The given number of two-byte words is
reserved at the current location, after rounding up to the next even
boundary. Note that an operand of '0'" may be used to force rounding of
the location counter up to an even boundary without reserving any
space for data. Also, if a label is defined in the label field of the
same statement its value 1is set to that of the location counter after
the rounding operation, but before the data definition.

DS 0 round up to next word boundary

BUFFER DS 100 reserve a one hundred-word buffer

Ds8

This directive is used to define uninitialized data. It takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable). The given number of bytes is reserved
at the current location. No forward referencing of symbols is allowed
in the expression.

DSB 100 reserve 100 bytes

keyboard buffer DSB number_base 16 define keyboard buffer

2-20 ASSEMBLER LANGUAGE USER GUIDE

S

THE ASSEMBLER SOURCE FILE

DsL

This directive is used to define uninitialized data. 1t takes a single
required operand which is an expression which evaluates to an absolute
value (i.e. not relocatable)}. No forward referencing of symbols is
allowed in the expression. The given number of four-byte longwords is
reserved at the current location, after rounding up to the next
even boundary. Note that an operand of "0" may be used to .force round-
ing of the location counter up to an even boundary without reserving
any space for data. Also, if a label is defined in the label field of
the same statement its value 1is set to that of the location counter
after the rounding operation, but before the data definition.

DSL 100 leave exactly 400 bytes
* . uninitialized
buf fer_pointer DSL 1 define memory pointer

* . variable

oD

‘The DD directive is used to define initialized data areas consisting of

two-byte word values. The directive may take any number of operands
and repetition factors may be applied to groups: of them (described
below). Each operand is an expression which evaluates to either an
absolute value or to a relocatable value. 1In either case only the . low-
order 16 bits of the value is used. One word of data is generated for
each operand supplied at the current location after rounding up to the

-next even boundary. Also, if a label is defined in the label field of

the same statement its value is set to that of the location counter
after the rounding operation, but before the data definition.

DD 10244 define one word with contents 10,244 (%2804)
* Define a power-of-two table of words:

TABLE DD 0,1,2,4,8,16,32,64,128
DD %100,%200,%400,%800,%1000,%2000,%4000,%8000

Key DD A’ define word containing %0041
DbB
The DDB directive is used to define initialized data areas consisting of
byte values. The directive may take any number of operands and repeti-
tion factors may be applied to groups of them (described below). Each

operand 1is an expression which evaluates to an absolute value, or a
string.

2-21

1f the operand is a value, only the low-order 8 bits are used and one '

byte of data is generated at the current locationy,
DB 'A'1%40, ['Z'+1]1%40 twe-daka.bytes

String operands are sequences of any length (including zero) of ASCI1
characters. They are delimited by quotation marks, so an embedded quo-

tation mark is written %" and an embedded percent sign is written

*%%. The discussion of hexadecimal and mnemonic equivalents for ASC1l
characters (see Constants) applies as well to strings. One byte of
data is generated for each byte of a string, at the current location.

string DDB "this is a string" v
EndOff DDB ;7,%00,%0& ‘ ‘bell, carriage return, line feed
yESSAGE [110]:} "ERROR - INVALID INPUT%F",7,0 ‘

DoL

ODL is used to define initialized data areas consisting of four- byte
long values. The directive may take any number of operands and repeti-
tion factors may be applied to groups of them (described below). Each
operand is an expression which evaluates to either an absolute value or
to a relocatable value. Two words of data are generated for each
operand supplied at the current location after rounding up to the next
even boundary. Also, if a label is defined in the label field of the
same statement its value is set to that of the location counter after
the rounding operation, but before the data definition.

* Define table of three long words, the address of the
* start of the region, the address of the end of the
* region and the size in byte of the region.

bDL START,END,END~START

containing hex 7f017fff, and the

DDL %7fO17fff, 'AB"' define two long words the first
?
, second hex 00004142

The DD, DDB and DDL directives each take an arbitrary number of
operands and allow repetition factors to be applied to them. A
repetition factor takes the form of an absolute expression. The
repetition factor must be followed by the operand enclosed in
parentheses. This has the effect of the enclosed operands appearing in
sequence, the number of times given by the expression.

Repetitions may be nested. No forward referencing of symbols is
allowed. A

2-22 ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

ARRAY DD 1000(0) define array of 1000 words,
* : all initialized to zero.

* define and initialize 8 bytes
CrcTab DDB 2(*asdf") which would be 8 bytes.

" The DD directives with repetition factors have the potential to produce

voluminous listings. 1f the generated code is too large to fit the
space to the left of the source line, the code will follow the listing
line in groups of 8, 16, or 32 data elements (for DDL, DD, and DDB
respectively). .

CONTROL DIRECTIVES

MODULE

A MODULE statement defines the beginning of each module in the source
file. It must occur as the first instruction of each module in the
input source file. A module ends either at the next MODULE state-
ment or at the end of the input source file. Modules within the same
file are completely unrelated; no symbols may be shared or passed

between them. '

The first operand of the MODULE statement, the module name, is required.
This operand follows the composition rules of a normal symbol, but can-
not be referenced elsewhere in the program. The second operand is
also required. 1t must be the keyword 'SEGMENTED" to tell the module to
contain code for a segmented Z8000.

MODULE test seg,segmented

SECTION

A module is composed of sections which are named explicitly by the user.
A section is the smallest unit of relocatability within the programming
system. Portions of the same section cannot be split further and placed
separately at link time.

A SECTION directive must appear in each module before the first
machine 1instructions or data generating directive. The SECTION direc-
tive has one required operand which is the section name. This
operand follows the composition rules of a normal symbol, but cannot
be referenced elsewhere in the progam.

1f a section name duplicates another section name already declared in

the same module, it is taken as a continuation of the same section. The
assembly location counter is set to 0 at the beginning of a new section

2-23

or to the value it had at the previous end of a continued section. The ‘

special character asterisk (*) may be spec1f1ed ifh place of the section
name to indicate the most recent section is to be continued.

All symbols defined within a module must be unique. Thus, symbols may
be cross-referenced between sections of the same module.

section some_examples
SECTION examples
SECTION *

AT

This directive is used to change the assembly location counter. It
takes a singlse. onerand which is a numeric expression. The expression
defines the offset in the current section at which the next instruction
or data is to be generated. It may be used to move forward, leaving an
uninitialized gap, or to move backward, overur1t1ng code or data previ-
ously generated at that location. o

The expression must use symbols which have already = been defined or
constants; no forward referencing of symbols is permitted.

In order to specify a symbolic location with a numeric expression, label
the beglnn1ng of the section. 1If the label at the beginning of the sec-
tion is, for instance, START.up, you could make the following assign-
ments:

AT [$-START.upl +10 same as ''DS8 10"
AT START.up+%100 resume assembling at offset %100
TEMPLATE

This directive allows the definition of assembly-time symbols by means
of suspending the actual generation of code/data. The effect of the
TEMPLATE instruction is to cause all subsequent source statements to be
processed normally but no code or data to be generated in the output
object file. Thus all symbols are defined, but they are not ass1gned to
any location. Normal processing of assembler instructions is reinstated
by the next SECTION, MODULE, COMMON, or TEMPLATE statement.

The TEMPLATE directive takes one required operand. It is an
expression which is absolute, internally relocatable or externally relo-
catable. The symbols subsequently defined are given values relative to
that expression.

2-24 ASSEMBLER LANGUAGE USER GUIDE

0

THE ASSEMBLER SOURCE FILE

The following statements define the layout

*

* of the REQUEST CONTROL BLOCK. No memory is

* reserved at this time but the four symbols

* become defined as absolute constants which

* are their respective offsets in the block.
TEMPLATE 0

RCB.RQCODE DsB 1

RCB.STATUS DsB 1

RCB.DATAPTR DSL 1

RCB.COUNT DS 1

COMMON

The COMMON dxrectlve is used to declare a common data area. Generation
of code or data in the object module is suspended until the next MODULE,
SECTION, TEMPLATE or COMMON directive. The instructions which fol—
low have the effect of defining the symbols therein declared and of
defining the length of the common area. The COMMON directive has
no operand but a common name must be provided in the label field of the
instruction. This follows the composition rules for external symbols
and is itself an external symbol; the COMMON statement serves to declare
it as such.

No memory space is reserved for the common area by the assembler. The
name and size of the common is placed into the output object module for
use by the linker. The common name is a bonafide external symbol and
m?{ be used in other places in the assembly where an external symbol is
allowed.

* Define named common area to contain all globally used variables.

GLOBAL VARIABLES COMMON
Buff.Ptr DSL 1
Glob.flag DSB 1
CmdLength DS 1 *x% WARNING, rounding will
, , occur for alignment *¥¥
ASS1GN

ASSIGN is used to define an assembly-time symbol. The symbol to be
defined appears in the label field of the instruction. The value to be
assigned to it is given as the operand. The operand is an expression
which may be absolute, internally relocatable or externally relocatable.
The new symbol takes on the value and type of the expression. Symbols
in the expression may not be forward referenced. The defined symbol
must be unique within the module; it is not permissible to redefine a
symbol with an ASSIGN statement.

2-25

ccce ASSIGN %F ~ defines a constant symboi

KEY ASSIGN ‘Al ; defines a character value
ABSOLUTE_ADDR ASSIGN <3>%100° defines an absolute address
LooP2 ASS1GN S equivalent to "LOOP2 DSB O"
’ ’ : or to LOOP2 standing alone
' ’ on'a line .
LOOP X ASSIGN LOOP2+2 program location after first
, ' word of LOOP2 routine.
6LOBAL

The GLOBAL directive is used to define a global symbol. This symbol is
accessible within the current module, and is also made accessible at
link time to-all other modules. There are no operands to the directive.
The symbol to be defined is given in the label field of the instruction,
and must be unique within the module. 1t receives the value of the
current assembler location. This directive may only occur within a sec-~

tion; it may not appear within the range of a TEMPLATE or a COMMON
directive. ' . ,

compare global label first instruction of routine
* so it may be used by all modules

* Define a global word variable, initialized t
* all ones. : .

DS 0 align, to make sure
ONES GLOBAL
DD %(2)11111111111111 M

EXTERNAL

The EXTERNAL directive is used to declare a symbol which is to be
defined at link time in another module. There are no operands. The
symbol to' be declared is given in the label field of the instruction.
Since the symbol 1is not associated with any particular section, its
declaration may appear anywhere in the module.

* Declare routines in utility module needed by this module.

BCD ADD EXTERNAL
BCDTSUB EXTERNAL
BCD DIV EXTERNAL

2-26 ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

IF and ENDIF
b

These directives are used to implement a conditional assembly facility.
The 1F instruction takes a single operand which is an expression which
may be of any type, but may not contain forward symbol references. If
the value of the expression is exactly zero, ALL statements following
the 1IF and before the corresponding ENDIF are treated as comments. - An
END1F takes no operands. IF-ENDIF pairs may be nested. .

Assume an assembly program is to be assembled in one of two different
ways, depending on which machine, X or Y, it is going to run on. Using
the ASSIGN directive we set the symbols X and Y to show which the
current assembly is for. One is set to 1, the symbol for the machine
being selected, the other to 0, for that not selected. A “portion of
the assembly might appear as fol lows: '

* If assembling for the X machine, invert the value.

if X _ could also say IF %0
COM”" RO | |
endif

LISTON and LISTOFF

These directives allow the selective inclusion of portions of the assem-
bly in the listing file. They take no operands. 1f no listing file was
named in the assembler command line, then these have no effect since no
listing 1is being produced anyway. Rather than being just an on/off
switch listing control is accomplished with a signed counter. The
counter starts at zero, each occurance of a LISTON increments it by one
and each LISTOFF decrements it by one. Text is placed into the list-
ing file whenever the counter is greater than or equal to zero. This
technique provides hierarchical levels of control. The counter 1is not
reinitialized for each new module encountered in the input source file,

PAGE

This directive forces a page break in the listing file following the
newline character of the previous line. A page heading along with the
current title string is produced following a form-feed character. 1f
no line has been printed since the last automatic or requested page
break then the entire instruction is ignored. With no operand, PAGE
forces a form feed. With an operand, the operand will set the number of
lines per page. This does not include the 5 lines of header informa-
tion. To.get 50 lines per page, the PAGE operand would be 55.

2-27

TITLE

This directive allows the programmer to provide a title to be placed
in the upper left corner of each listing page. 1t takes a single

operand which is a string enclosed in quotation marks (). An automatic
page break including a new heading is produced using the new title
string. :

TITLE "“LINKER RELEASE 7.44 -- PASS ONE"

INCLUDE

-

This directive causes the insertion of the source from another file into
the current assembly at the point at which the directive occurs. There
is a single operand-consisting of the filename enclosed in quotation
marks. The listing file always has the entire line containing the
INCLUDE instruction before the insertion 1is done. If a page break
occurs for any reason while in the included file the page heading shows
the name of the file currently being processed. INCLUDEs may be
nested, but they may not contain MODULE directives. -

include "stdio.h" get standard i/o package definitions

INCLUDE "Def_Insert" place insertion source for Def here

THE PCOS STANDARD

This section describes how to write Assembler source programs in order
to obtain maximum compatibility with the operating system (PCOS) rcu-
tines. ' ’

This will allow user programs to use the same procedures as for any PCOS

utility for 1invoking and for passing parameters to the Assembler pro-
gram.

The following figure shows the way in which an Assembler utility is con-

2-28 ASSEMBLER LANGUAGE USER GUIDE

3

¢

THE ASSEMBLER SOURCE FILE

nected to various parts of the system.

CALL, EXEC

/

Assombler N
utilities \/
1

\/

ERNNNY

> SYSTEM
'I CALLS

INNANAANN o

* o o e

T~

N, OUT =i HARDWARE

CALL,
EXEC

> PCOS

Fig. 2-1 Connection between Assembler utilities and other

system .

parts of the

2-29

If Assembler routines are written following a certain standard, it is
possible to invoke them like a simple PCOS command, or from a BASIC pro-
gram. , ‘ _ . o
By means -of- conventioms:on-the passing of parameters, the same Assembler
utilities can call PCOS commands or access a group of small routines
(system calls), that are also used by the operating system (PCOS).
These provide a certain number of elementary operations on the system
hardware, thus facilitating programming. _

Direct access to the system hardware will consequently be possible, by
means of the Assembler instructions IN, OUT (see Appendix F for a list
of 1/0 port assignments and consult M20 hardware literature).

It is also possible to access PCOS commands from an Assembler utility,

- using the Assembler instruction SC 77 which is described in the second

part of this manual. :
Let us now summarise the various ways to call (from PCOS and BAS1C
respectively) an Assembler utility (e.g. MYFILE) which 1is written

according to the PCOS standard, to which the parameters paral, para2 and

para3 are passed.
PCOS

MYFILE PARA1 ,PARAZ ,PARA3

BASIC

CALL "MYFILE"(PARA1,PARA2,PARA3)
Where PARA1,PARAZ,PARA3 can be either constant or variable parameters.
or

EXEC "MYFILE PARA1,PARAZ,PARA3"
Where PARA1,PARA2,PARA3 can only be constant parameters.

Furthermore, certain conventions within our Assembler source file, will
also make it possible to obtain the identification of our program, while

the program is being loaded (by using the PCOS commands PLOAD or PDEBUG) .

The instructions and the Assembler directives to be wused in order to
obtain a routine compatible with the PCOS standard, are dealt with in
this order:

1. Configuration code

2. Header

3. How to pass the parameters

2-30 ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

4. Exit Routine

5. Example

1. Configuration Code

The first '‘word" of an executable program, will provide information
(while the program itself is being loaded) on how it will be configured
in memory. This word, being the first word of the program, must assume
the value zero and 1nd1cates that the word immediately following, is the
entry point.

Schematically:

00 00 :] 1 word

~——up! main entry code

To obtain a source program complying with configuration code 0, the
first statement must be DD 0.

Other types of configuration codes are allowed by the system software,
but cannot be utilised by the user.

2. Header

When an executable file is being loaded using PLOAD or PDEBUG, the M20
displays some information on the screen, amongst which the program name.
This program name can be inserted at source program level in the
"header" of the program itself. . _

The header is that part of the program containing both the configuration
code previously mentioned and a string identifier which will be the pro-
gram name. For example, the "header' of a source file can contain any
of the following Assembler instructions:

2-31

module echo, segmented

section example
Héader " dd 0 type O
- JR start
ddb “"File Echo " string ident. prog.
v dd 0
start .
program’

In practice, the string-identifier is placed in memory between the
second word and the first occurrence of a "null (00)". This string must
be-skipped by means of the instruction "JR start" in the source program.
1t is important that the jump instruction of the string identifier is JR
and not JP, as JR only occupies 1 word, thus allowing the start of the
string; from the third word of the executable program.

bThe situation of the program in memory will be the following:

—
00 00
: le— JR start code
Header h .
i :] ASCH string identifier
00 00 le— end of string
start

3. How to pass the parameters

When an assembler utility is invoked by PCOS or by BASIC, all the param-
eters passed to it are placed (pushed) in the stack by the system so

that they can be extracted (popped) from the stack in the order and in
the way in which they were placed.

2-32 ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

The maximum number of parameters that éan be passed is 20. The pointers
to the parameters (parameter entry) will Be allocated in the stack when

the routine is invoked, in the following way:

Stack
pointer : —
at —p] n para 1 word
entry =
routine ‘ - ‘
. parameter entry . | ,
. for para 1 2 words
E___
parameter entry -
for para 2 2 words
S, -
parameter entry
for para 3 2 words
) .
L
{
|
parameter entry 2 words
for para n +——nmax = 20
return address 2 words
-)

The user program must however extract information about the various
parameters by means of as many '"pop" instructions from the stack, as the

corresponding number of parameters.

As seen in the figure, the number of parameters is given by the first
word addressed by the stack pointer when the routine is invoked by PCOS

or BASIC.

It is possible to have 3 types of parameters:

- Null " with hexadecimal code 00
- Integer " " "02
- String " " " 03

The code for each type of these parameters is memorized in the 2nd

byte

2-33

of the 1st word for each “parameter entry"

no. seg gﬁt;wuw
offset

For the type "null" the "parameter entry” does not contain an actual
pointer, but for compatibility, it will be of the type:

FF FF

This type of '‘parameter ehtry“ is created when, for example, the routine
is invoked in the following way: :

my para1,,péfa3‘

It can be seen therfore, that the second parameter has been jumped (para
2). This means in practise, that a pointer to a dummy parameter (param-
eter entry) is created (with FFO0 FFFF) in order to maintain compatibil-
ity with the standard. :

For the integer type (02) there will be a real pointer to the parameter,
constructed in the following way:

offset

The segment number and the offset constitute the effective address to a
word integer (this is a Z-8001 compatible segmented address)

For example, the "parameter entry" for integer 5 could be:

2-34 , ASSEFBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

In this case, the address for the word containing integer 5 will be:
<<6=> 0C00

This can be represented schematically as:

86 02 oC 00 ——— 00 05

(Note that once the type has been identified the second byte is ignored)

However, if the parameter is a "string” (type 03), the ' procedure for
pointing to the string is more complex than the previous two.

In this case, the pointer (entry parameter) points to a set of 3 bytes,
the first of which contains the string length, whereas the other two
contain the address (significant only for the offset part as the seq.
no. is the same as the entry parameter) pointing to the string itself.

e.g.
n seg 03
offset 1
n seg -
. string
» b ffser 2
h o
offset 1 lengt
L |
3 Bytes
n seg
> string
offset 2

For example, the "Parameter Entry" for the string "STRING'" must have the
following structure:

2-35

oc 00

86 00

4 —— 08 oc 09

oc 00

L J
3 Bytes

86 00
1 ec 09 -1
< IR T - R 1 N G
L 1

6 byte ASCH

4. Exit Routine

The Assembler programmer is advised to write his programs so that he can
easily handle the exit from the program by means of the instruction RET,
in order to return to the environment from which it was called.

It is convenient to save in 2 words (RETADR) the stack address which
points to the program return address. ln this way, the stack pointer can
be set to this address before exiting the program (using the 'Ret"
instruction). In order to access the program return address, you will
have to use the "number of parameters' saved in the first stack loca-
tion.

To accomplish this, the following Assembler instructions can be used at
the start of the utility:

2-36 ASSEMBLER LANGUAGE USER GUIDE

@Y

THE ASSEMBLER SOURCE FILE

POP RO,@RR14 no. par in RO

CLR R2

LD R3,RO

SLL R3 #2 no. par x4 _

ADD RR2,RR14 pointer to reurn address in RR2
LDL RETADR,RR2 store RR2 '

program

LDL RR14,RETADR
RET
RETADR DSL 1

5. Example

Here a complete example is given of a simple Assembler source program in
which the standard (which we have seen up till now) is taken into
account. 1In input, this program takes a string as a parameter and
echoes the string itself in output. Once the program has been linked
and assembled in an executable file echo.cmd, it can be called from PCOS
in the following way:

ec string /CR/

S T IR I 606 J06 0 I E00 6 0 IS0 T 060 16 006 06 08 06 DI I 36 T 0000 060 T TSI 0 I ¢

* W W W W

Echo string input to this routine. . :
fin example of the use of the M20 Assesbler Package.

® W o W W,

TN IR 00T 6 00D 060 T JETE 06 26966 1606 696 JE 36 002 T 0600 26 J6 06 TESHIE TSI 000 00 JEIE0E I 336 0000 0 0600 0 D08 200 06

l
MODULE
SECTION
TITLE

% program header

Do
JR
str DDR
0OR
DoB

*

code

*

echo ASSIGN
LA -
¢
POP
LR
LD
SLL
ADOL

LbL
#

b

*
TEST
JF
LD
JF

w® A W Wk

echol ASSIGN
POFL
CFe
JF
LD
JF

Hain progras code

L

-acho2 ASSIGN
CLRB
(LR
CLRB
Log
ING
LDR
INC
LDB

2-38

gcho, SEGHENTED

exanple

“ROUTINE SEGMENTED ECHO®

0

echo

*File Echo. *
.zr :]

g

%

RR!. 2.str
#89

R0, 3RR14
R2

R3. 42
rr.rrlé
retader.RR2

RO
NZ,echol
ercomy, #90
error

"
RR2, afRis
RLZ, #3

E8, acho2
ercoms, #13
error

here

i

RL2

R7

RH6

RL&. #rr2
R3

RH1, 8RR2
K3

RLL, SRRZ

confiquration code--MANDATORY HERE
PCOS expects this instruction forsat

‘program identifier

carriage return
end of program header

point to message

display string identifier

get parameter count

insure no errors in stack computation
use RI as working register

sultiply # parameters by 4 g

add to stack to point to return adde
save it for later return

Now test for # parameters passed and reject if wrong

how many parameters?

not zero parameters so go on
Message = *Error in paraseter®
exit with error meccage

S0 we have ane or more paraseters passed,
Transfer parameters to registers, checking data types...

get pointer to parameter in rr2
is parameter a string? (type B
yes, go service, else....
Message = *Bad data type*

print input string to screen
clear data type byte
parameter lenght in RLS

rr2 points to the next byte

rr2 points to the next byte

ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER SOURCE FILE

Lo R12.K2
Lo R13,R1
CLR R8
AR R?
Lol RR8.RR12
ADD R?.Ré
LD8 okR8. 113
ING R?
Log SRRE . #0
8¢ #8y
K ®3
4R n_return

*

Euxit with appropriate error smessage

*

error ASSIGN ¥
Lo RS, erconus
5¢ #88

*

. ® Norwal return
i]

n_return ASSIGH [
toL RR14.vetadr
RET :

*

% Storage area

*
SECTION area

*

retadp osL i

eroemy 05 1

*
% End ‘echo)
*

RR1Z2 points to the stiing parameter
prepare rr8 for adding two bytes to
end of string

setup rr8 to point to string

rr8 points to the end of string
add a carriage return

add a rull for SC HB9
echo the string

- assume no error returned by SC #89

Jjump around error service

aust have been setup first !!!
display error message

point stack pointer to veturn address

and return to caller

storage for return address
storage for error type code

3. THE ASSEMBLER (ASM) COMMAND

THE ASSEMBLER (ASM) COMMAND

ABOUT THIS CHAPTER

This chapter details the ASSEMBLER (ASM) command. This command processes
an Assembly language source file -and produces an object file.

CONTENTS

ASM 3-1

THE ASSEMBLER (ASM) COMMAND

ASM | .

The ASM command processes an Assembler language source file of ASCII
text and produces a file containing the corresponding Z8000 machine
code. This file is known as an object file. Optionally the ASM command

"produces a listing file. When such a file is listed the video displays

the source file program lines on the right and the generated codes or
symbol values along with other information about each program line on
the left. 1f the XREF option is specified for a listing file then it
will also include a cross-reference table at the end. An example of a
listing file is shown at the end of this chapter.

The ASM command is called from PCOS like any other PCOS command. When
called it is loaded into memory and executed. After execution the system
returns to the PCOS environment. The command syntax is shown in figure
3.1 below.

file
‘-——o identifier
{ .s)

tile
—-’ identifier
{ .obj)
< as > r 3 v
file |
---o. identifier I~ >®—¢< xret ; S v
(.0

L

O,

rig. 3-1 The ASM command

Where

SYNTAX ELEMENT | MEANING
inbut The keyword which must precede the source file
' identifier

file identifier || The source file identifier.
(.s) Usually a source file name is assigned a '.s'

extension.
output The keyword which must precede the object file

identifier

#

file identifier The object file identifier. Here again it is g
(.obj) good programming practice to assign the

extension .obj to an object file name. If the
file specified does not exist then it will be
created; if on the other hand the file exists
then it will be overwritten with the new object

file. '
listing The keyword which must precede the listing file
identifier.
file identifier The listing file identifier. A listing file.
(.1) name is usually assigned the extension '.1'.

If the file specified does not exist then it
will be created; if on the other hand the file
exists then it will be overwritten with the
new listing file.

xref The Cross-Reference keyword. 1f specified then g
' a cross-reference table is included at the end
of the listing file. This table contains an
entry for each symbol defined in the assembly
with the following information:
- The statement number at which the symbol is
defined.
- - Its value and type.
- An ordered list of statement numbers which
reference the symbol.

quiet . The QUIET keyword. Specifying this keyword in
an ASM command line will supress all the
messages normally output on the video except
for error messages which abort the command.

An ASM command parameter is identified by the command line interpreter
by its keyword; for this reason parameters can be entered in any order.

3-2 ASSEMBLER LANGUAGE USER GUIDE

3

THE ASSEMBLER (ASM) COMMAND

The command "AS" by itself causes the command parameters to be displayed
on the screen.’

’ te -
1f the OUTPUT and LISTING options are omitted then the respective object
and listing files will not be created.

-'Characteristics

The ASM command is executed in a number of stages depending on the
number of modules 1in the input source file. In the first stage the
header is assembled; each module is then assembled in subsequent stages.
Each assembly stage is done in two passes.

During execution, unless the QUIET keyword is specified, the video
displays information indicating the end of each pass, and short messages
for each error discovered. Error messages specify the line number where
the error was detected and the error type. When execution is complete
the video displays a summary 1line with the total number of errors
detected. A ‘listing file printout will turn out to be very useful for
subsequent ‘andlysis of errors. A list of ASM error codes with their
meaning is given in appendix B.

Examples

IF you enter THEN ...

as input 1:test.s,output the source file ''test.s" which is on
1:test.obj /CR/ the disk inserted in drive 1 is -
assembled. The resulting object file

is written into a file called '‘test.obj"
on the disk inserted in drive 1. 1f this
file already exists then it will be
overwritten with the new object file,

if on the other hand it does not exist
then it will be created.

as input 1:myfile.s,output the source file "myfile.s' which is on
1:myfile.obj,listing the disk inserted in drive 1 is assemb-
1:myfile.l,xref /CR/ led, as in the previous example, however
A this time a listing file is also created.
The listing file "myfile.l' is created
on the disk inserted in drive 1.

The file "myfile.1" will have a cross-
reference table included.

The sample printout on the following pages is that of the listing file
corresponding to the source file shown in chapter 2. This listing file

3-3

includes a cross-reference table. This file was obtained using the fol-
lowing command:

as input 1:echo.s,output 1:echo.obj,listing 1:echo.l,xref /CR/

3-4 ASSEMBLER LANGUAGE USZR GUIDZ=

THE ASSEMBLER (ASM) COMMAND

Source Ref File
Line Line Line

%20 fAssembler v 2. 1

1:echo.s

Source Text

0271071983 13:02:09 Page 1

»
»

‘ocation Code/Value

O~ O U 30D e
QO .

8 Lines, O Wsrnings, 0 Errors in Header

d o W M W

FU IR NI AT 56 FAHE AT I I I N DTG R TN I B I SEIETE 0TI T DA T BTN 0 S T 3

Echo string input to this routine.
fn exasple of the use of tne H20 Assesbler Package.

U IS T DT SIS J6 3606 U606 0 0T IIE 0 AT I 6 A6 I U6 3 S-S BRI 6 1 IO I R A 5 0 R

*

KODULE
SECTION
TITLE

% progras header

¢ 9
10 10
] . 11 11
- - 12 12 »
\;::!’ 13 13
L , 14 16 x
00,0000 0000 o - 15, 13
00,0002 EB04 ' 16 23 16
00,0004 46 69 4C 65 20 45 83 17 17 str
00,0008 68 &F .20 . Lo
00.000E 0D 18 18
00, 000F 00 19 19
2 2
., ' 21 . 21 ¥ ecde
] 22 22 %
00,0010 23 23 echo
00,0010 760C 06,0004 2% 17 2%
08,0016 7F39 25 2
00,0018 97EG 24 26
00,0014 8028 27 27
00,001 A103 28 28
00.001E B331_0C02 a9 29
13, 0022 94EZ ‘ kil i}
{ } ;0,0024 5002 01.000C k3 90 i
32 32 %
ki 3o
34 3 %
00,0026 8004 35)
40,0020 S£0E 60,0040 3 43 36
20.0032 4005 01.000« 0050 w4 37
00.003% SEGE 00,0086 ‘ 8 7% 38
39 19 x
40 a0
41 41 ¥
42 2 ¥
00.0040 43 43 echol
00. 0040 95E2 44 &b
00,0042 OROR 0303 45 45
00,0046 SE0e GO 035A 46 52 of
0,064 4D05 01,0006 000D 7 9 &7
G0.00S4¢ SEQ2 OC, 0086 48 74 4R
*

49 49
. 50 50

Do

~JR
- bpB

ODB
pbe

ASSIGH -
LDA

5¢

PaP
CLR

LD

SLL
ARDL
Lot

TEST
i
Lo
JP

ASSIGN
POFL
CPR
JF

Lo

JF

echio, SEGHENTED.

exasple ,
"ROUTINE SEGMENTED ECHO*

E

0 configuration code~-MANDATORY HERE
echo PCOS expects this instruction forast
*File Echo * - progras identifier

*Zir® carriage return

0 _ erd of progras header

¥

RR12:str point to sessage

$89 display string identifier
RO, aRR14 get parameter count

R2 1nsure no errors in stack comsufatic

R3.RO use R a5 working regicter
R3. #2 sultiply # parametors by «
rrl.rris 244 to stack to point to retyrr 20w

retadr,RRZ save it for later vetyrn

Now test for # paraueters passed and resect :4 wrong

RO how many parameters?

NZ.achol not 2erg parameters s¢ 40 o
eraony, #90 fessage = “Ervor in paraseter’
error exit with error messige

So we have ome or more parameter:s passed.
Transfer parameters to reqisters. checking datz types .

L}

RRZ,8RR14 get pointer to parameter in rrl
RL2,43 is parameter a string? (type 3
EQ,echal yes: 4C service, else. ..

erconu, Bi3 Nessage = "Bag data tvpe®

error

+ Kain pProgqrak Code here

3-5

ROUTINE SEGMENTED ECHO

0/107198%°15:02+32% Page 2

Q

Source Ref File 1:echo.s
Location Code/Value Line Line Line Source Text
3t LY
00,0038 2 52 echo2 RSSICH % print input string to sereen
00,0058 88 3 3 CLRS R.2 clear data type byte
00,005¢ 8078 % 56 R R? , ,
00,005 8C48 35 55 CLRB RH6 v
00,0060 202¢ 56 36 LD8 RLS.3rp2 paraseter lenght in RLS
00,0062 A930 57 57 N R3 rr2 points to the next byte
00,006+ 2021 38 . 58 Lb8 RHL. aRR2 ~
00,0046 A930D » 59 N R3 rr2 points to the next byte e
00.0068 2029 - é0 40 LDB RL1, 3RR2
00,0068 A12¢ é1 61 b R12,R2
00,004¢C A110 &2 42 Lo R13.R1 RR12 points to the string parameter
00, DA4E 8088- 63" 43 LR R8 prepare rr8 for adding two bytes to
00,0070 8098 ek b4 CLR RY end of string ‘ S
00,0072 9408 Y-) 68 LDL. RR8,RR12 setup rr8 to point to string
00,0074 8149 - 46 é6 ADD R%,Ré rr8 points to the end of string
000076 0cas 0DOD 47 67 Loe RRE, 113 add 3 carriage return
00,0074 A9%0 48 48 I R?
09,007¢C 0C8S 0000 &9 &9 LOg #RRB. #0 add 3 null for SC #89
00,0080 7759 70 70 o¢ #89 echo the string
00,0082 8038 n n (LR RS assume no error returned by 5¢ #89
00,0084 £804 72 8 72 Jk n_return Jjump around error service
73 73
7% 74+ Exit vith aporopriate error message
S 75 =
00,0084 76 76 error ASSIGN ¥
00,0086 4105 01.000« 7 %1 77 Lh R3.ercony aust have beern seétup first %!
00, 008¢C 7758 78 78 sC #88 display error message
9 79 %
80 80 ¥ Norms! return
81 81 «
00,008 8z 82 n_retern ASSIGH €
00.003E 540F 01,0000 83 % 8 LDL RR14,retadr point stack pointer te return address
00,009 9£08 84 8¢ RET : and return to caller
5 85 »
86 B6 * Storage ares
87 7
83 g8 SECTION ares
89 8% » -
11,0000 90 90 retadr DSt i storage for return address
11,0004 91 71 erconu 0% 1 storage for error type code
92 92 &
n 93 % End (echm
%4 % »

i6 Lines, 0 Warnings, O Errors in Module echo

3-6

ASSEMBLER LANGUAGE USER GUIDE

THE ASSEMBLER (ASM) COMMAND

Index for Hodule echo

M20 Assesbler v 2. 1

02/10/1983 15:02:41 Fage

Source Lines
Type and (Base or Section) Nane Value Defining Uses
Sasction ares 01,0006 - 254
Nodule echo 0000_0o%e 9%
Relocatable (example) eche . 00.0010 23 16
Relocatatle (example) echol 00,0040 434 34
Relocatable (example) echo2 00,0054 Y &b
Relocatable (area) ercony 01,0004 5t 37 &7 77
Relocatable (example) - error 00,0084 764 36 48
Section - example 06.00% 108 ,
Relocatable (example) n_return 00, 008E 824 72
Relocatable (area) retadr 01,0000 908 3 83
Relocatable (exsmple) str 00,0004 174 24

ROUTINE SEGNENTED ECHO

Locztion Code/Value

H20 Rssembier v 2. 1, 7. O

Source Ref File 1:echo.s

Line Line Lire Source Text

0271071583 15

22:49 Page

i ¢> 94 Lines. O Warnings, 0 Errors in l:ecno.s

3-7

4. THE LINK COMMAND

THE LINK COMMAND

ABOUT THIS CHAPTER

This chapter describes the LINK command and all its keyword parameters.
The chapter ends with an example and sample printouts of a command file

and a map file.

CONTENTS
LINK

PARAMETERS

TERMS EXPRESSIONS and OPERATORS

COMMENTS

MINIMUM COMMAND ELEMENTS

THE KEYWORDS

MULTI-FILE KEYWORDS
FILE KEYNQRDS

VALUE KEYWORDS
ENTRY KEYWORDS
MESSAGE KEZYWORD
SIMPLE KEYWORDS
BLOCK DESCRIPTOR
KEYWORD ORDER

ERRORS

4-1

4-1

‘THE LINK COMMAND

LINK

A)
»

LINK is a linkage editor and locater which converts z-type object

modules into a PCOS 2.0 relocatable load file. The LINK command must be
called from the PCOS environment 1like any other PCOS command. LINK
inputs a group of Olivetti Z-type object files, and outputs a single
load file. The LINK command allows a number of optional features
described below. o

PARAMETERS

" There are seven types of parameters which can be passed to LINK. Six of

these are of the Keyword type, and can have parameters of their own. The
seventh is a Block Descriptor; this parameter determines the order in
which program sections will be loaded in memory.

The seven types of parametérs are the following:

- Multifile keywords

- Ffile keywords

- Value keywords

. = Entry keyword

- Message keyword

- Simple keywords

- Block descriptor

The command syntax is shown in figure 4.1 below.

. Y fue
(mutu-file Key w dentitier
tite -
-0(File Keyword)-—o ' iter
»-—»(Value Keywordg)——¢ expression
expression i . : . .
1 E—] R N
~Ot-Come -~
Symbot - . ’ ’ o8

——o(mnqr Keyeard) @—-. string . ._<..<H> .

—-—o(Simple . Keyword)

T T T T ek Desenorer 1
_%*(:)__»(z> T pattern A(§>%
i
T i
o
Fig. 4-1 The LINK command -]
Where
MEANING

SYNTAX ELEMENT

file identifier

The name of a file complete with any necessary
volume identifier, and/or file password. Depen-
ding on the keyword in question the file will
be accessed or created. In the latter case if
the file specified already exists it will be
overwritten with the new output.

—

ASSEMBLER LANGUAGE USER GUIDE

THE LINK COMMAND

expression Any expression denoting the desired value. This
can be either a simple term or a number of
terms separated by operators (See section on
Terms txpressions and Operators below).

symbol Any symbol that exists in the input modules.
string Any string of ASCII characters.
pattern A string of characters; which may also include

wild cards, denoting one or more section names.
An asterisk (*) matches any string of charac-
ters, a question mark (?) matches any charac-
ter, [ab...] which matches any one character
" inside the brackets, and [a-b] which matches
matches any one character in the interval a-b.

Note:

Care must be taken that no more than 20 parameters are specified in one
LINK command; this 1is the maximum number of parameters that the PCOS
command. line interpreter can handle. In cases where more than 20 parame-
ters need to be specified the COMMAND keyword can solve the problem (the
COMMAND keyword is described below in the section on File Keywords).

TERMS EXPRESSIONS and OPERATORS

All values are 32-bit unsigned whole numbers. There may be no spaces
or punctuation characters between the terms and operators of an
expression. A number will be interpreted as a hexadecimal number only if
it is preceded by the "%'" sign, otherwise it is interpreted as a decimal
number.

The '+', '-', '|' and '&' operators simply perform addition, sub-
traction, bitwise-or and bitwise-and, respectively, on their operands.
The '>>' operator performs the operation of the left operand shifted
left 24 bits plus the right operand. This facilitates the formation
of segmented addresses when coupled with the ignored '<<' token which
can precede any term, thus: %0e00143c, %0e>%143c, and <<%0e>%14c3 all
evaluate to the same address. '

The only permissible case of a null term is immediately following the
*>>' operator at the end of an expression. In this case zero is used as
the right operand for the operator thus allowing <<33>> to stand for
<33>0.

4-3

COMMENTS

Comments, enclosed in.exclamation marks, can-be-inserted in a LINK coms-

mand line between parameters. A map file (which can be created using
the map keyword described below in the section on File Keywords) con-
tains a copy of the LINK command being executed, and any comments made
on the command line can help render future reference clearer.

MINIMUM COMMAND ELEMENTS

The required elements of a LTNK command which outputs a PCOS 2.0 execut-
able file are the following:

- The multifile keyword INPUT followed by the file identifier(s) if the
input‘file(s). '

~ The file keyword OUTPUT followed by the file identifier of the output
- file. T ’

- The BLOCK DESCRIPTOR ™0 **

Commonly used options are:

- The multifile keyword LIBRARIES followed by the file identifier(s) of
a library file(s).

- The file keyword MAP followed by the file identifier of a map file.

- The ENTRY keyword followed by the the program entry point.

- The file keyword COMMAND followed by the file identifier of a file
containing part of a LINK command line.

These and other keywords are described in more detail in the next sec-
tion.

4-4 ’ ASSEMBLER LANGUAGE USER GUIDE

THE LINK COMMAND

THE KEYWORDS

>
»

In the following section all the LINK keywords are described. Each
description has the keyword as a heading. In the command line keywords
must be entered as they appear in this heading in either capital or
small letters. _

MULTI-FILE KEYWORDS

INPUT

The INPUT keyword may occur any number of times. 1t specifies files
containing Z-type object modules which contain all code sections to be
located. ' o

LIBRARY

'Thikaeyﬁord:instructs the program to select from the named 1library
files the modules which have been referenced in the input file.

A library file can be created using the MLIB command described in
chapter 6.] v

FILE KEYWORDS

COMMAND

The COMMAND keyword can be used in the command line to insert parameters
from another named file (Command file). Only one level is allowed (i.e.
you cannot insert a COMMAND keyword in your specified file).

Such files containing part of a command line can be created using -the
Video file Editor. An example of a Command file is shown at the end of
this chapter. '

OUTPUT

The OUTPUT keyword occurs once and only once. It specifies a file
to receive the executable binary load file. The file is created if
it does not exist or is completely replaced with the new output if it
does exist.

The load file can be assigned any legal name, however there are two
filename extensions which have a special meaning to PCOS; these are
".cmd"” and ".sav". These filename extensions allow files to be called
and executed from the PCOS environment like any other PCOS command (i.e.
by entering the first two characters of the file name). If a file has
niether of these extensions it can be invoked by entering the complete
file identifier. When a file which has no '.sav' extension is called it

4-5

will be loaded from disk to the M20's memory, and executed. After execu-
tion the memory space that was occupied by the program is again made
available to the system. This means that if the program is to be exe-
cuted a second time it will have to be reloaded from disk to memory. In

the cawse~ of a ".sav’ extension the file will be permanently loaded and

executed. In this case the file can be executed again even if the disk
the file was loaded from is removed from its disk drive.

map

The MAP keyword may occur once. 1t specifies the file to receive the
formatted map. It 1is created if it does not exist or is completely
replaced with the new map if it does exist. If no MAP keyword is given,
no map file is produced. L

A map file will contain a copy of the LINK command line being executed,
diagnostic messages, a location ordered map of sections and an alphabet-

ical .list of section names and global symbols with their corresponding
locations.

VALUE KEYWORDS ~ "
ATTRIBUTE

The parameter passed to the ATTRIBUTE keyword is placed in an ‘"attri-
bute" byte of the header part of the output load file.

FOR ROUTINES TO RUN ON RELEASE 2.0 OF PCOS 1T 1S NECESSARY TO SET THIS
BYTE TO ONE. 1F NOT SPECIFIED, LINK WILL SET THIS BYTE TO ONE BY
DEFAULT, 1T IS THEREFORE NOT NECESSARY TO SPECIFY THIS KEYWORD AT ALL.
TYPE

This keyword sets an "attribute" byfe in the header part of the output
load file.

FOR ROUTINES TO RUN ON RELEASE 2.0 OF PCOS THIS BYTE MUST BE SET TO

ZERO, AND AS LINK SETS THIS BYTE TO ZERO BY DEFAULT 1T 1S NOT NECZSSARY
TO SPECIFY THE TYPE KEYWORD AT ALL.

ENTRY KEYWORD

ENTRY

The ENTRY keyword may occur once. It provides either a numeric value or
a global symbol name which is to be made the entry point of the exe-
cutable program. The entry point is determined as follows:

- 1f an ENTRY keyword is given, then the entry point specified is used,
regardless of any definition within the input module itself.

4-6 ASSEMBLER LANGUAGE USER GUIDE

S

THé LINK CONMAND

- 1f no ENTRY keyword is given, then the entry point is set as
defined in the input module.

'MESSAGE - KEYWORD

MESSAGE

A MESSAGE keyword supplies the ASCII text (which must be one string) to
go in the message record of the load file. There may be any number of
MESSAGE keywords in one LINK command. The message record may be used for
comments, remarks, date and time of operation, etc., and does not form
part of the executable program itself.

SIMPLE KEYWORDS

NOWARNINGS

By default, various warning messages are included in the diagnostic
messages produced by the locater. 1f the NOWARNINGS keyword is given,
then all warning messages are suppressed.

QUIET

The QUIET keyword causes output normally sent to the standard output to
be suppressed, except for fatal error messages. If no QUIET keyword is
given, interesting information is sent to the standard output. This
normally consists of the echoed command line and all warning messages
(if the NOWARNINGS keyword has not been given).

STATISTICS

The STATISTICS keyword, if specified, causes the program to output
statistics on how much of LINK ‘s memory was used.

SQUEEZE

The SQUEEZE keyword instructs LINK to use minimum-sized buffers.
The effect of - this keyword is to allow the maximum possible memory
space for the link-time data structure and symbol table; the tradeoff
is decreased speed.

OPTIMIZE
Specifying the OPTIMIZE keyword in the command line causes the output
file to be optimized by not including uninitialized memory at the

end of the program text in the program text section of the output load
file.

4-7

BLOCK DESCRIPTOR

The block descriptor specifies the order in which code sections, by.

"section name" (as defined in the input modules), are to be loaded in
memory by the loader.

The "patterns" are section names which correspond to the same names in

the input object modules, but may include the pattern-matching charac-

ters "*" which matches any string, "?" which matches any single charac-
ter, '"[ab...]'" which matches any one character inside the brackets, and

"[a-b]" which matches any one character in the interval a-b. A pattern
stands for all section names which match that pattern. The names are

taken in the order that they occur in the input object modules (i.e.
lower section numberS»firstg. ’ ' :

This feature can be used, for example, to Separate'prbgram‘sections from
data: 1f all program sections are assigned the extension .prg'" and all
data sections the extension '.dcta", then specifying the block descrip-
tor o . ‘

o *.pfg_*.data"

will cause the program sections to be collected first followed by the
data sections.

1f the ordering of the program sections is of no importance then it is
sufficient to specify the following block descriptor:

"y K

KEYWORD ORDER

The order in which keywords appear has no gross effect on the outcome of
the operation. The effects of ordering are due to the fact that files
are opened and flags are set when their respective keywords are encoun-
tered. For example, keywords which appear before the MAP keyword do not
get echoed into the MAP file, and keywords before a QUIET are echoed to
standard output unless the QUIET keyword appears on the command line
before any other keyword. The SQUEEZE keyword is not totally effective
unless it occurs before the MAP keyword, since the map 1/0 buffer is
allocated when the MAP command is encountered.

ERRORS

1f any fatal error occurs during the parsing of keywords or the execu-
tion of the locate operation, the program is stopped immediately with an
error message on standard output and, if it was specified, the map file.

4-8 ASSEMBLER LANGUAGE USER GUIDE

Q

THE LINK COMIMAND

Examples

»
»

The following LINK command will create an executable file ‘'echo.cmd"
from the object file created in the example shown in chapter 3,
"echo.obj''. The command will also create a map file "echo.map".

1i map 1:echo.map, input 1:écho.obj,output 1:echo.cmd,"0 *" /CR/

The same result can also be obtained using the command file shown below
in the following command:

11 command 1:comlist /CR/

The following is a listing of the file "comlist':

! Command file for LINKing the ECHO example !

HOP 1:echo.map

! create a uapffiie 'echo.lap' on the disk inserted in drive 1. Note that as !
this is the first keyword in the file all that follows will appear in the !
nap file, '

INPUT 1:echo.obj

-

if sore than one file need to be specified these can follow even on !
succescive lines as leng as there are mo intervening keywords. !

QUTPUT 1:echo.cad

i Only one output file is allowed '

0

The block descriptor here is not enclosed in quotes, Quotes are not !
allowed 1in a command file. ¢

On the following page is a listing of the map file created by this com-
mand.

4-9

Olivetti LINK -- Release s1.3
Commands:

Hap 1:echo.map

! create a map file “echo.map® on the disk inserted in drive 1. Note that as !
! this-is«the firet~keyword- in the file all thatfollows-will appear in the !
! mop file. . :

INPUT 1:echo.obj

! if more than one file need to be specified these can follow even on !
! successive lines as long as there are no intervening keywords. !

] OUTPUT 1:echo.cad R o C]
i , Only ore output file is allowed ;

& : 0«

! The block descriptor here is not enclosed in quotés. Guotes are not !
! allowed in 3 command file. !

P P D gy S

Warnings:

(Fase Qne - 1:echo.obj)
{Pass Two - 1:echo.abj}
{senerating Maps)

Input Map: a

File Module Section Size (HEX)
1:echo.chj
echo
exanple 0094
area 0006

- —— O e e v

Seqeent Map (all values are in HEY):
Segment Offset Size Erd Section

{oen)

0000 0096 0095 example

4-10 ASSEMBLER LANGUAGE USER GUIDE

THE LINK COMMAND

0096 0(".06 098 area

Global Symbols and Section Names (- indicates Section Name):

Sysbol Location (HEX) Section
area {((00))0006 -
exasple ((00y)o000 -

LINK Complete

4-1

5. THE PDEBUG UTILITY

THE PDEBUG UTILITY

ABOUT THIS CHAPTER

This chapter describes how to load the PDEBUG utility, and details all

the POEBUG commands.

CONTENTS

INTRODUCTION

LOADING AND INVOKING PDEBUG
PDEBUG

/CTRL/ /B/

TERMINATING A PDEBUG SESSION

cNTERING PDEBUG COMMANDS

CALCULATOR FACILITY

THE COMMANDS

BREAKPOINT

CLEAR BREAKPOINT

CHAMGE 1/0

COMPARE MEMORY

DISPLACEMENT REGISTER

DISPLAY MEMORY

5-5

5-6

5-6

5-7

5-7

5-8

5-9

FILL MEMORY

(o]

JuMP

MOVE MEMORY
OFFSET REGISTER
NEXT

PORT (1/0) READ

PORT (1/0) WRITE

PRINT OUTPUT

QUIT

REGISTER

TRACE

- 5-1M

5-12

5-13

5-14

5-15

5-16

5-17

5-18

5-19

5-19

5-20

5-20

ASSEMBLER LANGUAGE USER GUIDE

THE PDEBUG UTILITY

INTRODUCTION ' .

-

The PDEBUG (Program DEBUG) utility is used for debugging and testing
programs. When the PDEBUG utility is invoked the M20 enters the PDESUG
environment, the prompt is changed to an asterisk and the cursor stops
blinking; the M20 is ready to execute any PDEBUG command. This utility
is stored on disk in a*'.saV"* type of file so that once it is loaded” ‘in"
the M20's memory it remains there until the system is re-booted.

LOADING AND INVOKING PDEBUG

There are two ways in which the "“pdebug.sav'' file can be loaded in the
M20's memory for the rest of a working session; 1. by executing a PDEBUG
command from PCOS (see below), or 2. by PLOADing the utility (see the
PLOAD command.in the "M20 PCOS User Guide").

' WﬁénaPDEBQG}&§7in memo}y‘thg>uﬁar can ente the PDEBUG environment in

any of the following ways:
- by executing a PDEBUG command from PCOS {see below)
- by pressing /CTRL//B/ when the M20 is in Execution mode (see below)

Moreover as PDEBUG modifies some tables in PCOS when it is loaded in%o
memory, the following conditions also cause PDEBUG to be entered: Seg-
ment Violation Traps, Extended Processing Traps. Priveledged Instruction
trap, Illegal Vectored Interrupts, and Non-Maskable Interrupts.

Another way of entering and exiting the PDEBUG environment is ‘possible
with the use of breakpoints. This is described in detail in the PDEBUG
BRZAKPOINT command description.

PODEBUG

Loads ancd invokes the PDEBUG utility, optionally loading a sbecified
program from disk to memory. ,

Fig. 5-1 The PDEBUG command

Where

SYNTAX ELEMENT

MEANING

program

EITHER
the first two letters of a program name which

has a ".sav', or a ".cmd' extension,
OR

 the file identifier of a program file complete

with any necessary volume identifier, extension,
and/or file password.

ACCITMRI D | AMPCIIATCEC 11D TN

THE PDEBUG UTILITY

Example

1f both the PDEBUG utility and the program file "myprog.cmd" exist on
any disk inserted in any of the two drives, and,

"1F you enter THEN ...

pd my /CR/ , . the program "myprog.cmd" is PLOADed and the
~ o : M20 enters the PDEBUG environment. When the

. M20 PLOADs '"myprog.cmd' the video displays -

_ information about. the location:of "myprog.cmd'
in memory. This information will enable the
user to access "myprog.cmd' directly in memory.

/CTRL//B/

When the M20 is in program execution mode, the /CTRL//B/ key combination
will invoke the PDEBUG utility if it is already resident in memory. When
JCTRL//B/ is pressed the video displays a message specifying the loca-
tion in memory where program execution was halted, and the PDEBUG prompt
is returned. The interrupted program remains in memory, and control can
be returned to it by using the PDEBUG GO or JUMP commands.

TERMINATING A PDEBUG SESSION

At the end of a PDEBUG session the user can exit the PDEBUG environment
and return to PCOS using the QUIT command.

q /CR/

1f the state of the CPU is modified during a PDEBUG session (e.g. by
breakpoint - usage) +then the QUIT command will force a re-boot of PCOS.
1f the state is not modified then a simple return to PCOS is done.

ENTERING PDEBUG COMMANDS

PDEBUG commands can be entered when the PDEBUG prompt (*) appears on the
screen. Commands can be entered in either upper or lower case and are
terminated by a carriage return. All numbers input to and output by PDE-
BUG are in hexadecimal ASCI1 format, and may be entered in either upper
or lower case.

5-3

An address is specified either with a segment number and an offset, or

with just an offset. The segment number is enclosed on the left with.a-
less than symbol (<) and on the right with a greater than symbol (>)

(i.e. <6> for segment 6). 1f only an offset is specified then either the
last segment number used since PDEBUG was loaded, or, if none were

specified yet, segment 0 is assumed by default.

An alternate method of specifying addresses is to use one of the 26
address registers ("a" to 'z%) preceded by the "@'" sign. For example
"@r25e" specifies the address given by the contents of register "r"plus

“25E". An address register can be set using the 07 SET (register) com-
mand. , :

All the PDEBUD commands are described in this chapter. The commands are
listed in alphabetical order. At the end of this chapter there are two
PDEBUG tutorial sessions which demonstrate the use of the more commonly
used PDEBUG commands. '

A list of adl ‘the commands is displayed on the screen if the user enters
a question. .mark (?) followed by a carriage return whenever the PDEBUG

prompt. (*) is'returned.

CALCULATOR FACILITY

When in the PDEBUG environment the M20 can be used as a calculator for
quick calculations in hexadecimal. The following binary operations can
be performed: '

+ A.,B adds 8 to A

- A,8 subtracts 8 from A

* A8 wultiplies A by B

/ A,B divices A by B

where A and B are positive hexadecimal numbers in the range 0 to FFFF.
In each of these cases the returned result is also in this range, thus
if the absolute value of the result (say C) is outside this range then
the value returned will be hexadecimal 'C mod 10000". For example,

- 2,6 will return the value FFFC

and + ffff,1 will return the value 0000

THE PDEBUG UTILITY

THE COMMANDS | .

BREAKPOINT

Sets a breakpoint or displays the currently active breakpoints.

_—*<:::>——-oliiiiil}—-»(::>——¢l count } Iy,

Fig. 5-2 The BREAKPOINT command

Where

SYNTAX ELEMENT MEANING

address The breakpoint address

count The number of times the breakpoint is meant to
execute when encountered. 1f this parameter is
set to 0 then the specified breakpoint executes
every time it is encountered, and is not deleted
until specifically cleared using the CLEAR
breakpoint command. 1f not specified the break-
point is deleted when it is hit for the first
time. Note that this parameter must be expressed
in hexadecimal.

Note:

The BREAKPOINT instruction is not placed in memory until a GO or JUMP
command is executed. Thus provisions have to be made to return to PCOS
using any one of these commands if the set breakpoints are to be exe-
cuted.

When the M20 is in execution mode and a breakpbint is encountered, exe-
cution is halted, the video displays a break message with the address
where the break was encountered, and the PDEBUG prompt is returned.

CLEAR BREAKPOINT

Clears either an active breakpoint specified byfits memory address or
all currently active breakpoints.

Fig. 5-3 The CLEAR BREAKPOINT command

Q

Where

SYNTAX ELEMENT MEANING

address . - The memory address of an active breakpoint.
1f this parameter is not specifified then all
the currently active breakpoints will be cleared.

5-6 ASSEMBLER LANGUAGE USER CcU1DE

i\::,

THE PDEBUG UTILITY

Switches the main input and output. from the
serial port and vice versa.

console to

CHANGE 1/0

the RS-232-C

~@-

“Fig.

5-4 The CHANGE -1/0 command

Issuing the CHANGE 1/0 command while using an external terminal causes
the main 1/0 channel to be switched back to the console.

Compares two blocks of mewory and returns any differences

COMPARE MEMORY

encountered.

———»@—» | address1 -—»O—»

address2

-—»(::>__.

number
of —
bytes

Fig.

7

5-5

The COMPARE MEMORY command

5-7

Where

SYNTAX ELEMENT MEANING

address 1 The starting point of the first block
address 2 ' The starting point of the second block
number of bytes The number of bytes to be compared

While the differénces are being output'the screen image‘can be suspended

by -pressing /CTRL//S/. The command can be aborted by pressing any key. #
If no differences are found this command simply returns the PDEBUG

prompt. , L .

Note:

This command uses byte compare operations.

DISPLACEMENT REGISTER

Sets ub a displacement value that will be added to all addresses input
and subtracted from all addresses output by the PDEBUG program.

address b

Fig. 5-6 The DISPLACEMENT REGISTER command

THE PDEBUG UTILITY

Where »

»
- SYNTAX ELEMENT MEANING -
address The displacement value which will be added to -
all addresses specified in subsequent PDEBUG
commands

The command

di /CR/

will cause the current deféult segment and offset to be displayed.

This fac111ty is very useful if a user is workxng on a listing that “has
a displaced grigin in memory. Using this command the displacement regis-.

ter can be set to the value of the address where the listing begins so
that all addresses input and output will match the listing.

DISPLAY MEMORY -

Displays blocks of memory or single memory locations. In the latter case
the command interacts with the user for modification of single memory
locations. : :

‘—’®——~» type -—-bGJ& address -O_. g;!mber +

‘ bytes

v

Fig. 5-7 The DISPLAY MEMORY command

Where

SYNTAX ELEMENT MEANING

type - Word or Byte operations, specified as ‘W' or
|1 "8" (capital or small letters) respectively.

Depending on whether the Word or the Byte

' option is in operation the information will be
displayed accordingly. The default value is
either the option specified in the last
DISPLAY MEMORY or FILL MEMORY command executed
in the same PDEBUG session or, in the abserice

. | of any, the Word option. '

address . The memory address where the display is to start

‘The number ‘of bytes to be displayed starting
from the address specified in the "address"
parameter.

number’ of ‘bytés

Note: this number must be expressed in hexa-
decimal, and must be greater than 1.

Characteristics

When the "number of bytes" parameter is specified, the M20 displays the
specified memory block in lines of sixteen bytes each. Each line is
organized in the following way:-

The memory address of the first of the sixteen bytes is on the
extreme left followed by the contents of the sixteen bytes
expressed in hexadecimal code and grouped in words (or in bytes
if the "B" (byte) option is specified). If the 'number of bytes"

 paremeter is greater than or equal to sixteen, then the ASCI1
translation of the sixteen bytes is displayed on the right on
the sane line. Codes that have no ASCI1 +translation are
represented by dots.

When blocks of memory are being displayed, any scroll movement can be
halted by entering any character on the keyboard, output can be resumed
by entering any character on the keyboard a second time. If you enter
the key combination /CTRL/ /C/ then the output will be terminated and
the PDEBUG promt is returned.

5-.10 ACCITMV I O | AMAIIACAE (1CCD 14T M

THE PDEBUG UTILITY

Modification of Words >

1f the "number of bytes" parameter 1is not specified, then the word

starting at

memory address specified is displayed followed by the

- cursor. At this point you can do any of the following operations:-

IF you enter

THEN ...

- IR/

the next meméry word is displayed.

~ /CR/

the precedihg memory word is dispiayed.

(a valid hex

number) /CR/

the content of the displayed word is changed to the
hex number entered, and the next memory location is

, .displayed.. :
@ /CR/ {].the current and next words are interpreted as an
R 17address and the word specified by that address is
“displayed.
"(string) the string entered is written directly into memory (in
/CR/ hex code) starting from the current address.
q /CR/

the PDEBUG prompt is returned.

FILL MEMORY

rfills a specified block of memory with a given word or byte pattern.

-—>®— type '-—-D‘ ’ } ¥ 5] address r--»@-» address 2 __,@_. \f:i:::ue >

Fig. 5-8 The FILL MEMORY command

Where

SYNTAX ELEMENT

MEANING

type

Word or byte operations, specified as "W or
"B" (capital or small letters) respectively.
Depending on whether the Word or the Byte

- option is in operation the fill value will be

interpreted as a word or a byte respectively.
The default value is either that specified in
the last DISPLAY MEMORY or FI1LL MEMORY command

" ‘executed in the same PDEBUG session, or, in the

absence of any, the Word option.

address 1

The memory address where the writing operation
is to start. h , '

address 2'f3

The memory address where the writing operation
is to end. Note that the ‘final location is not

written to.

fill value

Fill Value. This is the word (or byte if "B" is
specified in the '"type" parameter) pattern,
expressed in hexadecimal code to be written in
the specified memory block.

G0

Resumes the execution of a program at the location specified by the pro-

gram counter.

Fig. 5-9 The GO command

8§.17

ACCIENMMII D 1 AM/CUIACDE (1CT"DY HIiTO\NC

THE PDEBUG UTILITY

Characteristics

Execution of this command causes all the breakpoints (previously speci-
fied in the same PDEBUG session) to be placed in memory prior to the
start of execution.) , o

Jume

Executesza memory resident program starting from a specified address.

-——»(:::)-—o-aRMN%s :<:Z)——*{ few - A

rig. 5-10 The JUMP command

Where

SYNTAX ELEMENT MEANING

address The memory address where execution is to start
few Flag and Control Word.

Characteristics

This command causes all of the breakpoints (previously specified in the
same PDEBUG session) to be placed in memory prior to the start of execu-
tion.

MOVE MEMORY

Copies a source memory block into a target memory block.

g number
address1 { address2 —>®—> of
bytes v

Fig. 5-11 The MOVE MEMORY command

Where

SYNTAX ELEMENT

MEANING

address 1 The memory address where the source memory block
begins.
address 2 The memory address where the target memory block

begins.

number of bytes

The number of successive bytes starting from the
beginning of the source block to be copied.

A=A PN ™™ 1 AXAIZ7I LA F*"I™ S ey ¢ sup § W Pus

THE PDEBUG UTILITY

OFFSET REGISTER

Sets an offset register to a given address.

AL

4

Fig. 5-12 The OFFSET REGISTER command

Where
SYNTAX ELEMENT MEANING
offset register Any one of the 26 offset registers ("a'" to)
address _ The memory address to be associated with the
‘ offset register.

When the "address" parameter is left out the specified register 1is
printed with its current address. The command without parameters prints
all the offset registers with their current addresses.

Offset registers can be used when specifying an address in any PDEBUG
comand. If register '"x' is set to '<2>1000" then "@x5" will represent
the address '<2>1005'" in any PDEBUG command. This facility is very use-
ful when dealing with module listings; offset registers can be set to
the beginning address of each section.

NEXT

Executes one or more program - instructions starting at the location
specified by the Program Counter (PC).

Fig. 5-13 The NEXT command

Where

SYNTAX ELEMENT | MEANING

count The number of instructions to be executed} The
default value is one instruction.

Characteristics

When a specified number of instructions are executed using a WNEXT com-
mand, the registers are saved, and a message indicating the address of
the last instruction executed and the current value of the PC (i.e. the
address of the next instruction) is displayed.

A NEXT command is aborted if a breakpoint is encountered in the speci-
fied sequence of instructions.

The following situations cause the NEXT command to crash:

- using NEXT through instructions that modify the PSAP (Program Status
Area Pointer) in the CPU.

5«18 ASSEMRBI ER | ANCUACE ICER CHITAT

THE PDEBUG UTILITY

- using NEXT through instructions that disable the non-vectored inter-
rupt.

- using NEXT through instructions that change the programming of the
8253 timer chip.

PORT (1/0) READ

Reads a specified 1/C port.

L type —v@ *of port —
, address .

bt

Fig. 5-14 The PORT (1/0) READ command

Where

SYNTAX ELEMENT MEANING

type Word or Byte operations specified as "W'* or
"B (capital or small letters) respectively.
The default value is either the option
specified in the last PORT (1/0) READ or

PORT (1/0) WRITE command executed in the same
POEBUG session, or, in the absence of any, the
Byte option.

port address A valid 1/0 port address. A list of all the
M20 1/0 port addresses is given in appendix F.

PORT (1/0) WRITE

Writes to a specified port address

—(-®-

L 4

I wo
- O E g N
. . addﬂns , ‘ '

R

Fig. 5-15 The PORT (1/0) WRITE command

Where

SYNTAX ELEMENT

MEANING

type

Word or Byte operations specified as "W' or
"B" (capital or small letters) respectively.
The default value is either the option
specified in the last PORT (1/0) READ or

PORT (1/0) WRITE command executed in *he same
PDEBUG session, or, in the absence of any, the
Byte option.

port address

A valid 1/0 port address. A list of all the
M20 1/0 port addresses is given in appendix F.

code The hexadecimal code of the byte (or word, if
the "word" option is specified) to be written
to the port.

5-18 ASSEMRBI R | ANGCUACTS USER CHITINE

THE PDEBUG UTILITY

- PRINT OUTPUT

Toggles a flag which causes all output from the PDEBUG program to be
sent to a parallel printer as well as to be displayed on the console.

Fig. 5-16 The PRINT OQUTPUT command

This means that the first "p" command during a PDEBUG session will cause
output to be sent to the printer, and the second will turn off the out-
put to the printer. .

QUIT

Causes a return to the PCOS environment.

—()—

Fig. 5-17 The QUIT command’
Note:

Depending on the state of the CPU the QUIT command will cause either a

simple return to the PCOS environment or a re-boot of PCOS.

REGISTER

Displays or modifies the registers saved in memory.

register
name

Fig. 5-18 The REGISTER command

Where

SYNTAX ELEMENT

MEANING

b The registers are displayed as byte registers.
1 The reqgisters are displayed as word registers.
d All the registers changed by the last GO or JUMP

command will be displayed.

register name

A valid register name. With this option the
specified register will be displayed, and
and subsequently the user can modify the
contents of it by entering a valid
hexadecimal number.

1f the command is entered without any parameters, then all the registers

5-20

ASSEMBILLER LANGUAGE USZR GUIDE

3

2

THE PDEBUG UTILITY

are displayed as word registers.

The Registers

When the PDEBUG environment is 1nvoked the reglsters are 1n1t1allzed to
the following values:

REGISTER " INITIALIZED TO

r0 to r13 B zero

System Stack Pointer a stack space of 16 words in length
and L)

Normal Stack: P01hter“

Program StatuswArea 44 the PCOS program status area
Pointer (PSAP)

Flag and Control Word|| system mode, segmented mode with interrupts
(FCW) enabled.

Program Counter the '"‘return to PC0OS" address.
(PC)

TRACE

Traces through ‘''count' number of instructions, starting from the
instruction specified by tiwe program counter, optionally including any
calls, call relatives, or system calls (otherwise treated as a single
instruction), and optionally displaying any changed registers after each
instruction.

v

Fig. 5-19 The TRACE command

Where

SYNTAX ELEMENT. MEANING

c Calls will be included while tracing

r ~ Any changed registers will be displayed after
each instruction. '

count The number of instructions to be executed in
each command.

The "+ and "-' sign turn the "c" and "r'" options on and off respec-

tively.

When not specified, parameters assume the values specified in the last
TRACE command, or, in the absence of any, the following command is exe-
cuted:

t -c,4r,1

5-22 ASSENMRI FR ! ANCUAGE 1ISER iD=

THE PDEBUG UTILITY

7

*§0)d §0 1000-31 & sasned puewwod 11nD SIYL

b

BT *auo Butpadssud
943 4o sanieA sajsweied ayl SIWNSSE PUPENIOd 9IRS} PUADIS STUL

(0¥0=E JL0C<w»=2d
J100<y==2d
S¥0=0 Yi0G<y>=2d

1

“SUOT3INJISUL
2041 35414 ayy ydSnouyy SI20JY puewwod SIYY ,PuUd-0yda,,
Jo As3ue utez suy 03 Jajunod wesbosd ayy 385 Huraey

21 00-v>=ad
cys3 314
YOOO=CL 00MS=ZL 9400~ ¥>=2d

[TR T N

rKsowasw uy wesbosd ayy Jo ssasppe Kijua utew ay: oy (34)
Jajuncs wesboad ay3 195 03 PIsn BuSY ST PUREOD ¥I1G193Y SUL

2000<2> wvinc<z> 0280 2343 0028
ad desd Moy Gl ol

€665 89¥Z C0COD 0000 0000 0000 0300 0000

St4 L4

ELd 2L4 1L 0L B 8/

00600 0000 0000 0000 0000 00OC 0GOG 0OCO

L4 94

84 vd €4 Z4 td 04

2000<e> © waip<0>= od

0, S8€033Q Mou (,Dw3°0yoa,, 40 Ssauppe Buriuels ayy st Ised
STYY UT YOTYM) ,,00PP<e>;, $SPIPPe IBYI 05 IN[EA JudwEILTdSIp
e dn 395 03 pasn S1 puerniod ¥ILSTIFY IMAIWISLA WY oK

90PP<R> 1P &

*pauuniag st yduosd 9nNP30d MR vmw pakeidsip

s1 sbessaw woubls Qy0Te 2uy S04 MOJ) IJUSHUOITAUS SPAINd A3
saxoAut pue ,pwo-BoadAn,, sy1y weibosd sy} SEYOTd puewwod styj

3600% = 9215 19000%<Y0>

~=3UON-=

H

0°2 "nay bnaang

ssasppe butiseys !nps, oM soorg
:pajedorie Auomay
A1us 31U !ROQCL-YO> = Aijua utey
wd1sAg / pajuswbag = 9poy uotiesadp
oyd3 afts = aweu wesbouy
pud*0YI? = Bueu B[14 NSIN

29 pd<

"SI0

AVIdSIQ

1 NO1SS2S 5n230d Winoing

5-23

*\PUI 0YDD,, JO SSIippe Aslua VIR YY) O} e, 433SiBay
39540 943 398 03 Pasn sI puzewod YIISI9IY 135440 Y s

9ppPpres‘e o o,

‘uesboid pejdnisayul
43 4O UOTINUISUL INIU Y)Y 03 33 MOU ST 4 Y3 eyl a10H

*sae351bos ayy (1o
30 sanfea 3udaund ayy Aefdstp oy pasn St pueewod ¥315193y
) 958D SIUY UT {PIIADAND IC ued pueweod SNEIQ4 Aue pue
PaUINIIS ST 3dwosd NG04 IYY ‘ITY ST UTOANRAIIQ Iy} UIYM

20CC-Y (0tO2> 07890 224 0023
bl cesd LT RN T N 1P

€655 89p2 4091 0078 vE43 0070 d444 4444
Std ol €14 210 Y i4 64 84

(S
s
.
s
e

8324 0CI6 80CO GOYO 008G 00YD
3] d €4 24 L4 GJ

~
S
e

TPINOAUT ST ,pwdeoydd,, UaYM PIINVIXI ST 21 IRyl os Kiowsw Ul
paderd st jutodyedsq 398 Arsnorrasd 9y ‘IUBMUOITAUB ANGIQd

BOGL-Y> LV ¥YNE 24n

34y bursaius uo 39 ayy o Bulyiaes 1{nejap syy jo asnesaq wesed 3 <
suaddey STy} °30)d 03 UINYai © SITNEY PUBMNOD (9 3§ @Iy b .
‘Pasejunodua St 37 a1l Suiy ey
PIIa[ap aq [[Im Julodyessq aul 'ROCQ 39530 udy Jusudas uy
Ut Jutodyeasq ¢ do 135 01 PIsSn SI puewwsod [NTOANYIIE V BCPE<e>q

. phuingad
st dwoud 9ng3gd Y3 pue padeldsip si sbessiw uoubys

QY0 94l "$00d wou4 JUSWUOITAUS SNGILd SYI SANOAUL

pue ,pud-ouse, 311y wesbosd 9y3 SQVDd pueEwed sty)

0°Z A3y bngage
36C0% = 3215 1ICAEKI> = sSeappe Builselg Lops Con Woolg

:pajescy (e Aicwsy

»

Aa3u9 31u] te20nncve> = Assue urey

WISAS [/ =33 = 2P0l uotiesadg
oyt3 3tig = ouweu wesbosg
PS043 = Jueu 311y %3iC

22 pd @

“SINZNI0D

A¥d8 16

‘aenotysed ul budikue op J0u 300p 31 ‘Spueuwod 9M83Cd Bullesysucuiap e pawie Ajuo sy uolssas [etsolny sty

11 NOISSZS 9n830d WIn0IM

ASSEMBLER LANGUAGE USER GUIDE

5-24

THE PDEBUG UTILITY

pausnya. st dweud §0)d a4yl AQyvanbasqns pue
‘uesbosd Yl O UOTINIIXD Iu) SIUNSIS puEBLC 9 eUlf STuf

<i
we sed
b

*jutodyeasq Ixndu 3yl
Aq pardniseiul vrede st uciindexa Jeasmoy ‘weibosd pajdna
=JIIUT YL JO UOTINIAXE SY) SALNSIS PUBWWOD (9 YY SJSH

220C<v> 1V Y By an
04az 14
L

*23u0 Atuo aInoaxs 03 utebe susy ‘les S Julodiesuq JauIoUY

ole v Q »

*92133u9 ST b, uaym pauinlas st Jduosd sngInNg Iy cAem
SA11JBJ33UL VR UL PASN ST PUBLWOD AUONIW AYISIO duY 243K

€030 L3%t-2>
€028 vidd>
P 2891 9)44<7.
€028 24472
©L0L0 2045

t @ o

‘PUBBEOD AYOHIW AY4SIC
e ut pasn asay St 31 ‘., 4935168 18550 3y) }es BulAey

24i<- P o
2T 9pag 00V 3036 900 020GV
TLTTTITTCATTTUC 2000 LEEE €0LY 6207 B1CEY

CATT 0yd3 A134°° J09L 0000 0Z49 €9¢9

L2y P &

5-25

6. TEXTDUMP HDUMP AND MLIB

TEXTOUMP HDUMP AND MLIB

ABOUT THIS CHAPTER >,

This chapter describes the following three commands

- = TEXTDUMP

- HDUMP
- MLIB

CONTENTS

HOUMP -

ML1B

For dumping files of ASCII text.
Ffor dumping files in hexadecimal code

For creating library files.

L 6-2

6-3

TEXTOUMP HDUMP AND MLIB

TEXTOUMP

Dumps a formatted version of an Assembler source file into a specified
file, or on the printer, or to standard output.

output
file

A 4

-

input
file

(::) 2
. . 9 >
identifier '

identifier

) 4

Fig. 6-1 The TEXTDUMP command

Where

SYNTAX ELEMENT

MEANING

input file identifier

The name of the source file to be dumped. This
must be complete with any necessary volume
identifier and/or file password.

output file
identifier

The file name, complete with any necessary
volume identifier and/or file password, of the
file which is to contain the formatted dump.
This file will be created if it does not exist.
1If it exists it will be overwritten with the
new output.

prt

Print output.
1f this option is specified then the command
output will be sent to the printer.

Characteristics

The TEXTDUMP command without an output parameter (file identifier or
prt) will display the output on the screen. In this case the output is

6-1

displayed 24 lines at a time and the operator must press any key to con- .
tinue. . .
»

Note:

Files handled by the TEXTDUMP command utilise either the ASCII "RS"
(record separator), or a carriage return, or a carriage return/line feed
pair to indicate end-of-line.

HOUMP

Dumps the contents of one or more files in hexadecimal code on the stan-
dard output device. ‘

. . fite -
identifier "

Fig. 6-2 The HDUMP command

Where , ;All

SYNTAX ELEMENT MEANING
file identifier The name of a file complete with any necessary

volume identifier, and/or password.

Characteristics

When a file is dumped using this utility the screen will display the
hexadecimal code of the contents of the file on the left side of the
screen in lines of sixteen bytes each. Each line is preceded by the byte
count of the first byte on the line from the beginning of the file. On
the right of each line is the corresponding ASCII representation of the
bytes. Code that has no ASCIi representation is represented by a dot.

6-2 ASSEMBLER LANGUAGE USER GUIDE

TEXTOUMP HDUMP AND ML1B

ML1B

»

Creates a libréry file of object modules from a group of Olivetti z-type
object files.

n

W . ")
library object
—v“ file : ﬁ‘{”’)-. file SU—
' identifier §- t - identifier- § -

Fig. 6-3 The MLIB command

Where

SYNTAX ELEMENT MEANING

library file identifier The name of the file which is to contain all
the object modules in the specified object
files. This must be complete with any neces-
sary volume identifier and/or file password.
A library file name is usually assigned the
extension ".1lib".

object file identifier The name of an object file complete with any
necessary volume identifier and/or file pass-
word.

1t is common practice to use a library of subroutines to be made avail-
able to a series of programs. Mathematical programs, for instance, might
use a library of subroutines for calculating trigonometric functions,
and Text oriented programs might use a library of string comparison
functions.

When LINK discovers an external variable which is not present in any
input file, it searches through the list of subroutine names in the
library file(s) for a 'global" definition. Once the subroutine name is
found, the module containing this subroutine is incorporated into the

6-3

output file. Only the modules referenced by input files, or by library
modules which have already been included in the LINK operation, are
included in the output file along with the rest of the input modules.

'Note:

During execution the MLIB command needs to create a temporary work file
on the same disk where the command was called from. This means that the
file "mlib.cmd" must be called from a write unprotected disk. The best
way to do this is to copy this file on to the disk where you want to
create your library file; you must then make sure that it is this copy
of the command file that is loaded and executed.

Example

If you enter . _ THEN

ml 1:asm.lib,1:progl.obj, The file "asm.lib" is created on the disk
1:prog2.obj /CR/ ~inserted in drive 1. This file will contain

all the object modules contained in the two
object files 'progl.obj" and 'prog2.obj"
both of which are resident on the same disk
inserted in drive 1. .

6-4 ' ASSEMBLER LANGUAGE USER GUIDZE

PART Il

7. INTRODUCTION TO SYSTEM CALLS

INTRODUCTION TO SYSTEM CALLS

ABOUT THIS CHAPTER

- This chapter is a general description of the M20 System Calls. The
calls are divided in functional groups and the characteristics of each
group are discussed. This is followed by the call descriptions.

CONTENTS
INTRODUCT;ON 7-1
SYSfEM CALL Dé5CRIPfIONS 7-1
REGISTER ASSIGNMENTS 7-1
INPUT/OUTPUT PARAMETERS 7-2
ERROR MESSAGES 7-2
FUNCTIONAL GRGUPS 7-2
- BYTESTREAM CALLS 7-3
BLOCK TRANSFzR CALLS 7-4
STORAGE ALLOCATION CALLS 7-4
GRAPHIC CALLS 7-5
TIMz AND DATE CALLS 7-7
USER CODE CALLS 7=7
1EEE 488 CALLS 7-8

NISCELLANEOUS CALLS ' ‘ 7-9

INTRODUCTION TO SYSTEM CALLS

INTRODUCTION ' .

These two chapters describe all of the System Calls (SCs) developed for
the M20. System Calls are PCOS procedures, used to interface with 1/0
or to manage memory. System Calls can be accessed by assembly language
programs.

All calls made from BASIC, some other utility program, or from user

code, will access the 1/0 and resource management facilities of PCOS via

the 28000 System Call (SC) instruction. The SC instruction includes a
1-byte request code which indicates the function to be performed.

Example:

sc #3 system call, request code = 3
Paraméters are generally passed in registers numbered from R5 ~to R13.
1f strings or other large data structures are to be passed, pointers to

the structures are passed as parameters in the registers.

In general, parameters are passed as 16-bit unsigned values. ASCI1
characters are passed occupying the lower bytes of a register

All system calls use R5 to return any error condition. Zero indicates
no-error, non-zero indicates the error and condition code. ;

SYSTEM CALL DESCRIPTIONS

Each call has been assigned an unique number and a label. The label may
be used to reference the call globally, if a table assigning each call
number to the respective label is created.

Each call description begins at a new page, and on the page are the name
or label, the SC number, and a list of the specific register assignments
for each parameter passed. This is followed by a description of the
function of the call, and any error codes that might be returned.

The descriptions are arranged in ascending order by SC number.

REGISTER ASSIGNMENTS

Register assignments are given in synopsis form, and input

7-1

and output are identified. For example (see SC 32):

INPUT/OUTPUT PARAMETERS

Input: R?7 <4—— block length
RR8 <4 source address .
RR10 ¢—— destination address

Output: : RS - = error status
Before calling SC 32, the block léngth. saurce address and destination

address must be loaded in registers R7, RR8 and RR10 respectively. The
only output for this call is the error status, which is returned in RS.

ERROR MESSAGES

Following the system call, if there are no errors, a zero (0) is
returned in R5. 1f any error occurs, the appropriate error code will be
returned. A list of error codes and messages is given in the appendix.

FUNCTIONAL GROUPS

In this chapter the System Calls are treated in general in functional
groups as follows:

- Bytestream Calls

- Block transfer Calls

- Storage Allocation Calls
- Graphics Calls

~ Time and Date Calls

- User Code Calls

- [1EEE 488 Calls

- Miscellaneous Calls

See the Appendices for lists of system calls 1in functional groups, for
the DIDs (Device 1Ds) table, as well as for lists of error codes.

7-2 . ASSEMBLER LANGUAGE USER GUIDE

5

INTRODUCTION TO SYSTEM CALLS

BYTESTREAM CALLS ' -

Bytestream system calls are used for:

. a) Transferring bytes of data to or from an 1/0 device

b) Sending control information to a device or to a device driver

c¢) Receiving status information from a device

The following are a list of bytestream 1/0 calls used to interface with
the disk, printer, RS-232 communications port, and console (keyboard and
video). :

LookByte (9) SetControlByte (20)
GetByte (10) GetStatusByte (21)
PutByte (11) OpenfFile (22)
ReadBytes (12) DSeek (23)
WriteBytes (13) DGetLen (24)
ReadlLine (14) DGetPosition (25)
Eof (16) DRemove (26)
ResetByte (18) DRename (27)

Close (19) "DDirectory (28)

DID (Device 1Dentifier) Numbers

A DID is an integer used to identify 1/0 devices (or files) 1like the
keyboard, an open disk file etc.. The operating system maintains a
table associating DIDs with a " File Pointer. The latter consists of
pointers to data structures and routines describing the 1/0 streams.

Device Pointers

Opening a disk file creates a stream data structure, and places a
pointer to 1t in the device pointer table. Closing the disk file sets
this pointer to nil, and releases any table space associated with
the file. Some 'devices' or files are always open. For example, the
keyboard and the screen (the default window) are always open. They can,
however, be closed and re-opened by using the PCOS Device Rerouting
feature.

BASIC file numbers translate simply into PCOS DIDs, but BASIC win-
dow numbers for the screen are distinct from DIDs. A table of DID
assignments is included in the Appendix.

Disk Bytestream 1/0 Calls

Disk input and output are all done by bytestream system ' calls. A
stream structure for an open file maintains a 32-bit pointer to the
current position in the file, at which the next byte will be read
or written. Files will be extended automatically as they are written,
in increments specified by the system globals.

The functions Close, OpenfFile, DSeek,DGetlen, DGetPosition, DRemoave,
DRename and DDirectory are all wused for disk files. Of these, only
DSeek, DGetPos, DDirectory, DRemove and DRename are disk specific.
The other calls can be also used for other devices (printer, console or
communication ports). The RS-232 device driver and device rerouting in
general are described in the '"M20 PCOS User Guide"

BLOCK TRANSFER CALLS

The block transfer system calls allow the programmer to set memory to
a fixed value, to transfer data from one segment to another, and clear
memory. In particular, the block transfer calls may be used by
the PCOS system to transfer the BASIC interpreter's fixed tables from
ROM to RAM in systems with 64K RAM in BASIC's data space.

BASIC will be able to use the block transfer system calls to transfer
other tables from ROM to RAM, for initialization of BASIC.

List of Calls
The following are the Block Transfer calls:

BSet (29) BClear (31)
BWSet (30) BMove (32)

STORAGE ALLOCATION CALLS

It is possible for a user program, or BASIC, to call PCOS and then
allocate or release heap space. The heap will be in the data segment
which is accessible to BASIC. Ordinarily, BASIC will not use this
facility directly, since all of its workspace is preallocated at the
time of entry into BASIC.

Functions which open a disk file, split a window, or close a file or

a window, will use these system calls internally to either allocate heap
space or release space.

7.4 v ACCEMRI ED 1 ANCIIACTE H1CED ~HITOC

INTRODUCTION TO SYSTEM CALLS

When the BASIC command is executed to enter. BASIC, 'New' 1is called to
allocate BASIC workspace from the heap. The following are the Storage
Allocation calls:

NewSameSegment (33) : New (120)
Dispose (34) BrandNewAbsolute (121)
MaxSize (99) : NewLargestBlock (122)

NewAbsolute (104) StickyNew (123)

GRAPHIC CALLS

The screen area for the M20 display has 256 scanlines by 512 pixels for
either black-and-white or (optional) colour display. There is a rela-
tionship between the p1xels on the screen and the bits of an area in RAM
called Bit-Map. .This area is grouped in words, and each word in the Bit-
Map can be.identified by the first word of the graphics accumulator (C-
value) described below. The following types of system calls are pro-
vided to set global variables or change attributes.

Clear Window

System call Cls (35) clears the screen (or current window) and posi-
tions the cursor(s). :

Cursor(s)

The PCOS system provides two cursors, text or graphics, for the
screen. These may be placed anywhere and XORed with the normal contents
of the screen. The cursor may be blinking or nonblinking. There is
only one cursor displayed for the whole screen. System calls 36
through 44 provide the capability to select the text or graphics
cursor, select blinkrate, and update its position: :

ChgCur0 (36) ChgCurl (37) ChgCur2 (38)
ChgCur3 (39) ChgCurd (40) ChgCur5 (41)
ReadCurQ (42) ReadCurl (43) SelectCurl (44)

Colour

The M20 is available with either a black and white, or a colour video.
Colour videos can be of two types; one type can display 4 colours simul-
taneously out of a choice of 8 (the four colours can be selected using

System Call 46 ‘'PaletteSet'") and the other type can display 8 colours
simultaneously.

A colour code is a value from 0 to 7 and is therefore expressed on three
bits, say bit 1, bit 2 and bit 3. For a black and white system if a
colour code in the range 2-7 is specified then PCOS maps the code to the
value obtained when bits 0, 1 and 2 are ORed together. For a four colour
system, colour codes in the range 4-7 are mapped into the value obtained
when bit 2 is ORed with bit 0.

Windows

The screen may be divided into windows by splitting along horizontal
or ‘vertical lines. There may be a maximum of sixteen windows on the
screen, which are assigned window numbers 1 to 16 in order of crea-
tion. System calls 45, 47 through 51 and 113 are provided to initialize
the screen, create and/or close windows:

Grflnit (45) ' ChgWindow (50)

DefineWindow (47) CloselWindow (51)
SelectWindow (48) CloseAllWindows (113)

ReadWindow (49)

Graphics Accumulator

The graphics routines make use of a global variable referred to as the
'graphics accumulator' to define the current absolute screen location.
This graphics accumulator is said to be of type ‘C'. A C(-variable is
a 32-bit variable containing a memory address and a bit mask for the
specified group of pixels at that address. The 'memory address'" (2
bytes) selects a word in the Bit-Map area, and is in the range %0 to
%3FFE (8192 words). The "bit mask" is a word each bit of which relates a
pixel on the screen to a bit in that area of the Bit-Map specified in
the "memory address' (bit=1 for ON and bit=0 for OFF). For example, if
the graphics accumulator is assigned the value %20208000 then the first
word identifies the sixteen pixels at the centre of the screen and the
second word selects the first of these sixteen pixels. Conversion rou=-
tines are provided for converting local x-y coordinates for windows to
or from the C-type variable in the graphics accumulator. Most plot-
ting routines manipulate the graphics accumulator in an abstract and
machine-independent way. In general, the plotting of a point is at
the position defined by the contents of the graphics accumulator.

Likewise, the ‘current attribute' 1is a global variable represent-
ing the current foreground colour. Any plotting or painting rou-
tine will set this to the colour specified in the higher-level BASIC
(or other) routine by using SetAtr (set attribute), SC 61, or is assumed
to be the current window's current foreground colour by default.

7-6 ASSEMBLER LANGUAGE USEFR GUIDE

INTRODUCTION TO SYSTEM CALLS

A set of system calls (52 through 67,115 and, 116) are provided for scal-
ing or converting coordinates, for manipulating the accumulator, and for
drawing lines:

ScaleXy (52) DownC (58) NSetCX (64)
MapXYC (53) LeftC (59) NSetCY (65)
MapCXY (54) RightC (60) NRead (66)
FetchC (55) SetAtr (61) NWrite (67)
StoreC (56) SetC (62) ClearText (115)
upC (57) ReadC (63) ScrollText (116)

Paint Graphics Calls

M20 BASIC supports a PAINT operation which fills an area of a window
bounded by a specified boundary colour (and the window boundaries) with
another specified brush colour. The following system calls are used
to implement the PAINT operation: - :

Pntlnit (68) ScanL (71)
TDownC (69) ScanR (72)
TUpC (70)

These calls set the global colour attributes, move the position of the
graphics accumulator up or down, (checking first if the move is within

the boundaries of the current window, if not an'error is returned); and
scan left or right to paint the window.

TIME AND DATE CALLS

The M20 system has a real-time clock which maintains both date and
time. This clock must be reset each time the system is turned on.

Time or date setting are done by passing the address of an ASCll
string to the operating system. Likewise, the time or date may be read
by transferring an ASCI1 string from the operating system. The
format of these strings are defined by the calls listed below. These
will correspond to the string values passed in Basic by manipulating
the TIMES and DATES pseudo-strings. :

The following system calls perform clock reading and setting:

SetTime (73) GetTime (75)
SetDate (74) GetDate (76)

7.7

USER CODE CALLS

One system call has been provided to allow the user to execute any
program or routine on diskette that could be executed from the PCOS
command line. This function works hand in hand with the load-user
comnand which maps user number to physical address. The call is:

CalluUser (77)

The call can be used in Assembler utilities to process PCOS user com-
mands.

1EEE 488 CALLS

The 1EEE 488 package consists of a group of programs which execute the
following BASIC 1EEE statements:

ISET, IRESET, ON SRQ GOSUB, POLL, PRINTg,
WBYTE, RBYTE, INPUTe, and LINE INPUTe.

these statements allow the user to perform the following operations on
an 1EEE-488 bus:

‘a) Controlling the 1IFC (interface clear) and REN (remote enable)
lines;:

b) Receiving a service request from another device on the bus, identi-
fying the requesting device through serial polling, and processing
the service request;

c) Writing control bytes (e.g.: '"Device Clear", "Device Trigger",
etc.) to other devices;

d) Addressing, writing data to, and reading data from, other devices;
and

e) Allowing the devices within an 1EEE-488 network to transfer data on
the bus (i.e.: assigning 'Talker'" status to one device, and
"Listener'" status to one or more devices).

7-8 ACSSEMRI ER | ANCHACE LICED CIITINAC

S l

INTRODUCTION TO SYSTEM CALLS

The following system calls are assigned to the 1EEE package. On
exiting from any of these procedures, register R5 will contain hex 0OA
if the system does not have an 1EEE option board.

1BSrQ0 (78) 1BPrnt (83)
185rQ1 (79) 1BWByt (84)
1BPo1l (80) 1BInpt (85)
1B1Set (81) 1BLinpt (86)
IBRSet (82) ~ 1BRByt (87)

For further details on the 1EEE-488 interface see the "M20 1/0 with
External Peripherals User Guide'.

9 © MISCELLANEOUS CALLS

The following miscellaneous calls complete the list of System calls:

Error (88) Search (98)
Dstring (89) SetVol (102)
CrLf (90) NewAbsolute (104)
DHexByte (91) StringlLen (105)
. DHex (92) DiskFree (106)
DHexLong (93) BootSystem (107)
DNumld (94) SetSysSeg (108)
DLong (95) SearchDevTab (109)
DisectName (96) KbSetLock (114)

CheckVolume (97)

9D

8. THE M20 SYSTEM CALLS

THE M20 SYSTeM CALLS

ABOUT THIS CHAPTER S

In this chapter all the system calls are described in detail. The
descriptions follow each other in numeric order. A list of system calls
in functional groups is given in appendix C.

CONTENTS
9 LookByte 8-1
10 GetByte | 8-2
11 PutByte | 8-3
12 ReadBytes 8-4
13 WriteBytes 8-6
14 Readline . 8-8
16 Eof 8-9
18 ResetByte : T 8-11
19 Close 8-12
20 SetControlByte 8-13
21 GetStatusByte 8-14
22 OpenfFile 8-15
23 DSeek | 8-17
24 DGetlen 8-18

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

4

42

43

DGetPosition
DRemove
DRename
DDirectory
BSet

BWSet

BCTeaf
BMove
NewSameSegment
Dispose

Cls

ChgCur0
ChgCuri
ChgCur2
ChgCur3
ChgCur4
ChgCur5
ReadCur0

ReadCur1

8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32

8-33

8-35
8-36

8-37

ACCTNMA D § AM/CIIACST I1ICZD 1T

THE

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

M20 SYSTEM CALLS

SelectCur
Grflnit
PaletteSet
DefineWindow
SelectWindow
ReadWindow
ChgWindow
CloseWindow
ScaleXY
MapXYC
MapCXY
retchC
StoreC

UpC

DownC

LeftC

RightC
SetAtr

SetC

8-38
8-39
8-40

8-41

. 8-43

8-44

8-46

8-47

8-48

8-49

8-50

8-51

8-52

8-53

8-54

8-55

8-56

8-57

8-58

63 ReadC

64

65

66

NSetCX

NSetCY

NRead

67 NUWrite

68 Pntlnit

69

70

71

72

73

74

75

76

77

78

79

80

81

TDOWﬂc‘
TUpC
ScanL
ScanR
SetTime
SetDate
GetTime
GetDate
CallUser
1BSrQo
1BSrQ1
18Pol1l

1BTSet

8-59

8-61

8-62

8-64

8-66

8-67

8-68

8-69

8-70

8-71

8-72

8-73

8-74

8-75

8-78

8-79

8-80

8-81

THE

82
83
84
85
86
87
a8
89
90
N
92
93
94
95
96
97
98
99

102

M20 SYSTEM CALLS

IBRSet
1BPrnt
1BWByt
IBInpt
1BLinpt
1BRByt
Error
DString
CrLf
DrexByte
DHex
DHexLong
DiNumW
DlLong
DisectName
CheckVolume
Search
MaxSize

SetVol

8;82
8-83
8-84
8-85
8-87

8-89

- 8-90

8-91

8~92

8-93

8-94

8-95

8-96

8-97
8-98
8—9§
8-100
8-101

8-1902

104 NewAbsolute 8-103

105 StringlLen 8~-104

106 DiskFree 8-105

167 BootSystem 8-106

108 SetSysSeg 8-107

109 -SearchDevTab 8-108 :
3

113 CloseAllWindows 8-109

114 KbSetLock 8-110

115 ClearText 8-111

116 ScrollText 8-112

120 New 8-114

121 BrandNewAbsolute 8-115
e

122 NewlLargestBlock 8-116

123 StickyNew 8-117

ACCLOANDIFrD | ALFCIIAZEC JICS M MrI1TO™™

THE M20 SYSTEM CALLS

9 LookB&te

Returns the next byte from the designated device buffer without remov-
ing the byte from the buffer.

Input/Output Parameters
Input: R8 «— DID

OQutput: | RL7 ——p returned byte
RH7 —» buffer status (00 or FF)

9 - RS - error status

Characteristics

This function returns the first byte of a device input buffer (unde-

fined if none), without removing it from the buffer. The DID is an

' integer, identifying the device. Valid DIDs are listed below.

. Also returned is the status of the device buffer, FF if the buffer is
not empty, 00 otherwise.

Note:
Ring buffers are maintained for the interrupt driven input devices.
Characters are placed 1into the buffers immediately as they are

received and are available to programs via the two system calls Look~
Byte and GetByte.

Errors

1f there are any errors, the status code is returned in R5. 1f there
are no errors, a zero (0) will be returned.

Valid DID Numbers

17 console (keyboard)
19,25,26 Com (RS-232-C), Com1, Com2

8-1

10 GetByte

Returns the first byte from a designated device, removing the byte from
the device buffer.

Input/Output Parameters
Input: R8 «———— DID

Output: R7 — returned byte
RS ——>» error status

Characteristics

This call returns the first byte in the input buffer (from file or
designated device) and places that byte in register R7. The DID is an
integer which identifies the source of the input. valid DID
numbers are listed below.

In the case where the DID is either 17 or 19, if the input device
buffer 1is empty , the system will wait until a byte is input and avail-
able in the buffer before returning to the caller with the byte in R7.

Errors

1f there are any errors, the status code is returned in RS. 1f there
are no errors, a zero (0) will be returned. Possible error codes, from
the file system are shown below (see Appendix for error list).

54, bad _mode_err; 57, disk _io err; 60, bad disk err;

62, eof err; 63, bad rec_num err; 77, illegal disk chng err
90, param err; 96, lee_not_ppen_grr - - -

Valid DID Numbers

1 -15 disk files (BASIC)

17 console (keyboard)

20 - 24 disk files (PCOS)

19,25,26 Com (RS-232-C), Com1, Com2

8-2 ASSEMRB! FR | ANGCUACGCE HISEFR CIIIDE

3

THE M20 SYSTEM CALLS

- 11 PutByte

Transmits a byte to a specified device.

Input/Output Parameters

Input: R8 <¢—— DID
‘RL7 ¢=— input byte

Output: ‘RS ——> error status

Characteristics

This transmits the byte supplied in RL7 to the device or file
specified by the DID. Valid DIDs are identified below. For files,
no information is returned about the validity or EOF state of the DID.

1f the device is the RS-232-C port, and the port 1is not ready to
send, the driver will wait for a timeout period and then return an
error if nothing is sent.

Errors

If there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned Some possible error codes
are (see Appendix for list):

54, bad_mode err; 57, disk io_err; 61, dlsk full err;
77, 111ega1 disk chng_err; 90, bad |_param_ err;
96, file not ._open_err .

Valid DID Numbers

. 1 - 15 disk files (BASIC)
17 console (keyboard)
18 printer
20 - 24 disk files (PCOS)
19,25,26 Com (RS-232-C), Coml, Com2

8~3

12 ReadBytes

Reads and counts bytes, from a device, into a buffer in memory.

Input/Output Parameters

Input: R8 <— DID
R9 <4—— count to be read
RR10 ¢—— pointer to memory buffer

Output: R7 ~ ——p count returned
. RS -~ error status

Characteristic;wf

FILES

This function reads a specified number of bytes from a file into
memory, and returns a count of the number of bytes actually read.

The count returned is used to determine EOF status for the file. The
EOF status 1is determined when the "count returned' in R7 is less than
the '"count to be read" input in R9, (because there are no more bytes to
be read).

The input to RR10 is a segmented pointer to the first byte of memory

where these bytes will be stored. The output '‘count returned" is the
actual number of bytes read.

RS-232-C

This call transfers a specified number of bytes from the input buffer
to the user specified buffer.

1f the number of characters in the input buffer is less than the number
requested, the driver will wait for the needed characters to arrive.

.

8-4 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

Errors -

1f there are any errors, the status code is returned in RS. 1f there
are no errors, a zero (0) will be returned. Some possible error codes

~are (see Appendix for list):

54, bad_mode_err; 57, disk io_err; 60, bad disk _err;
62, eof _err; 63, bad rec_| num _err; 77, illegal_disk chng err
90, param err; 96 file_not open_err

Valid DID Numbers

1-15 disk files (BASIC)
20 - 24 disk files (PCOS)
19,25,26 Com (RS-232-C), Com1, Com2

8-5

13 WriteBytes ' .

Writes a specified number of bytes from memory to a file or device.

Input/Output Parameters

Input: R8 <—— DID
R9 <—— count
RR10 ¢—— start

Output: R7 ——p count returned
RS «——p error status

Characteristics

FILES

This function writes a specified number of bytes from memory into a
file. It returns a count of the number of bytes’ actually
transferred. Valid DIDs are listed below.)

The input 'count'" is the number of bytes to be transferred. The input
"start" is a segmented pointer to the first byte in memory from which
these bytes will be written.

The output ‘count returned" is the actual number of bytes
transferred.

RS-232-C

This call transfers data bytes from the specified memory buffer to the
RS-232-C port.

The meanings of the inputs and outputs is the same. 1f the port is not
ready to send, the driver will wait a timeout period, and then return an
error if nothing is sent.

Errors

If there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

8-6 ASSEMBLER LANGUAGE USER GUIDE

C

THE M20 SYSTEM CALLS

Some possible error codes are (see Appendix for list):
54, bad mode err; 57, disk_io_err; 61, disk_full err

62, eof_err; 77, illegal_disk_chng_err;
90, bad_par_err; 96, file not open err

Valid DID Numbers

1-15 disk files (BASIC)
20 - 24 disk files (PCOS)
19,25,26 Com (RS-232-C), Coml, Com2

.
?

14 ReadLine ' o

>

Reads and counts bytes input from the keyboard, until the first /CR/,
into a memory buffer (at a specified address).

Input/Output Parameters

Input: R8 <= DID
R9 <&— count
RR10 ¢—— destination

Qutput: R6 ~——p count returned
RS ———p» error status

Characteristics

This function reads a specified number of bytes from the standard input
device into memury. Input will be terminated when the next input byte
is equal to /CR/ or if the maximum ‘‘count’ is exceeded. The /CR/ is
not put into the string.

The input DID (17) identifies the standard input. 1t is the only valid
DID for this call. The input "count' specifies the maximum number of
bytes to be read, and the input 'destination" is a pointer to
address of the first byte of memory where these bytes will be stored.

The output 'count returned" is the actual size, in bytes, of the input
string. 1f a /CTRL//C/ is pressed, R6 will return a 'FFFF'. Characters
are echoed to the standard output device (DID 17) and editing

features,(/CTRL//H/ 1i.e.:backspace and /CTRL//1/, i.e.: TAB) and hide-

mode /CTRL//G/ are implemented.

Errors

1f there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

Id

Valid DID Numbers

17 Console (keyboard) only

8-8 ASSEMBLER LANGUAGE USER GUIDE

[

THE M20 SYSTEM CALLS

» 16 Eof

Checks if an input character is available from device.

Input/Output Parameters
Input: R8§ <—— DID

Output: ' R9 b returned status
RS ~=———p error status

Characteristics
The function "EOF" (end of file) will return a zero (0) if an input
character is available from the selected device.

It returns a one (1) in each of the following cases:

1. The selected file is not open.

2. The file is open for output only.

3. The console has been selected but no key has been struck.
4. The end of the disk file has been reached.

The input "DID" identifies the device; valid DIDs are 1listed below.
RS-232-C

for use with the RS-232-C, this call returns a zero (0) if the
input buffer is not empty, and a one (1) if the buffer is empty.

Errors

1f there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

Some possible error codes are (see Aﬁpendix for 4ist):

90, bad_par_err; 96, file not open err

Valid DID Numbers

1 - 15 disk files (BASIC)
17 console

19,25,26 Com (RS-232-C), Com1, Com2

8-10 ACCENMRICD | ANMPCIHIACrDT 1ICCD A1t

THE M20 SYSTEM CALLS

18 ResetByte

Resets an input file or device.

Input/Output Parameters

Input: R8 €———— DID
Output: RS ——» error status
Characteristics

This function is used to reset an input device. In the case of the
console, it will clear the keyboard ring buffer, and initialize the

~screen driver. It can also be used with communications (RS$-232-C), in

which case it re-initializes the hardware and clears the input buffer.
The input "DID" identifies the device. :

Errors

'1f there are any errors, the status code is returned in R5. 1f there

are no errors, a zero (0) will be returned.
Valid DID Numbers

17 console
19,25,26 Com (RS-232-C),.Com1, Com2

8-11

19 Close: ‘ -

Closes specified disk file or device.

Input/Output Parameters

Input: R8 <4——— DID number
Output: RS ——» error status
Characteristics

This call closes the specified file or device and then releases both
buffer and table space. The input "DID" is an integer representing the
file or device.

Note:
This call is not used to close screen windows (see CloseWindow, SC 51).
RS-232-C

When used with the RS-232-C, the call disables the hardware interrupts,
and the input buffer is removed from the heap.

Errors

1f there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned. Some possible error codes
are (see Appendix for list):

57, disk io err; 77, illegal disk chng err;
90, param_err; - N

Valid DID Numbers

1 - 15 disk files (BASIC)
20 - 24 disk files (PCOS)
19, 25, 26 Com (RS-232-C), Coml, Com2

8-12 ASSEMBLER LANGUAGE USER GUIDE

3

THE M20 SYSTEM CALLS

» 20 SetControlByte

Writes a word into the Device Parameter Table.

Input/Output Parameters

Input: R8 <4—— DID
R9 <4— word number
R10 «—— word

Output: RS ———p error status
Characteristics

This call allows a single word to be written into the Device Parameter
Table (see appendix H). The input to R9 is the word number to be written
to; the input to R10 is the word to be written to the Device Parameter
Table.

Errors
1f there are any errors, the status code is returned in RS. 1f there

are no errors, a zero (0) will be returned.

Valid DID Numbers

19, 25, 26 Com (RS-232-C), Comi, ComZ,

Q.13

21 GetStatusByte

Reads a single word from the Device Parameter Table.

Input/Output Parameters
Input: R8 «—— DID
R9 <—— word number

Output: R10 ——» word read
RS — error status

Characteristics

This call allows a single word to be read from the Device Parameter
Table (see appendix H). The input to R9 is the word number to be read.
The outputs are the words read from the Device Parameter Table (in R10),
and the error status (in R5).

Errors
1f there are any errors, a non-zero number will be returned in RS. 1f

there are no errors, a zero (0) will be returned.

Valid DID Numbers

19, 25, 26 Com(RS-232-C), Com1, Com2

8~14 ACSCSEMRI EDR | ANCIIACT HICED FHITIAC

THE M20 SYSTEM CALLS

» 20 SetControlByte

Writes a word into the Device Parameter Table.

Input/Output Parameters

Input: R8 <4-—— DID
R9 <4—— word number
R10 — word

Output: RS - error status
Characteristics

This call allows a single word to be written into the Device Parameter
Table (see appendix H). The input to R9 is the word number to be written
to; the input to R10 is the word to be written to the Device Parameter
Table. ‘

Errors
1f there are any errors, the status code is returned in R5. If there

are no errors, a zero (0) will be returned.

Valid DID Numbers

19, 25, 26 Com (RS-232-C), Coml, Com2,

8-13

21 GetStatusByte

Reads a single word from the Device Parameter Table.

Input/Output Parameters
Input: R8 <—— DID
R9 <4—— word number

Output: R10 —» word read
R5 —» error status

Characteristics

This call allows a single word to be read from the ODevice Parameter
Table (see appendix H). The input to R9 is the word number to be read.

The outputs are the words read from the Device Parameter Table (in R10)},
and the error status (in R5).

Errors
1f there are any errors, a non-zero number will be returned in RS. 1f

there are no errors, a zero (0) will be returned.

Valid DID Numbers

19, 25, 26 Com(RS-232-C), Com1, Com2

8-14 ASSEMBI ER | ANCUACE 1ISER CHIDE

THE M20 SYSTEM CALLS

22 OpenFile

Opens a specified file or device for read, write, etc.

Input/Output Parameters

Files RS-232-C
Input: R6 «4— extent length
R7 <«— mode
R8 «— DID R8 «— DID

R9 «— file identifier length
RR10 «— address

Output: R5 — error status RS — error status
Characteristics
DEVICES

The function of this call is to open the specified device; its charac-
teristics, however, depend upon the device. For example, for the RS-
232-C there are no parameters except the input DID.

FILES

In this case the function of this call is to open the designated file,
specify the mode (append, read, write, or read/write), and to allo-
cate sectors (write or append modes only).

The input “file identifier length'" is the number of characters in the
file identifier. The input ‘“address'" is the address of the file iden-
tifier.
The input '"mode" designates whether the file will be opened for read,
write or append, as follows:

0: Read, always from current position.

1: Write, always placing a new end of file.

2: Read/Write, allocating sectors beyond old EOF.

3: Append, seeks to end upon open, and then writes.

A file that does not exist cannot be opened in the read mode. A non-

8.18%

existent file, 1if opened by write or read/write, will be created.
1f it does exist, write mode will write over thé old file.

If an existing file has been opened in the read/write mode, the user
can then position the file pointer to its end, to extend it, using
Dseek (SC 23). However, Append mode does this automatically, and then
operates the same as the write mode.

The input "extent length" designates the number of sectors to be allo-
cated if the file is to be created. The request should always be
one sector larger then the data requirements. 1If a zero 1is
entered, the number of sectors will be the default value (usually 8).
The input DID number identifies the file (see list below)

Errors

If there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned. Some possible error codes

are (see Appendix for list):

7, mem full err; 53, file not found err; 55, file _open_err;
57, disk_io err; 61, disk full err; 84, bad f11enam err;

71, volnam not found | err; 73, volnum err;

75, vol not enab _err; 76, 1nva11d strlng err;

77, illegal disk _chng _err; 90, bad _par_err;

Valid DID Numbers

-1 - 15 disk files (BASIC)
20 - 24 disk files (PCOS)
19,25,26 Com (RS-232-C), Coml, Com2

8-16 ASSEMBLZR LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

23 DSeek

Positions file pointer as specified.

Input/Output Parameters

Input: R8 <«— DID
" RR10 «— position

Output: RS ———p error status

3

Characteristics

This will position the file pointer for the specified stream
(opened file) to the position specified. The input "DID" identifies
the device. The input "position" is a 32-bit pointer. Zero 1is the
first byte.

‘ Seeking past the EOF while the file is opened for read/write will
automatically allocate new sectors.

Errors

1f there are any errors, the status code is returned in RS. 1f there
(\;2, are no errors, a zero (0) will be returned. Some possible error codes
' are (see Appendix for list):

54, bad mode err; 57, disk io err; 61, disk full err;

63, bad rec num err; 77, illegal _disk_chng err;

90, bad:paﬁ:érr; 96, file not open err;

Valid DID Numbers

1-15 disk files (BASIC)
20 - 24 disk files (PCOS)

8-17

24 DGetlen

Returns the length of a file or number of bytes in the input buffer.

Input/Output Parameters

Fiies ‘ Devices
Input: R8 <«—— DID ' R8 <—— DID
Output: RR10—» 1length R10 ——p zero status
R85 ~— error R11 =3 number
status RS —— error status

Characteristics

DEVICES

‘This call returns the number of bytes currently in the input
buffer. There are no inputs except the DID number.)

- FILES

This call returns the length of the file as a long word. The output
"length'" is the length of the file.

Errors

Lf there are no errors, a zero (0) will be returned in RS, If the
disk file 1is not open, a -1 is returned in RR10 and error code 96 is
returned in R5. 1If a bad parameter is input, error 90 is returned in
RS.

Valid DID Numbers

1-15 disk files (BASIC)
20 - 24 disk files (PCOS)
- 19,25,26 Com, Com1, Com2

8-18 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

», 25 DGetPosition

Gets the position of next byte to be read or written.

Input/Output Parameters

Input: R8 <——— DID

Qutput: RR10——p position
RS ——p error status

Characteristics

This call returns the position, in bytes, of the next byte to be
read or written. The input "DID" identifies the file. A list of wvalid
DIDs 1is given below. :

The output '"position' contains the position in the file, in bytes, where
the next byte will be read or written.

Errors

1f there are any errors, the status code is returned in RS. 1f there
are no errors, a zero (0) will be returned. Some possible error codes
are (see Appendix for list): :

90, param err; 96, file not open err;

Valid DID Numbers

1 -15 disk files (BASIC)
20 - 24 disk files (PCOS)

26 DRemove

Removes a specified file name from a disk directory.

Input/Output Parameters

Input: R <«— length
RR10 4—— address

Output: R5 —» error status

Characteristics

This call is used only for disk files. 1t removes the specified disk
file (and related data) from the directory of the volume.

The input "address" points to the file identifier. The input "length"
is the length of the file identifier.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned. Some possible error codes
are (see Appendix for list):

53, file not_ found err; 55, file open err; 57, dlSk io err;

64, bad filenam err; 71, volnam not fOund err; 73, volnum err;
75, vol not _enab_err; 76, invalid string err; -
77, 111ega1 “disk chng err;

8-20 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

27 DRename

Renames a specified file.

Input/Output Parameters

Input: RR6 <«—— old address
R8 <&—— 0ld length
RR10 «— new address
R9 <——new length

Qutput: RS ——derror status

Characteristics

.This call is used 6nly for disks. 1t will rename the file specified by

the old file identifier with the new file name.

_The input addresses point to the old file identifier and to the new file

name respectively. The inputs called "length" are the lengths of the old
file identifier and new file name, and are given in words.

Errors

"If there are any errors, the status code is returned in R5. 1f there

are no errors, a zero (0) will be returned. Some possible error codes
are (see Appendix for list):) . v

53, file not found err; 55, file open err; 57, disk io err;
64, bad filenam err; 71, volnam_not_found err; -

73, volnum err;. 75, vol _not enab_err; 76, invalid_string_ err;
77, illegal disk_chng_err; 90, bad par_err; - -

8-21

28 DDirectory

Displays a list of files from a specified disk.

Input/Output Parameters

Input: R9 <«—— file identifier length
RR10 «—— file identifier address

Output: RS ——> error status

Characteristics

This call is used only for files. 1t lists the contents of the
directory of the spec1f1ed volume, on the current window of the M20
screen. The input 'length'" is the number of bytes in the file identif-
ier. The input "address" is the address of the file identifier. The
file identifier may contain a volume identifier and/or wild card

characters ("*" and "?'). 1f R9 is zero, DDirectory assumes the name
"*!', and will list the entire directory.

The display lists the names of the specified files on the specified
(or default) volume in compact form.

Errors

1f there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned. Some possible error codes
are (see Appendix for list):

7, mem full err; 57, disk io err; 64 bad filenam err;
71, volnam not found _err; 73, volnum err; 75, vol i _not enab err;
76, invalid strlng err; 77, 111egal disk chng err;

8-22 , ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

29 BSet

Sets a block of bytes to a specified value.

Input/Output Parameters

Input: RL7 ¢—— n (byte value):
RR8 4—-— start
R10 «—— length

Output: RS ——p error status

Characteristics

This call sets a block of memory to the indicated byte value. The
input "start" is a segmented pointer to the first byte of memory to
be set. The input *'length" is the number of bytes to be set.

Errors

-1f there are any errors, the status code is returned in RS. 1If there

are no errors, a zero (0) will be returned.

30 BWSet ‘ .

Sets a block of words to a specified value.

Input/Output Parameters

Input: R7 <4—— n (word value)
RR8 ¢—— start
R10 «——— length

Output: RS ——b error status

Charactefi#ﬂﬁﬁa? =

- This routine sets the block of memory specified to the input value, n.
The input "n'" is the word value to be. loaded into each memory location.
The input "start" is a segmented pointer to the first word of memory to
be set. The input "length" is the number of words to be set.

Errors

1f fhere are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

8-24 ASSEMBLER LANGUAGE USER GUIDE

G

THE M20 SYSTEM CALLS

- 31 BClear

Sets a specified block of memory to zero.

Input/Output Parameters

Input: RR8 «— start
R10 ¢«—— length

Output: RS —» error status

Characteristics

A block of bytes, of the length specified, and starting at a speci-
fied source, 1is set to zero. The input "start" is a segmented pointer
to the first byte of memory to be set. The input called "length" is
the number of bytes to be set to zero.

Errors

1f there are any errors, the status code is returned in R5. 1f there
are no errors, a zero (0) will be returned.

8-25

32 BMove -

Moves a block of bytes from one location to another.

Input/Output Parameters

Input: R7 <4 length
RR8 <€—— start
RR1C ¢——— destination

Output: ‘RS ~—~—perror status

Characteristics

A block of bytes, of specified length, and starting at a specified
source, is moved to a block starting at a specified destination. The
input “start" is a segmented pointer to the first byte of memory
to be moved. The input "length' is the number of bytes to be moved.
The input "destination'" is a segmented pointer to the first byte of
the destination .memory block.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-26 ASSEMBLER LANGUAGE USER CUIDE

2

THE M20 SYSTEM CALLS

33 NewSameSegment

Allocates a block of bytes from heap in the current segment.

Input/Output Parameters

Input: RR8 «—— address of block pointer
R10 «<— length :

Output: RS ~——p error status
@RR8 —» block pointer

Characteristics

This call allocates blocks in the "SameSegment'. This is segment 2
unless the program has done a 'BrandNewAbsolute" system call, in which
case the segment number is that specified in the most recent '"Brand-
NewAbsolute'. This call is a subset of System Call 120 "New'. 1t has:
been maintained for compatibility with preceding releases.

A simple way to change the segment number for a program is to do a SC
121 "BrandNewAbsolute' with a block length of 0. "

The input "address of block pointer" is the address of a long word which
specifies the start address where NewSameSegment will store the block.
The input 'length’' is the number of bytes to be allocated. If the
block cannot be allocated, RR6 will ‘contain a nil (hex FFFFFFFF)
pointer, without returning an error in RS.

Errors

1f there are any errors, the status codé is returned in RS. If there
are no errors, a zero (0) will be returned.

R.27

34 Dispose

Releases heap space.

Input/Output Parameters

Input: RR8 4—— address of block peointer
R10 «—— length

Output: ©RRB —» hex FrFFFFFF
RS ——» error status

Characteristics

This routine releases memory space. The input address is a long word,
pointing to the start address of this space. It is important that this
be a valid heap space. Once the call has been executed, the address
specified in RR8 will contain hex FFFFFFFF (nil).

EXAMPLE:
In this example assume that addptr is a long variable which has been
initialized as in the example for New (SC 120):

LDA RR8,addptr
LD R10,#length

sc #34 ‘ (;]I

Errors

1f 'addptr' does not point to the start of a valid heap space, the sys-
ten issugs an error. If there are any errors, the status code is
returned in R5. 1f there are no errors, a zero (0) will be returned.

4

8-28 ASSEMBLER LANGUAGE USER GUIDE.

D

G

THE M20 SYSTEM CALLS

Clears the current window.

Input/Output Parameters

This call has no parameters.

Characteristics

35 Cl1s

This routine clears the current window to the current background colour
(usually ~ black). There are no parameters. The call sets the position

of the text cursor to the top left of the window,

and

sets

both

the graphics cursor and the accumulator to the center of the window.

Errors

No error checks are made and no errors are reported.

8-29

36 ChgCur0 >

Positions the text cursor.

Input/Output Parameters

Input: R8 ¢—— column
R9 ¢—— row

OQutput: : RS —». error status

Characteristics

This routine sets the position of the text cursor, on the current win-
dow, to the column and row specified. The upper left corner position
of the current window is (1,1). The position of the lower right
corner depends upon the display character size (64 by 16 or 80 by 25),
and the size of the window (see example below).

(1,1)

(32,16)

* current window, 64 by 16 mode

Errors

7

If there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

8-30 ACCTITMDI "D 1| AMCIIAS;E HICFM™ /~119 O

@»

THE M20 SYSTEM CALLS

» 37 Cthu r1

Positions the graphics cursor.

Input/Output Parameters

Input: RB 4——— x

RO «—— y
Output: there is no output
Characteristics

This routine sets the position of the graphics cursor, of the
current window, to the x-position and y-position specified.

The lower left corner position of the current window is always (0,0).
The position of the upper right corner will depend upon the size of the .
window and the display character size (64 by 16 or 80 by 25). The exam-
ple below shows the coordinates for a full screen in 64 by 16 characters

format.

(512,256)

(0,0)

Errors

Range checking is done, and if out of bounds the cursor is not
moved; however no error code is returned.

8~31

38 ChgCur2

Sets the blink raté of the text cursor.

Inpuf/Output Parameters

Input: R8 <¢—— rate
Output: there is no output
Characteristics 3

This routine changes the blink rate of the cursor of the current window
to a new value. The value will be the blink rate per second.

Valid values are 0 to 20, with a resolution of 50 ms. A zero value is
non-bl inking.

Errors

No error codes are returned.

8-32 ASSEMBLER LANGUAGE USER GUIDE

O
®

d

THE M20 SYSTEM CALLS

s, 39 ChgCur3
Sets the blink rate of the graphics cursor.
Input/Output Parameters
Input: R8 4¢—— rate
Qutput: there is no output

Characteristics .
This routine changes the blink rate of the cursor of the current window

to a new value. The value will be the blink rate per second.

Valid values range from 0 to 20, with a resolution of 50 ms. A ‘zero
value is non-blinking.

Errors

No error codes are returned.

8.33

40 ChgCurd

Sets the shape of the text cursor.

Input/Output Parameters

Input: RR8 4—— address

Output: there is no output
Characteristics

This call is used to change the shape of the text cursor of the current
window.. The input "address' points to the address of the new byte array

which describes the new shape of the cursor. This array is 12 bytes
long, the first byte being the first scan line of the cursor.

It is suggested that the: most significant bit of each byte is not used
as part of the cursor as it would then touch the previous character.

If the text cursor is being displayed at the time this call is made,
it will be turned off, updated, and then turned back on.

EXAMPLES:

For a solid cursor:

array = %7F %7F %7F %7f
%TF %TF %7F %7F
%TF %TF %7F %7F

For a checkerboard:

array = %00 %55 %2A %55
%2A %55 %2A %55
%2A %55 %2A %55

Errors

No errors are returned.

8-34 ACCEMBRI ED 1 AMNMFCIIACrE SICEDR 119 v

3

THE M20 SYSTEM CALLS

» 41 ChgCur5

Sets the shape of the graphics cursor.

Input/Output Parameters

Input: RR8 4;——— address
Output: there is no output

Characteristics

Thié call.is used to change the shape of the graphics cursor of the

" current window.. The input "address" points to the address of the new

byte array which describes the new shape of the cursor. This array is 12
bytes long, the first byte being the first scan line of the cursor.

1t is suggested that the most significant bit of each byte is not wused .
as part of the cursor as it would then touch the previous character.

1f the'graphics cursor is being displayed at the time this call is
made, it will be turned off, updated, and then turned back on. .

-

Errors

No errors are returned.

R.35

42 ReadCurO

Returns the position (column and row), and the blinkrate of the current
window's text cursor.

Input/Qutput Parameters

Input: RR10 ¢———address
Output: R?7 ——» blinkrate
' R8 —— column
. R ~—>row Y
RS ~—>error status ' y S \:../’
Characteristics 7.

This call is the same as ReadCuri (SC 43), except that it returns
the blinkrate and . position (column and row) of the current window's
text cursor. The input 'address’ points to the byte array for the
current shape. , ‘

Errors

No errors are returned.

B-36 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

43 ReadCur1l

Returns the position (column and row), and the blinkrate of the
window's graphics cursor.

Input/Output Parameters

Input: RR10 4= address

Output: R7
R8
R9
R5

‘ Characteristics

——» blinkrate
——p x position
——> y position
—» error status

current

This call is the same as ReadCur0 (SC 42), except that it returns the

X,y position and

blinkrate of the current windows graphics cursor.

The input 'address' points to the byte array for the current shape.

Errors

No errors are returned.

8-37

44 SelectCur A ' -

Selects the graphics or the text cursor, or turns off the current cur-
sor.

Input/Output Parameters

Input: R8 ¢——— select
Output: there is no output
Characteristics

This routine chooses the state of the cursor for the current window,
according to the value of the input '"select” as follows:

0: Turns of f the cursor for the current window.
(selecting another window will also turn off
the cursor).

1: Selects and displays the graphics cursor in
the current window.

2: Selects and displays the text cursor in the
current window. .

Note that only one cursor can be displayed at a given time,
regardless of the number of windows.

Errors

No errors are returned.

8-38 ASSEMRI ER 1 ANCHIACE 11CECD HrITHE

‘3;?

THE M20 SYSTEM CALLS

45 Grflnit

Initializes the screen and sets defaults.

Input/Output Parameters
Input: there are no inputs .

Output: R8 ——» colour flag
RR10—» pointer

Characteristics

This fuhction must be called to initialize the screen. 1t sets the
screen to contain one window (number 1), sets default global attrlbutes
for the screen, and default attributes for the window.

Default conditions are: one window for a full screen, green or white .
colour (depending upon hardware) on a black background and cursor off.

The outputs are a pointer and a colour flag. The latter is "0" for a
black and white system, and "1" for a colour system. These values.are
determined by hardware jumpers.

The pointer is the address of a mailbox area (8 bytes), also wused by
the 1EEE driver, and declared globally by PCOS. These 8 bytes (0-7)

are used by the 1EEE-488 and keyboard drivers. On calling Grflnit,
the interpreter will be passed the address of this area in RR10.

Errors

No errors are returned.

8-~39

46 PaletteSet

Selects a global four-colour set (only for four colour systems).

lnpdt/OUtput Parameters

Input: R8 <¢——colour A
R9 <4——colour B
R10 €¢——— colour C
R11 e—— colour D

Output: RS ——p error status

Characteristics

This call selects 4 colours out of a possible 8 for the global
colour set. The four . inputs are chosen from the following set:

black
green
blue
cyan
red
yellow
magenta
white

SN A WN O

and a check is made that the inputs are in the range from 0 to 7, but no
check is made for colour duplications.

The BASIC COLOUR statement is implemented by a call to this routine.
Also, this routine 1is called by Grflnit to initialize to the default
colours.

Note:

Note that this system call has no effect on black and white and eight
colour systems.

Errors

‘1f there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

8-40 | ASSEMBLER LANGUAGE USER GUIDE

3

THE M20 SYSTEM CALLS

- ' 47 DefineWindow

Creates a new window.

Input/Output Parameters

Input: R8 <—— quadrant
R9 <—— position
R10 «—— vertical spacing
R12 «—— horizontal spacing

Output: : R11 ——— window number

RS = ———p error status .

Characteristics

This routine is used to create a new window by splitting the
current window into two parts. A unique window number is returned
for the new window and the current window remains selected.

The input 'quadrant' indicates that part of the'old window from which
the new one is to be created. The choices are as follows:

0 TOP PORTION
1 BOTTOM PORTION
2 LEFT PORTION
3 RIGHT PORTION

The value and meaning of the input 'position’ depends upon
whether the split 1is done horizontally or vertically. 1If the split
is to be on a horizontal line (quadrant = 0 or 1), ‘'position' is meas-

~ured 1in scanlines, from the top of the current window. The allowable

range is then:
(Vspace + 1) to (Height - Vspace);

where 'Vspace' is the text line spacing of the existing window. 1f
the split is to be on a vertical line (quadrant = 2 or 3), ‘position' is
measured in the number of characters, counting from the left. The
allowable range is then from 1 to width minus 1.

The input 'vertical spacing' is the number of scanlines between the
tops of the characters in two consecutive text lines. 1t may be a
number from 10 to 16.

The input ‘horizontal spacing' is the number of pixels between the
right edges of two consecutive characters. 1t can have a value of 6
or 8. . If the values for vertical or horizontal spacing are omitted or

entered as zero, their spacing defaults to the values for the parent
window.

When a window is created, it will have the same foreground and back-
ground colours as its parent window (window 1 is always initialised
with foreground and background colours of 1 and 0, respectively
i.e. green and black in a colour system, and white and black in &
monochrome system). The new window will have its text cursor
placed at the top left of the window. The graphics cursor and graphics
accumulator positions will be set at the center of the new window,
with no cursor displayed. '

The parent window's cursor and graphics accumulator positions will
automatically be adjusted by the amount taken by the new window. The
parent window remains selected. :

In the graphics coordinate system supported by the PCOS, the lower

left-hand corner of a window is the origin, with coordinates (0,0);

the coordinates will. be scanlines vertically and pixels (bits) hor-
izontally. The origin of the text coordinate system is the upper left-
hand character position of the window, with coordinates (1,1).

Calling DefineWindow with quadrant = 0 and position = 0 will have the
effect of setting the spacing of the current window. If window 1 is the
only window and its spacing 'is changed, then the display character
size is changed from the current format to the other. If horizontal
spacing is 6 then the system goes into 80x25 format. The size of the
screen is reduced from 512 by 256 pixels to 480 by 256 (with 2-byte mar-
gins on the right and left). 1f horizontal spacing is given "as ' 8,
then the system goes into 64x16 mode, and the screen is expanded back
to 512 by 256 pixels.

Errors

An error condition leaves the returned window number equal to -1, and
leaves a 36 (wind_create_err) in R5. 1If no errors, a zero (0) will
be returned.

R._.A?2 ACCT ™MD 1% 1} AAIAIIA AP 30y ot tw pupe

o

THE M20 SYSTEM CALLS

- 48 SelectWindow

Selects another window.

Input/Output Parameters

Input: RE — window number
Qutput: RS ——p error status

Characteristics : . ' ‘ -

‘This routine is used to change the current window to another

already existing window. The input "window number" is the number of the
window (1 to 16) to be selected.. Any screen output routines which have
a window number as a parameter must call SelectWindow.

Errors

1f there are any errors, a status code is returned in R5. If there
are no errors, a zero (0) will be returned. A value of 35
(wind not open err) will be returned if the given window does not

exist.

49 ReadWindow

Returns the attributes of the current window.

Input/Output Parameters
Input: there are no inputs

Output: R7 ——+ window number
RB —» x
R9 —>» vy : ‘
. R10 ——» foreground P
R11 ——» background S : Q
RS ——% error status

Characteri#tic§.~v.

This routine returns the attributes of the current window. The outputs
are: .

'window' -- current window identifier number

'x! -- window width‘in b}tes
'y! -- window hight in pixels
'foreground' -- foreground colour of current window
'background’' -- background colour of current window

Colour Attributes

The colour values returned will belong to one of the sets shown below.

R

8-44 : ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

The colour selection of four (A - D) is originally made from the eight
listed under PaletteSet (SC 46):

four-Colour

Eight-Colour

Monochrome Systems Systems
0 black 0 colour A 0 black
1 white 1 coloqr B 1 green
2 colour C 2 blue
| 3 colour D 3 cyan
4 red
5 yellow
6 - magenta
7 white

Errors

No errors are returned.

8-45

50 ChgWindow | - .

Changes window colours.

Input/Output Parameters

Input: R8 4-— foreground

R9 4«—— background
Output: RS —— error status
Characteristics

This routine changes the colour attributes for the current window. The
inputs ‘'foreground' and 'background' are integers specifying the fore-
ground and background colours respectively. They are chosen from those
listed under 'Colour Attributes' (see below).

Colour Attributes

The colour values selected must belong to one of the sets shown below.
The colour selection of four (A - D) is originally made from the eight
listed under PaletteSet (SC 46):

. Four-Colour Eight-Colour
Monochrome Systems Systems
0 black 0 colour A 0 black
1 white 1 colour B 1 green
2 colour C 2 blue
3 colour D 3 cyan
4 red
5 yellow
6 magenta
7 white

Errors

If there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

R_AA ACSSEMR!I FR 1 ANCHACE HISER CCUITINOE

THE M20 SYSTEM CALLS

. 51 CloseWindow

Closes the selected window.

Input/Output Parameters

Input: R8 ¢———— window numbers -
Qutput: ‘ there are no outputs

Characteristics

Th1s routxne 15 used to close an exlst1ng window.

The 1nput w1ndow' is the window number. The area of the wlndow is
returned to the parent window, and the background colour is-cleared
to that of the parent window. :

It should be noted that window 1 cannot be closed.

Errors

No errors are returned.

52 ScaleXY

Checks the coordinates against window boundaries.

Input/Output Parameters

Input: R8 Ssn
R9 e y

Output: R10 ——» return_value

Characteristics -

The inputs 'x' and ‘'y* are graphics coordinates.'

The system call checks thexr values agalnst the window size of the
current window,and returns a true value in R10 if and only if the

coordinates are within the boundaries of the window. The 'return' is 1
for true.

Errors

No errors are returned.

8-48 ASSEMBLER LANGUAGE USER GUIDE-

THE M20 SYSTEM CALLS

» ' 53 MapXYC

Converts x-y to absolute coordinates and stores the result in the graph-
ics accumulator.

Input/Output Parameters

Input: R8 4——— x

Output: there are no outputs

Characteristics

The inputs 'x' and 'y' are the specified screen coordinates.

The system call converts these coordinates to the absolute screen posi-
tion (of C-type) for the current window, and stores the resulting value
in the graphics accumulator.

Note:

The input values are not checked for being within range. ScaleXY should
be called first.

Errors

.No errors are returned.

R.49

54 MapCXY

Converts the C-value in the graphics accumulator to X~y coordinates.

Input/Output Parameters

Input: v there are no inputs
Output: R8 —ep %

: R e y
Characteristics

BN

This call converts the current value in the graph1cs accumulator to x-y
coordinates for the current window.

1f the value in the graphics accumulator is outside the current window,
the results are undefined.

Errors

There are no errors returned.

QO en AL oAt P t% » B Rtomi s R s om hhm e

THE M20 SYSTEM CALLS

55 FetchC

Returns the contents of the graphics accumulator.

Input/Output Parameters

Input: there are no inputs
OQutput: RRE wep C-value

Characteristics

This call saves the: current value of the graphics accumulator for future
use. -

There are no input parameters. The output 'C-value'" is the contents of
the 32-bit graphics accumulator.

Errors

No errors are returned.

8-51

56 StoreC

Sets the graphics accumulator to a specified C-value.

InpdtIOUtput Parameters

Input: ' RR8 <¢—— C-value
Output: there are no outputs
Characteristics , “g]

This sets the graphics accumulator to a specified C-value.

The structure of the C-value is described in chapter 7. 1f the C-value
input is outside the current window, the results are undefined.

Errors

No errors are returned.

8-52 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS
Moves the position of the graphics accumulator up by one pixel.

Input/Output Parameters

This call has no parameters

Characteristics

Q This call moves the graphics accumulator up by one pixel position.

-

Thera is no checkmg with respect to window boundaries or the screen
boundary; it is expected that the callmg program-will perform a check
before executing a sequence of code using these routines.

., Errors

No errors are returned.

Remarks

Q For the routine which does perform checks, see TUpC (SC 70).

8-53

58 DownC

Moves the position of the graphics accumulator down by one pixel.

Input/Output Parameters

This call has no parameters

Characteristics

-

This call move the graphics accumulator down by one pixel position.

There is no checking with respect to window boundaries or the screen

boundary;* it is expected that the calling program will perform a check
before executing a sequence of code using these routines.

Errors

No errors are returned.

Remarks

For the routine which does perform checks, see TDownC (SC 69).

8.84 ACCEMRIED | ANCIIAC™ 15ICCD T

THE . M20 SYSTEM CALLS
. 59 LeftC
Moves the position of the graphics accumulator left by one pixel.

Input/Output Parameters

This call has no parameters

Characteristics

Th1s call move the graphics accumulator left by one pixel position. -

"hpro is no checkxng with respect to w1ndou boundaries or the screen

‘boundary; it is expected that the calllng program will perform a check
before executing a sequence of code using these routines.

Errors

No errors are returned.

Remarks

For the routine which does perform checks, see ScaleXY (SC 52).

8-55

60 RightC
Moves the position of the graphics accumulator-right by one pixel. |

1npdt/0utput Parameters

This call has no parameters

Characteristics

Thxs call move the graphics accumulator rxght by one. posztxon.

There: is no,checkangathh respect to window boundaries or the screen

boundary; it is expected that the calling program will perform a check
before executtnq a sequence of code usanq these routines.

Errors

No errors are returned.

Remarks

For the routine which does perform checks, see ScaleXY (SC 52).

8-56 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

Sets the current colour attribute.

Input/Output Parameters

Input: R8 e—— colour
Output: RS ~—~——p error status

" ‘Characteristics

61 SetAtr

The input “colour is the desired current attribute, or brush‘ colour.

This call sets the current attribute to that colour.

Errors

If there are any errors, the status code is returned in RS.
are no errors, a zero (0) will be returned.

If there

62 SetC : . s

Plots a single point.

Input/Output Parameters

Input: R8 ¢«—— operation
Output: _ there are no outputs
Characteristics

This system caii;plqts a single point. If the input 'operation' 1is
equal " to' 0, "a point having the current colour attribute is plotted
at the position specified by the graphics accumulator.

For other values of ‘operation’, logical operations are performed
(see table below). These are between the current attribute and the
attribute of the pixel at the specified point; the result is then
stored for the specified location.

PSET The current attribute is stored.

0

1 XOR The current attribute is XORed with the pixel.
2 AND The current attribute is ANDed with the pixel.
3 NOT The complement of the pixel is stored.

4 OR The current attribute is ‘ORed with the pixel.
5

PRESET The current background colour is stored.

For example, the XOR function with a current attribute of 1 for mono-
chrome or 3 for colour can be used for plotting a temporary point or
line on the screen; repeating the function will then restore the
screen to its original state. .

Errors

No errors are returned.

K68 ACCEMDIEI 0 & AMPIIA/AE 116" vt fw .-

THE M20 SYSTEM CALLS

Returns the colour attribute of the current point.

Input/Output Parameters

Input: : " there are no-iqputs
Output: R8 —» colour

Characteristics:

This routine returns the attribute of the current point

63 ReadC

(“"'colour”) as

an -integer (0..7) for eight colour systems, (0..3) for four colour sys-
tems, or (0..1) for monochrome, and stores it in. register R8.

Colour Attributes

The colour valués returned will belong to one of the sets shown below.
The colour selection of four (A - D) 1s made from the eight listed under

PaletteSet (SC 46):

Four-Colour Eight-Colour
Monochrome Systems Systems
0 black 0 colour A 0 black
1 white 1 colour B 1 green
2 colour C 2 blue
3 colour D 3 cyan
4 red
5 vyellow
6 magenta
7 white
Errors

No errors are returned.

64 NSet(CX

Draws a horizontal line.

Input/Output Parameters

Input: R8 ¢ count

R9 4 operation
Output: there are no outputs
Characteristics

This call draws a horizontal line. The inputs are - “count" (the number
of points - to be plotted) and "operation' which has the same meaning
as used in SetC (62). .

This call is the same as calling SetC (62) and RightC (60) ‘count'
times, but it has been optimized for speed. :

Errors

No error checking is done. 1t is assumed that range checking is done by
the caller.

8-60 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

65 NSetCY

Draw a vertical line.

Input/Output Parameters

Input: R8 4—— count
. R9 «—— operation

Output: thgreiare no outputs

Characteristics

Thls call draws a vertical line. The inputs are . ''count" (the numbef
of points to be plotted) and "operation" which has the same meaning
as used in SetC (62).

Using this call is the same as calling SetC (62) and DownC (58) ‘count'
times, but it has been opt1m1zed for speed.

Errors

No error checking is done. 1t is assumed that range checking is done
by the caller.

8-61

66 NRead

Reads a screen rectangle into an array.

Input/Output Parameters

Input: R8 <4—— width (in pixels)
R9 <4—— height (in pixels)
RR10 ¢—— pointer to byte array

Output: @RR10~— address of byte array
RS — always cleared (no error conditions)

Characteristics ..
A L e ’ 5 ke el

This call reads a screen rectangle into an array in memory.

The size (in pixels) of a rectangle on the screen is specified by the
first two coordinates. The position of the upper left-hand corner of the
rectangle is determined by the current Graphics Accumulator (which can
be set using system call 53 MapXYC).

. The third parameter is a pointer to a byte array which consists of a 6-
byte header followed by an array of two-byte entries, each of which is a
sixteen-bit integer.

The byte array is structured as follows:

byte contents

width (high byte)
* (low byte)
hight (high byte)
" (low byte) :
colour flag (high byte - always 0)
" " (low byte)
picture data

Jer e s O OBWN=SO

picture data

The colour flag is equal to 0 for a monochrome system, 1 for a 4-colour
system and 2 for an 8-colour system.

8-62 ASSEMR!I FR | ANCLIACE 1ISCD CULITHC

THE M20 SYSTEM CALLS

1f the width of the rectangle is W pixels, each scanline of the rectan-
gle (for each colour plane) is stored in INT((W+15)/16) two-byte integer
entries in the byte array, with the bit array left-justified in the
integer array, so that the last two-byte entry for each scanline may
have up to fifteen undefined bits. : '

The screen data is stored starting from top to bottom, with data for
various colour memory. planes interleaved scanline by scanline.

In other words, the integer array for the top scanline, plane 0 is
stored first, followed in succession by the integer arrays for screen
memory planes 1 and 2, if they exist on the system; these are followed
in turn by the data for successive scanlines. v

Errors

The ‘caller is assumed to have done error checking.

67 NWrite | S .

Transfers a graphics rectangle from an array to the screen.

1nput/Output Parameters

Input: R7 <4———1logical function
R8 <——— maximum width of rectangle in pxxels
R9 <———maximum height of rectangle in scanlines
RR10 ¢———pointer to a byte array

Output: RS ——>» always cleared (no error condition)

Characteristics
This system call is used for inserting screen data, previously read from
the screen using the NRead system call, somewhere on the screen.

Values of logical function for NWrite system calls:

0 overwrite what is already there

1 XOR (exclusive OR) array contents with destination
2 AND array contents with destination

3 COM: complement destination, no copy

4 OR array contents with destination

5 INVERT: complement text, copy

The logical function is useful in a varlety of situations. For example,
XOR may be wused to dlsplay an object which can be erased with another
XOR, leaving the screen as it was before the first XOR. AND may be used
to selectively erase parts of the screen to colour 0, using a specially
constructed array. OR may be used similarily to erase parts of the
screen to all white.

The height and width parameters are used to determine what proportion of
the rectangle saved in the array is actually written onto the screen;
this has dimensions which are the minima of the parameters and the
height and width values saved in the array; the rectangle written
includes the upper left-hand corner of the saved rectangle in all cases.

8-64 ASSEMBLER LANGUAGE USER GUIDE

o

THE M20 SYSTEM CALLS

As with NRead, the upper left-hand corner of the rectangle is determzned
by the current Graphics Accumulator.

Compatibility exists between colour and monochrome systems in the fol-
lowing sense: :

if screen data is read with NRead on a monochrome system, and written

with NWrite on a colour system, the data is written only into screen
plane 0; screen plane ‘1 (or 2 for the 8-colour system) is left
unchanged. On the other hand, if screen data is. read on a colour systnm
and written from the same array on a monochrome system, only data for
colour memory plane 0 is written on the monochrome system.

Errors

The caller is assumed to have done error checking.

8-65

68 Pntlnit

Specifies the global colour attributes for paint routines.

Input/Output Parameters

Input: R8 ¢——paint colour
R9 4—————border colour

Output: RS ————p error status

Characteristics

The inputs 'paint' and 'border’ must be legal screen colours as shown
below. The colour selection of four (A - D) is made from the eight
listed under PaletteSet (SC 46):

Four-Colour Eight-Colour
Monochrome - Systems Systems
0 black 0 colour A 0 black
1 white 1 colour B 1 green
2 colour C 2 blue
3 colour D 3 cyan
4 red
5 vyellow
6 magenta
7 white

The attributes set are globals, like the main screen attribute, not win-
dow attributes.

This routine must be called before doing "ScanL" (SC 71) or "ScanR" (SC
72) or they will be undefined. (Usually, both paint colour and border
colour are 1).

Errors

If there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

R_AK ACCEMRI D | ANFCUACE LICED TN

C

THE M20 SYSTEM CALLS

69 TDownC

Moves the graphics accumulator down by one pixel after checking the win-
dow boundary.

Input/Output Parameters

Input: there are no inputs
Output: R8 ——»check value
Characteristics

This has the same effect as DownC, except that the position of the
graphics accumulator is checked against the lower boundary p051t1on of
the current window before it is changed.

1f the new position 1is out of bounds, a false ‘check value' is
returned in RB and the graphics accumulator is unchanged. 1I1f the new
position * is within bounds, the position is moved down one pixel and a

true value is returned.

Errors

No errors are returned.

8-67

70 TupC

Moves the graphics accumulator up by one pixel after checking the window
boundary.

Input/Output Parameters

Input: there are no inputs
Output: R8 —~——p check value
Characteristics

This has the same effect as UpC, except that the p051t10n of the graph-
ics accumulator 1is checked against the lower boundary position of the
current window before it is changed.

If the new position is out of bounds , a false 'check value' is
returned in R8 and the graphics accumulator is unchanged. 1If the new
posxtlon is within bounds, the position is moved up one pixel and a true
value is returned.

Errors

No errors are returned.

8-68 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

(4 ScanLv

Paints left on a scanline up to a border.

Input/Output Parameters
Input: there are no inputs

OQutput: R9 —— count-1
R10 ———p margin flag
R11 —» painted flag

Characteristics

The purpose of this routine is to paint part of an enclosed region
in the current window, moving left along a scanline.

All points starting at the initial position of the graphics accumulator
are painted to the paintcolour. If any points painted were not
already painted, the 'painted flag' is set.
The routine stops when the border colour has been reached or when the
left margin of the window has been reached. The ‘'margin flag' is
set if the left margin has been reached.

The output called 'count-1' is the number of pixels scanned (painted),
regardless of whether their original colour was the paintcolour.

The graphics accumulator position is left at the end of the scan.

Errors

NO errors are returned.

8-69

72 ScanR " >

Paints right on a scan line up to a border.

1nput/Output Parameters

Input: R8 <¢——— maxcount

Output: RR6 ——» C-type
R8 ——» maxcount
. R9 —— count-r

R10 —— margin flag
R11 —— painted flag

Characterisfics

The purpose of this routine is to paint part of an enclosed region
in the current window, moving right along a scanline. At first the rou-
tine skips over a maximum of ‘maxcount' points of the border
colour. - :

1f more than 'maxcount' border points are skipped, then ScanR stops
immediately and returns RB = 0 and R9 = 0 (and RR6 undefined).

All points following the initial border region are then painted to the
paintcolour. If any points painted were not already painted, the
‘painted flag' is set.

The routine stops when the border colour has been reached or when the
right margin of the window has been reached. The ‘margin flag' is set if
the right margin has been reached. The output called 'count-r' value is
the length in pixels of the painted segment.

The output 'C-type' points to the position of the first pixel

painted. The graphics accumulator position is left at the end of the
scan.

Errors

No errors are returned.

Q.70 ACCIRMIYE I | AR/ R 7™ L ae v bt o

THE M20 SYSTEM CALLS

- 73 SetTime

»
Sets the system clock.
Input/Output Parameters
Input: RR8 — address
R10 «———1length
Output: RS ———perror status
Characteristics ' -

The input 'address p01nts to an address in the caller's data area

which contains the time of day. The input ‘length’ gives the length

of the ASC1l string. The format of the data in the string must be:
hh:mm:ss '

where 'hh' is the hour (in 24-hour time), 'mm' is minutes, and 'ss' 1is

seconds.. Leading zeros need not be supplied Any non-numeric character

can be selected for delimiter as shown in examples below, using the PCOS
SSYS (set system) command.

ss 04/15/82,13:12:45

.. ss 04 15 82",08:10:00

Time is initialized to 00:00:00 at system startup. 1f blanks are
selected for delimiters, as in the second example, the expression must
be put in quotes.

Eriors

The value returned in R5 is zero if the clock was correctly set.

8-71

74 SetDate

Sets the system date-clock:

Inpdt/Output Parameters

Input: RR8 ———address

R10 «———1ength
Output: RS ——perror status
Characteristics

The input ’ad&ress"points to an address in the caller's data area
which contains the date. The input 'length' gives the length of
the ASCII string.

The format of the data in the string, except for the delimiter, must be:
dd:mm:yyyy

where 'dd' is the day, 'mm' is the month, and ‘'yyyy' is the year; lead-
ing zeroes need not be supplied.

Any non-numeric character may be used in place of the colon, as shown in
the examples for SetTime (73).

The date is initialized to January 1, 1982 at system startup. If only
two digits are input for the year, the century is assumed to be 19.

Errors

The value returned in RS is zero if and only if the date was
correctly set.

8-72 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

Returns the system time.

Input/Output Parameters

Input: RR8 4———— address
R10 ¢——— length

Output: RS ~———perror status

Characteristics

This call returns the ASCI1 string giving the system
stored in the BASIC data area.
The format of the time returned is:

hh:mm:ss

75 Getfime

time.

where 'hh' is the hour (in 24-hour time), 'mm' is the

'ss' 1s the seconds.

There will be leading zeroes to make each field 2 characters in

that used in the last call to ‘'SetTime'. The system
separator character to ':'.

Errors

1f there are any errors, a non-zero value is returned
is returned if there were no errors.

in

minutes,

RS;

The two
inputs are the address and maximum length of the string, which is

and

length
and the character separating the various fields for the time will bé
initializes the

a

Zero

8-73

76 GetDate .

Returns the system date.

Input/Output Parameters

Input: RR8 ¢——-—address
R10 «————1length

Output: R5 ——perror status

Characteristics

This call returns the ASC1l string giving the system date. The two
inputs are the address and maximum length of the string, which is
stored in the BASIC data area.

The format of the returned date is:
dd:mm:yyyy
where 'dd' is the day, 'mm' is the month, and 'yyyy' is the year.
There will be leading zeroes to make each field two characters in length
and the character separating the various fields for +the date will be

that used in the last call to 'SetDate'. The system initializes the
separator character to ':'.

Errors

If there are any errors, a non-zero value is returned in R5; a zero
is returned if there were no errors.

R._74 ACCEMOI D | ANCUIACE ICED ATV

THE M20 SYSTEM CALLS

», 77 CalluUser

Calls user or PCOS utility or command.

Input/Output Parameters

Input: RR144————-pointer
Output: RS -———perror status

Characteristics

This SC allows the Assembler programmer to invoke from his programs the
PCOS wutilities and other utilities resident on disk or in memory.
Before invoking the SC 77 the user must prepare his parameters in the

stack in the following way:

High Memory
B type of command
tvpe {byre}] 00 *== (must be string type}
2 words je— ptr t0 command
type (byte) I 00 e—— type of parameter 1
j4~— prt to parameter 1
parameters type (byte} l 00 |+——type of parameter 2
passed to
the user
2 words le— ptr to parameter 2
1
I
]
I
type (byte) 00 je——type of parameter n
2 words [~ ptr tO parameter n
position of
the stack L.
inter
::the qart 4o no. of parameters (n)

of the CallUser
routine
t.ow Memory

As far as the ''types' are concerned, the same rules apply as previously -

stated in chapter 2 in the section which deals which the PCOS standard.
In this case however the command parameters will have to be obtained
using a series-of”'"pushes rather than a series of "pop"s. The parame-
ter pointers will be of the Z-8001 format.

The following table illustrates schematically the types already dealt
with in chapter 2. .

Data Types
Data Pointer
Category Type Value Description
nll 0 %0000F FFF for null parameters
integer 2v segmented ptr integers 6ccupy one word;
string 3 segmented ptr pointer ptr to a 3-byte:

descriptor: 1-byte length
& 2-byte unsegmented ptr
to actual string

The following is an example of an Assembler source file, which, (by
means of SC 77) makes use of the PCOS utility '""filenew', which allocates
a certain number of blocks on disk under the name of a given file.

In practice, it is a question of invoking from an assembler utility,
that which can be invoked from PCOS in the following way:

fn FILE,100

8-76 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

“ The following is a sequence of Assembler instructions to be used for
preparing the stack before the 5C 77.

push err14 #%0300 type 3(string)
“1da rr2,cmd - , .

1d ptrcmd+2,r3 - store offset
1lda rr2,ptremd+1

pushl errid,rr2 :
push err14 #%0300 type 3(string)

lda rr2,filenam
1d . ptri+2,r3 , store offset
lda re2,ptri+l
- pushl erril4,rrr
Q push err1d #%0200 type 2(integer)
g lda rr2,nblock s
pushl @rrl4,rr2
push erri4 #2 no. of parameters
. sc #77 :
' cmd ddb "fn"
. ptremd : dd 0002,0000
- filenam ddb “FILE"
ptri dd 0004,0000
nblock dd 0100 ’ no. of blocks

Errors

If there are any errors, the status code is returned in R5. If there are
no errors a zero will be returned.

877

78 1BSrQ0

Disables the service request (SRQ) interrupt.

Input/Output Parameters

Input: there are no input parameters

Output: RS ~—w————perror status

Characteristics

The statement “ON SRQ GOSUB 0" will cause the system call 1BSrQ0 to be
executed; this system call will disable the SRQ interrupt (for further
details on the interrupt system, see SC 79).

Errors

1f the system does not have an 1EEE option board, R5 will contain a Hex
OA. 1f there are no errors, a zero (0) will be returned.

R_.78 ACCIEVIDEL £ 1 ARIATIIAM™ 1 1r fn oma gy o

'\Z

THE M20 SYSTEM CALLS

79 18SrQ

Enables the service request (SRQ) interrupt.

Input/Output Parameters

Input: there are no input pafameters
Output: RS —» error status

Characteristics
The statementv"ON SRQ GOSUB <line number>!" will cause the system call
185rQ1 to be executed; this system call enables the SRQ interrupt.

The 1EEE-488 interrupt service routine will set the global flag
"srq 488" (byte) to 1 when an SRQ interrupt occurs. (This flag is

stored in the mailbox area).

This flag will be tested by the interpreter before the execution of each
source statement following the ON SRQ GOSUB. 1f set, it will be reset by
the interpreter, and the subroutine entered (see call Grfinit (SC 45)).

Errors

1f the system does not have an 1EEE option board, RS will contain a Hex
OA. 1f there are no errors, a zero (0) will be returned. '

8-79

80 1BPoll

Polls-a specified device on an instrument-bus.

InpﬁtIOUtput Parameters
Input: R8 <«—— talker addr

Output: RR10 ——> ptr to status
RS ——p error status

B -

Characteristics

This call polls the device specified, within a serial service request
poll. The input 'talker addr' identifies the device.

The call tests the device address, reads the device status byte, and
saves it in an address pointed to by'ptr to status'.

Errors

If the system does not have an 1EEE option board, RS will contain a Hex
DA. If the talker address is invalid (ie., greater than 001E), RS will
contain '09'. 1f there are no errors, a zero (0) will be returned.

8-80 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

» 81 1B1Set

Causes a remote enable (REN) or an interface clear (1FC) to be sent.

Input/Output Parameters

Input: R8 «—— operand
Output: R5 ———p error status
Characteristics)

This call causes the remote enable (REN) message or the interface clear
(IFC) pulse to be transmitted, depending upon the value of the input
‘operand’. :

1f '0' is loaded into RB, then the REN message is sent true; if '1' is .
loaded, then the IFC pulse is sent.

Errors

1f the system does not have an IEEE option board, RS will contain a Hex
OA. 1f there are no errors, a zero (0) will be returned.

R_81

82 1BRSet

Causes the remote enable (REN) message to be sent false.

Input/Output Parameters
Input: thefe are no parameters

Output: RSI-—T—berrér status

Characteristics : : ’ - C;Z!

This cafliéauséS“thg remote . enable (REN) message to be sent false.

Errors

If the system does not have an IEEE option board, RS will contain a Hex
OA. 1If there are no errors, a zero (0) will be returned.

8-82 ACCEMRI TR | ANCIHACS iCcED FAI1TRE

THE M20 SYSTEM CALLS

83 1BPrnt

Checks the address and then causes output of data bytes.

Input/Output Parameters

Input: RR6 ¢—— buffer addr
R8 <«—— listener addr
R9 <—— buffer len, in bytes
R10 «——delimiter

Qutput: RS ———p error status

Characteristics

‘Before calling the driver, the BASIC interpreter will transfer the

output bytes to a buffer, from which they will be sequentially
transferred by the driver. :

This call will test the listener address in R8; if less than 001F,
writes listener address, if specified.

R10 contains zero if the "e@" option (END as data-stream delimiter) is
specified, and 1 if it 1is not (CR, END as data-stream delimiter
sequence). If there are any output bytes for transfer, writes them to
bus, with ATN false. .

Errors

1f the system does not have an 1EEE option board, RS will contain a Hex
OA. 1f the 1listener address in RB is greater than 001F, this call
returns an error code of 09. If there are no errors, a zero (0) will
be returned.

8-83

84 1BWByt

Outputs commands- (optional) and writes data bytes (optional).

Input/0utput Parameters

Input: RR6 < numval addr
R8 <——comlist length
R9 <€——numval length
RR10 «—— comlist addr

Qutput: RS ——p»error status

Characteristics

1f there is.a command list, asserts ATN and outputs commands. 1f there
are any data bytes to be output, writes them to bus with AIN false.

The input 'comlist addr' points to the address of the command list.
This list, if present, is stored as a sequence of bytes, 2 to the word.
The input 'comlist length' is the command list length in 15 low-
order bits; high-order bit: 1 if "@" option (END sent with last byte of
data as statement delimiter) specified, 0 if not (END with CR ter-
minates data).

The input 'numval addr' points to the address of the 1list of
numeric values . It, too, is stored as a sequence of bytes, 2 to a word.
The input 'numval length' is 0 if not specified.

Errors

1f the system does not have an 1EEE option board, R5 will contain a Hex
OA. 1f there are no errors, a zero (0) will be returned.

8-84 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

85 18lnpt

Places bytes received, into a buffer.

Input/Output Parameters

Input: R?7 <——buffer length
~ R8 4———talker addr
R9 <«——listener addr’

RR10 ¢«——buffer addr

Output: RS ———p error status
R7 — number of bytes not read

Characteristics

This procedure calls 1BLinpt. Both 1Blnpt and 1BLinpt place bytes
received sequentially from a driver into a single buffer. They differ
in that, for 1Blnpt, the BASIC interpreter transfers the buffer contents
to the variables in the variable list provided by the user; for 1BLinpt
the user specifies the buffer for a single line of data.

On entry, the 'buffer length' (R7) is given in bytes; on exit, this
represents the number of bytes not read (buffer length minus number of
bytes read). The ‘buffer addr' points to the buffer which will receive

the data bytes. The 'talker addr' (R8) and 'listener addr' (R9) will
both be 001F if not specified.

Errors

The error codes which can be returned in RS are:

8-85

ERROR CODE MEANING

03 Invalid termination of input bytestream.

The two valid cases are:

- the number of data bytes received equals
the value provided in R7 (string variable
length, in bytes). The last data byte is
accompanied by the END condition (EO1
true, ATN false).

- the number of data bytes received equals
the value provided in R7 (string variable
length, in bytes). The last data byte is
followed by a CR, LF pair with the END

- condition accompanying the LF. o
09 Talker or Listener address greater than 1F. \KZ’
0A 1 1EEE board not present.

08 . .‘ - 15 second polling loop (for 'byte in’',

'byte out' , or 'input buffer empty'
condition) timed out; handshake could not
be completed within 15 seconds.

1f there are no errors, a zero (0) will be returned.

P

3

0
)

86 ACCYr"AATI) ™0 3 AR LA R rmmr™ 1 & rn ooms foo o e

THE M20 SYSTEM CALLS

86 1BLinpt

Places bytes received into a buffer as a single line of data.

Input/Output Parameters

Input: R7 <e—buffer length
R8 <@-—— talker addr
R9 <«——listener addr
RR10 «——buffer addr

Output: RS ——perror status
R7 ~——»number of bytes not read

Characteristics

Both 1BLinpt and 1BInpt place bytes received sequentially from a driver
into a single buffer. They differ in that, for 1BLinpt the user
specifies the buffer for a single line of data; for 1Blnpt, the BASIC
interpreter transfers the buffer contents to the variables in the vari-

able list provided by the user.

On entry, the 'buffer length' (R7) is given in bytes; on exit, this
represents the number of bytes not read (buffer length minus number of
bytes not read). The 'buffer addr' points to the buffer which will
receive the data bytes. The 'talker addr' (R8) and 'listener addr' (R9)
will both be 001F if not specified.

Errors

The error codes which can be returned in RS are:

8-87

ERROR CODE MEANING S

03 Invalid termination of input bytestream.

The two valid cases are:

~ the number of data bytes received equals
the value provided in R7 (string variable
length, in bytes). The last data byte is
accompanied by the END condition (EOL
true, ATN false). :

- the number of data bytes received equals
the value provided in R7 (string variable
length, in bytes). The last data byte is
followed by a CR, LF pair with the END
condition accompanying the Lf.

) 09 Talker or Listener address greater than 1F. a“zl
0A : 1EEE board not present.
0B 15 second polling loop (for ‘'byte in',

‘byte out*® , or ‘input buffer empty’
condition) timed out; handshake could not
be completed within 15 seconds.

If there are no errors, a zero (0) will be returned.

8-88 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

87 1BRByt

Outputs commands (optional) and reads data bytes (optional).

Input/Output Parameters

Input: RR6 <«——buffer addr
R8 <e———comlist length
R9 <«——buffer len, in bytes
RR10 «———comlist addr

Output: RS ———perror status

Characteristics

1f there is a command list, asserts ATN and outputs commands. 1t then
reads the assigned number of bytes, and places them sequentially in a
buffer. ’)

The input ‘'comlist addr' points to the address of the command list.
This list, if present, is stored as a sequence of bytes, 2 to the word.

The input 'comlist length' is the command 1list length in 15 low-
order bits; high-order bit is always zero (0).

The input 'buffer addr' points to the buffer which will receive the
data bytes. The input 'buffer len, in bytes' indicates the number of
bytes to be read.

Errors

1f the system does not have an 1EEE option board, RS will contain a Hex
OA. 1f any handshake is not completed within 15 seconds, R5 will contain
Hex '000B'. 1If there are no errors, a zero (0) will be returned.

8~-89

88 Error he®

Displays standard error message.

Input/Output Parameters

Input: RHS ¢—— parameter number
RLS ¢———error code

Output: there are no outputs
Characteristics:
This procedure is only called if there are errors. The routine

displays the message 'Error nn' in parameter xx' where nn is one of
the standard error codes and xx is the parameter number passed in
RH5. 1f xx is 00 then only the message 'Error nn' is displayed.

Note:

If the EPRINT command is resident, then an error message will be
~ displayed. :

8-90 ASSEMRBRI 5D | ANCIIACS 11€CD ~UTAS

THE M20 SYSTEM CALLS

89 DString

Displays a string message.

Input/Output Parameters

Input: RR12 ¢——address
Output: RS ——serror status
Characteristics

This routine displays a string message. The string must be <terminated
with a null (0) byte.

The message may include any number of carriage returns, but note that a
linefeed will be automatically displayed after each carriage return in
the string.

The input 'address' is the address of the string.
Errors

1f there are any errors, the status code is returned in R5. 1f there
are no errors, a zero (0) will be returned.

8-91

90 CriLf

Does a CR and LfF.

Input/Output Parameters

Input: there are no parameters
Output: R5 —w—p error status
Characteristics ‘ :

This routine will do a carriage return and a line feed. There are no
parameters. ' :

Errors

If there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

8-92 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

91 DHexByte

Displays a byte in Hex.

Input/Output Parameters

Input: R12 ¢ byte
OQutput: RS ———p error status
Characteristics -

The byte supplied in the lower half of R12 is displayed as two hex
digits.

Errors

1f there are any errors, the status code is returned in RS. If There
are no errors, a zero (0) will be returned.

8-93

92 DHex ' . .

Displays a word in hex.

Input/Output Parameters
Input: _ R12 ¢ word

Output: RS ——» error status

Characteristics g

This routine displays the 16-bit number in R12 as four hex
digits.

Errors

If there are any errors, the status code is returned in RS5. If there
are no errors, a zero (0) will be returned. :

8-94 - ASSEMSBL FR | ANCUACE HSCD TR

THE M20 SYSTEM CALLS

- 93 DHexlong

Displays a long word in hexadecimal.

Input/Output Parameters

Input: RR12 4————-long word
Output: RS ————perror status
Characteristics

The long word supplied in RR12 is displayed as eight hex digits.

Errors

1f there are any. errors, the status code is returned in RS. If
are no errors, a zero (0) will be returned.

there

8-95

94 DNumW

Displays a number as an unsigned decimal integer.

Inpﬁt/Output Parameters

Input: R12 «——— integer
R13 «—— field width

Output: RS ———> error status

Characteristics : 5 :
The number in R12 is displayed as an unsigned decimal integer. R13

specifies the field width for display.

The display is right-justified in the field, with leading zeroes changed
to spaces.

Errors

If there are any errors, the status code is returned in R5. If there
are no errors, a zero (0) will be returned.

8-96 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

Displays a number as an unsigned decimal integer.

Input/Output Parameters
Input: RR12 «—long integer

Qutput: RS ~——perror status

Characteristics

95 DLong

The number supplied in RR12 is displayed as an. unsigned decimal

integer, left-justified with leading zeroes omitted.

Errors

1f there are any errors, the status code is returned in R.
no errors, a zero (0) will be returned. ‘

1f there are

8-97

96 DisectName

Parses a file or a volume name.

Input/Output Parameters

Input: R9 <—-—-string.length
RR10 «—~string address
RR12 4e——names record address

R7 ——p VO lume number

Output: @RR12—* names record g
RS —~——perror status

Characteristics

This call takes a file identifier of the form

"<volname>'/'<volpswd>': ‘<filename>'/'<filepswd>"

and parses it into its various components. A drive unit is acceptable as
<volname>. :

Each component is placed into the appropriate compartment of the names
record as follows:

volname : 14 byte array
volpswd : 14 byte array
filename : 14 byte array
filepswd : 14 byte array

The input string length is the length of the file identifier string
(this includes the volume identifier), which in turn is input in the
address specified in RR10.

Errors

If there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

o OO0 A CCIr=ArAMM)E i 1 n Ll bR I i r"rN v 4w . -

C

THE M20 SYSTEM CALLS

» 97 CheckVolume.

fForces a check of disk volumes

Input/Output Parameters

Input: there are no parameters
Output: RSA-————4perfor status
Characteristics

There are no input registers for this call. All volumes
to read their verification codes on their access.

Errors

1f there are any errors, the status code is returned in RS.
are no errors, a zero (0) will be returned.

are forced

1f there

98 Search

Searches on a specified disk for a file name supplied by the user.

Input/Output Parameters

Input:
R6 €—— drive
R7 <&—— search mode
R9 == <—— length
RR10 +—— file pointer
. RR12 «—— name pointer
Output: R9 —p length of output filename
RR10 —— file pointer
RR12 ——» modified
R5 —p error status
Characteristics

This call searches on a disk for a file name éupplied by the wuser. The
file name may contain wild card characters.

The input called 'drive' identifies the ¢rive to be searched (input a
'=1' for the current drive). The input 'search mode' is either a '1' for
a search from the beginning, or a '0' for a search from the last
file found. The input ‘length' is the length of the file name, in
bytes. To search for any file, input a zero length.

The input 'file pointer' points to the memory location where the name
of the file, 1if found, will be written. The input ‘'name pointer' is
the address where the input string will be stored. If the file is
found, the address of the name of the file is returned in RR10. The
content of the register RR12 is modified by the Operating System.

Errors

1f there are any errors, the status code is returned in RS. If the
file is found, a zero (0) will be returned.

8-100 ACCIEMOL D I AN/ IUIATT 11 ™1 g o=

THE M20 SYSTEM CALLS

99 MaxSize

Returns maximum free heap size

Input/Output Parameters
Input: there are no parameters

Qutput: R8 ——p 'size
RS ———p error status

Characteristics

This call returns the size of the largest free heap block in the current
segment. Size is returned in bytes.

This call operates in segment 2 unless the program has done a Brand-
NewAbsolute system call (121), in which case the segment number is that

specified in the most recent 'BrandNewAbsolute'.

A simple way to change the segment number for a program is to do a SC
121 "8randNewAbsolute" with a block length of 0.

Errors

1f there are any errors, the status code is returned in RS5. 1f there
are no errors, a zero (0) will be returned. :

’-~101

102 SetVol

Sets the active volume f6r the next access.

InputIOutput Parameters

Input: R7 ——— vol number-
OQutput: RS —— error status
Characteristics

This call sets the volume for the next access. The input
number' is the volume number to be used for the next access.

Errors

1f there are any errors, the status code is returned in RS. If
are no errors, a zero (0) will be returned.

‘vol

there

8-102 ASSEMBLER LANGUAGE USER GUIDE

C

THE M20 SYSTeM CALLS

104 NewAbsolute

Allocates a block at a specified address.

Input/Output Parameters

Input: RR8 <«—— address of block pointer
R10 <«—— length
@RR8 ¢ block pointer

Qutput: RS ——perror status

Characteristics

This call is similar to NewSameSegment (SC 33) except that the block
allocated will be at a specified address. The input address (RR8)
should be the address of a long (4-byte) memory location; this is where
the desired address is stored. The input to R10 is the number of
bytes requested, and must be even.

On exit from this call, the memory location that RR8 points to will
contain a 32-bit address of the actual block allocated. 1f the
requested value is too close to the end of a previous block, the actual
value may be two bytes lower than the requested value, but will still
include the requested length. 1If the space requested is not
available, a nil-pointer (hex FFFFFFFF) will be returned in the memory
location that RR8 points to, but no error will be returned in RS.

1t is important to remember that RR8 does not contain the memory block
address specified. ’

This call allocates blocks in the 'SameSegment'. This 1is segment 2
unless the program has done a "BrandNewAbsolute' system call, 1in which
case the segment number is that specified in the most recent '"Brand-
NewAbsolute". A simple way to change the segment number for a program is
to do a SC 121 "BrandNewAbsolute' with a block length of 0.

This call is a subset of system call 121 “BrandNewAbsolute'. 1t has been
maintained for compatibility with preceding releases.

Errors

1f there are any errors, the status code is returned in RS. If there
are no errors, a zero (0) will be returned.

R_1N2

105 Stringlen

Returns the length of the input string..

Input/Output Parameters
Input: RR12 4——pointer

OQutput: . R7 ~—»1length
RS ——»error status

Characteristics \a

This call returns the length of the input string. The input 'pointér'
points to the string; the output in R7 is the length read (until a null
encountered, or 14, if no null in that length).

Errors

1f there are any errors, the status code is returned in R5. 1f there are
no errors, a zero (0) will be returned.

8-104 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

- 106 DiskFree

Returns the number of free sectors on the disk.

Input/Output Parameters
Input: R7 <—— volume humbér .

Output: RR10 —» num of sectofs.
RS —»error status

Characteristics

This call returns the number of sectors,tﬁét,are’availabie - for use on

the disk. The input 'volume number' is the volume to be checked (enter
-1 for the current volume).

The number of sectors that are free on the volume will be returned in
RR10.

Errors

1f there are any errors, the status code is re turned in R5. 1If there
are no errors, a zero (0) will be returned.

R’3-~-108

107 BootSystem

Reboets.(initiaddizes) the~syetems

Input/Output Parameters

Input: this call has no parameters
Output: RS ———p error status
Characteristics

This system call can be used to reboot the system, exactly as does
pressing the blue shift plus reset keys. In other words, the system
reboots, but bypasses the diagnostic checks.

Errors

There are no error checks with this call. If any errors occur, a status
code 1is returned in R5. If there are no errors, a zero (0) will be
returned.

8-106 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

» 108 SetSysSeg

Returns the caller to segmented system mode.

Input/Output Parameters

1nput: this call has no parameters

Qutput:
RS ————perror status

Characteristics

This call will return the caller to the segmented system mode, regard-
less of which mode the system is in. : :

Errors

There are no error checks with this call. 1f any errors occur, a status
code will be returned in R5. 1If there are no errors, a zero (0) will

be returned.

109 SearchDevTab

Searches the system device table.

Input/Output Parameters

Input: RR10 «— ptr to device name
R9 <«— device name length
Output:
RLS ——— entry number
RHS ——p device type
RR8 ——p ptr table entry) .
- RS ~—p error status . J

This command searches the system device table for the device named. The -
input ‘'ptr to device name' is the address where the first ASCI1 charac-
ter of the name is stored; the input ‘'device name length' is the number
of bytes in the name. 1If the call finds the device name, it returns the
entry number of the device in RL5 and the device type in RH5 (1 = Read,
2 = Write, 3 = Read/Write); it also returns a pointer to the first entry
in the particular device table in RRS.

EXAMPLE :

-

table pointer DSL 1

device name DDB “cons"
1d ro9 ., #4 search_devtab string length 7
1da rr10,device_name search_devtab string pointer ~
sC #109 :
test r5 name not found

jr nz,command err
1dl table pointer,rr8

Errors

1f the device is not found, a Hex FFFF (nil) is returned in RS.

8-108 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

113 CloseAlllWindows

Closes any existing windows from 2 to 16.

Input/Output Parameters

This call has no parameters

Characteristics’

This call will close all existing windows except for window 1.

Errors

No errors are returned.

R_10G

114 KbSettock

Sets-the-state of-bwth-the-shift lock-and thescurser-lock flags:

Inpdt/Output Parameters

Input: R6 +———— integer flag

Output: R7 ————p previous flag
RS ————— error status

Characteristics

The "integer flag" input in R6 is in the range 0-3 and sets the shift
lock (for the alpha keys on the alphanumeric keypad) and cursor lock

(for the numeric keypad) as follows:

0 = Both flags reset

.1 = Shift lock on and cursor lock off
2 = Shift lock off and cursor lock on
3 = Both flags set

Note:

The cursor lock condition can also be obtained with thelkey combination
"Control /", while the shift lock with the key combination "Command /".

Errors

L

If there are any errors the status is returned in R5. 1f there are no
errors, a zero will be returned in R5.

8-110 ASSEMBLER LANGUAGE USER GUIDE

2

2

THE M20 SYSTEM CALLS

heS 115 ClearText

Clears a rectangle of text in the current window.

Input/Output Parameters

Input: R10 «——— column (left edge of cleared rectangle)
R11 «—— row (top row of cleared rectangle)
R12 «—— column count (width of rectangle)
R13 «——— row count (height of rectangle)

OQutput: RS ————p error status

Characteristics

ClearText simply clears the specified rectangle to the current back-
ground colour of the window. In a colour system, ClearText always clears
all screen planes in the specified rectangle, which have corresponding
bits set in the Colour Plane Mask parameter (see ScrollText SC 116).

In this system call, the Colour Plane Mask parameter is set to 7, so
that a complete clear of the rectangle is done, no matter what system
this is executed on.

The range of a column parameter is from 1 to the width of the
current window, and the range of a row parameter is from 1 to the number
of text lines in-a window, i.e.

1< = Column + Column_count -1<= width of window,'and

1<= Row + Row count - 1<= number of text lines in the window

Errors

The ranges of the above parameters are checked. An error is returned in
R5 if the specified rectangles are not entirely within the window.

O 114

116 ScrollText

Copies-a rectangle-of. test characters in a-window~to another position.of
the same window.

Input/Output Parameters

Input: R6 «———colour plane mask

R7 <«——1logical function (0 for normal copy)

R8 <————source column (left edge of source)

R9 <«———source row (top row of source)

R10 «———destination column (left edge of destination)
R11 e————cdestination row (top row of destination)

R12 «——column count (width of rectangle)

R13 «———row count (height of rectangle)

OQutput: RS ———» error status

Characteristics

ScrollText is used for copying a rectangular block of text from one
portion of a screen window to another. (Note that this cannot be used
for copying from one window to another window.) The source and
destination areas may overlap; in this case, copying is done in such
a way that the overlapped area is copied last: the destination will
be a true copy of the the original source, even though the source has
been overwritten.

The values for the 'logical function" input in R7 are:

0 Copy text
1 XOR (exclusive OR) source with destination
2 AND source with destination
3 COM: Complement destination, no copy
4 OR source with destination

5 INVERT: Complement text, copy

The 'colour plane mask' parameter determines which memory planes are

8-112 ASSEMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM.CALLS

affected by the ScrollText call. It only applies when logical functions
1, 3, or 5 are used, otherwise this parameter is ignored, and its value
is preserved. This contains a bit for each memory plane to be written
in: bit O denotes the first 16K block of screen memory, bit 1 denotes
the second 16K block (in- 4-colour and 8-colour sytems), and bit 2

denotes the third block used in the B-colour system. Bits higher than

appropriate for a particular system will be ignored: for example, bits 1
and 2 will be ignored on monochrome hardware.

Any program which does not make use of colour (i.e. which only uses
colours 0 and 1) should use the value 1 for the "colour plane mask
parameter'; this will prevent writing in:the second (or third) screen
planes of a colour system, if the XOR or COM functions are used.

On the other hand, programs which do use colours other than 0 and 1
should use values 3 (bits O and 1) for a 4-colour system, and 7 (bits O,
1, and 2) for an 8-colour system (actually, 7 may be used for all sys-
tems, in this case, the apparent effect of certain logical functions
will vary between different types of display). -

1f the;loéical,function is 0, 2 or 4, ScrollText will obey the same
convention regarding the number of screen memory planes written as the
screen text and graphics driver: e.g. if the foreground colour is
1 and the background is 0, only the first screen memory plane will be
written in. . v

The range of a column parameter is from 1 to the width of the
current window, and the range of a row parameter is from 1 to the number
of text lines in a window, i.e. : .

1 <= Column + Column_count -1<= width of window, and

1<= Row + Row_count - 1<= number of text lines in the window.

Errors

The ranges of the above parameters are checked by these system calls;
an error is returned if the specified rectangles are not entirely within
the window. No clipping is done the rectangles specified must be
entirely within the window.

R8.11%

120 New

Allocates a block of bytes from heap.
Input/Output Parameters

Input: RR8 4——address of block pointer
R10 <——1length -

Output: : RS —— error status
@RR8 —— block pointer

Characteristics

This call allocates a block of bytes from the heap, returning a pointer
to the location of the first byte of the block. The input '"address of
block pointer" is the address of a long (4byte) memory location, that
is, the address where 'New' stores the block. The input 'length' is the
number of bytes to be allocated.

EXAMPLE :

addptr DSL 1
length ASSIGN ...
LDA RR8,addptr
LD R10,#length
sC #120

LDL RR6,@RR8

In this example, RR6 contains the block starting address. if the block
cannot be allocated, RR6 contains a nil (hex FFFFFFFF) pointer (Note:
nil = -1), but no error will be returned in RS.

grrors

If there are any errors, tae status code is returned in RS. 1f there are
no errors, a zero (0) is returned.

8-114 ASSEMBLER LANGUAGE USER GUIDE

C

THE M20 SYSTEM CALLS

121 BrandNewAbsolute

Allocates a block at a specified address.

Input/Output Parameters

Input: RR8 <—— address of block pointér
R10 <4—— length
@RR8 ¢+—— block pointer

Qutput: RS ——>»error status

Chhracteristi¢;‘

This call is similar to a New (SC 120) except that the block allocated
is at a specified address.

The input address (RR8) is the address of a long (4-byte) memory loca- -
tion; this is where the desired address is stored. The input to R10 is
the number of bytes requested, and must be even.

On exit from this call, the memory location that RR8 points to contains
a 32-bit address of the actual block allocated. 1f the space requested
is not available, a nil-pointer (hex FFFFFFF) 1is returned in the memory
location pointed to by RR8, but no error is returned in R5.

1t is important to remember that RR8 does not contain the memory
address specified.

Errors

1f there are any errors, the status code is returned in R5. If there are
no errors, a zero (0) is returned.

O 11K

122 NewlLargestBlock

Allocates the largest block of bytes from heap.
Input/Oufput Parameters

Input: RR8 <—— address of block pointer

Output: ' @RR8 ——» block pointer
R10 ——# length
RS ———perror status

Characteristics

This procedure allocates a the largest free block in memory, returning a
pointer to the location of the first byte of the block and the length of
that block.

The input pointer should be the address of a long (4byte) memory loca-
tion; that is the address where 'NewlLargestBlock' stores the block start
address.

If the block cannot be allocated, RR8 contains a nil (hex FFFFFFFF)

pointer but no error is returned in RS5.

¢
gErrors e

1f there are any errors, the status code 1is returned in RS. 1f
there are no errors, a zero (0) is returned.

8-116 ASSZMBLER LANGUAGE USER GUIDE

THE M20 SYSTEM CALLS

123 StickyNew

Allocates a block of oytes from heap that remains allocated after the
program doing this call terminates.

Input/Output Parameters

Input: RR8 <4——address of block pointer
R10 <«——1length

Output: @RR8 —— block pointer
RS ——perror status

Characteristics

This call allocates a block of bytes from the heap, returning a pointer
to the location of the first byte of the block.

The input "address of block pointer" is the address of a long (4byte)
memory - location, that is, the address where the block start address is

stored. The input 'length' is the number of bytes to be allocated.
This call is just like NewAnySegment, but is used for those rare occa-

sions when the allocated block is not to be de-allocated when the 'cal-
ling" program terminates.

Errors

If there are any errors, the status code is returned in RS. 1f there are
no errors, a zero (0) is returned.

'~ APPENDICES

A. RESERVED WORDS

RESERVED WORDS

The following .symbols are recognized for their specific meanings by the
assembler. They cannot be used by the programmer as variable names. 1f
the programmer uses one of these symbols by mistake, the assembler flags
its occurrence with error 86, Multiple Definition.

Reserved Word Use

ADC mnemonic
ADCB mnemonic-
ADD) mnemonic
ADDB mnemonic
ADDL mnemonic
AND mnemonic
ANDB , mnemonic
ASSIGN directive o
AT directive o
BIT , mnemonic
B1TB mnemonic
c condition code
CALL mnemonic
CALR mnemonic
CLR mnemonic
CLRB mnemonic
coM mnemonic
COoMB mnemonic
COMFLG mnemonic
COMMON directive
cpP mnemonic
cPB mnemonic
CPD mnemonic
CPDB mnemonic
CPDR mnemonic
CPDRB mnemonic
CcP1 mnemonic
CP1B mnemonic
CPIR mnemonic
CP1RB mnemonic
CPL mnemonic
CPSD mnemonic
cPSDB mnemonic
CPSDR mnemonic
CPSDRB mnemonic
cPsSl mnemonic
CPsS1B mremonic
CPSIR mnemonic
CPSIRB mnemonic
DAB mnemonic
DBINZ mnemonic
DD directive

Reserved Word

Use

DDB
pOL
DEC
DECB
b1
D1V
DIVL
DINZ
0S
DSB
DSL
E1
ENDIF
EQ

EX
EXB
EXTERNAL
EXTS.
EXTS8
EXTSL
FALSE

INC
INCB
INCLUDE
IND
INDB
INDR
INDRB
INT
INIB
INIR
INIRB
IRET
JP

JR

LD
LDA
LDAR
LDB
LDCTL
LDCTLB
LDD
LDDB
LDDR

A-2

directive
directive
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
directive
directive
directive
mnemonic
directive
condition code
mnemonic
mnemonic
directive
mnemonic
mnemonic
mnemonic
condition code
control word
control word
condition code
directive
condition code
mnemonic
directive
mnemonic
mnemonic
mnemonic
mnemonic
directive
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic-
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mhnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic

ASSEMBLER LANGUAGE USER GUIDE

RESERVED WORDS

Reserved Word Use »
LDDRB mnemonic

LD1 mnemonic

LDIB mnemonic

LDIR © mnemonic
_LDIRB mnemonic

LDK mnemonic

LbL mnemonic

LDM mnemonic

LDPS mnemonic

LDR mnemonic

LDRB mnemonic

LDRL mnemonic

LE condition code
LISTOFF directive
LISTON directive

LY condition code
MBLT mnemonic

Ml condition code
MODULE directive

MREQ mnemonic

MRES mnemonic

MSET mnemonic

MULT mnemonic

MULTL mnemonic

NC condition code
NE condition code
NEG mnemonic

NEGB mnemonic
NONSEGMENTED module type
NOP mnemonic

NOV condition code
NSP control word
NSPOFF control word
NSPSEG control word
NV1 interrupt

NZ condition code
OR mnemonic

ORB mnemonic

OTDR mnemonic

OTDRB mnemonic

OTIR mnemonic

OT1RB mnemonic

ouTt mnemonic

ouTB mnemonic

ouUTD mnemonic

ouTDB mnemonic

OUT1 mnemonic

ouTIB mnemonic

ov condition code
P flag

PAGE directive

PE condition code
PL condition code

Reserved Word

Use

PO
POP
POPL
PSAP
PSAPOFF
PSAPSEG
PUSH
PUSHL
RO

R1

R10

R11

R12

R13
R14

R15 .
R2

R3

R4

RS

REFRESH
RES
RESB
RESFLG
RET
RHO
RH1
RH2
RH3
RH4
RH5
RH6
RH7
RL
RLO
RL1
RLZ
RL3
RL4
RLS
RL6
RL7
RLB
RLC
RLCB
RLDB
RQO
RQ12
RQ4

condition code
mnemonic
mnemonic
control word
control word
control word
mnemonic
mnemonic

word register
word register
word register
word register
word register
word register
word register
word register
word register
word register
word register
word register
word register
word register
word register
word register
control word
mnemonic
mnemonic
mnemonic
mnemonic

byte register
byte register
byte register
byte register
byte register
byte register
byte register
byte register
mnemonic

byte register
byte register
byte register
byte register
byte register
byte register
byte register
byte register
mnemonic
mnemonic
mnemonic
mnemonic

quad register
quad register
quad register

ASSEMBLER LANGUAGE USER GUIDE

RESERVED WORDS

Reserved Word Use

RQ8 quad register
RR mnemonic

RRO long register
- RR10 long register
RR12 long register
RR14 long register
RR2 long register
RR4 long register
RR6 long register
RRS long register
RRB ~ mnemonic

RRC mnemonic

RRCB mnemonic

RRDB mnemonic

S flag

sS8C mnemonic

SBCB mnemonic

SC mnemonic

SDA g mnemonic

SDAB mnemonic

SDAL mnemonic

SDL mnemonic
SDLB mnemonic

SDLL mnemonic
SECTION directive
SEGMENTED module type
SET mnemonic
SETB mnemonic
SETFLG mnemonic

SIN mnemonic

SINB mnemonic

SIND mnemonic
SINDB mnemonic
SINDR mnemonic
SINDRB mnemonic

SINI mnemonic
SINIB mnemonic
‘SINIR mnemonic
SINIRB mnemonic

SLA mnemonic

SLAB mnemonic

SLAL mnemonic

SLL mnemonic

SLLB mnemonic
StLLL mnemonic
SOTDR mnemonic
SOTDRB mnemonic
SOTIR mnemonic
SOTIRB mnemonic

SOuUT mnemonic
SouTB mnemonic
SOUTD mnemonic
SOUT1 mnemonic
SOUTIB mnemonic

Reserved Word

Use

SRA
SRAB
SRAL
SRL
SRLB
SRLL
sus
suBs
SuBL
TCC
TCCB
TEMPLATE
TEST
TESTB
TESTL
TITLE
TRDB
TRORB
TR1B
TRIRB
TRTDB
TRTDRB
TRTIB
TRTIRB
TRUE
TSET
TSETB
UGE
ueT
ULE
ULT

v

Vi
XOR
XORB
Z

A-6

mnemonic
mnemonic
mnemonic
mnemonic

mnemonic

mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic

directive

mnemonic
mnemonic
mnemonic
directive
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
mnemonic
condition
mnemonic
mnemonic
condition
condition
condition
condition

- flag

interrupt
mnemonic
mnemonic
condition

code

code
code
code
code

code

ASSEMBLER LANGUAGE USER GUIDE

B. ASM ERRORS

ASM ERRORS

The following is a complete list of errors that can be returned by the
ASM command, during assembly time. The errors refer to source file line
numbers in the context of the program.

Bad statement errors:

Error Number

Meaning

-t e b :
WN=200oo~NOULLWN=

- Bad Line

Bad Label/Mnemonic Field or Context

‘|1 Bad 1F/ENDIF

Bad Directive or Context
Bad Labelled Directive or Context
Bad Module/Section or Context

Bad- Argument or Context

Bad Byte-Data Context
Bad Word-Data Context
Bad Long-Data Context
Source line truncated
1Ff not terminated by ENDIF
ENDIF with no matching 1F

Bad Character, ldentifier or Constant:

Error Number

Meaning

14
15

16
17
18
19
20
21
22
23

ldentifier Too Long
Single-Quoted Text Too Long or
bad use of % _

Quote Not Closed or bad use of %
1llegal Number

Illegal Character

I1legal base specification in number
Il1legal Keyword

End of Line in number

Keyword in label field

Mnemonic not in mnemonic field

Bad Expression:

Error Number : -Meaning-
24 Bad Parenthesis Use
25 Segment/Section/External mismatch
in relational expression
26 11legal relational operands
27 ; I1legal Type Combination in Expression
28 11legal operator in address term
29 Segment/Section/External mismatch in
additive term
30 1llegal additive operand
AN Address type mismatch in additive term
32 I1legal multiplicative operand
"33 : l1llegal unary operand v a
34 Absolute segment number out of range "
35 Illegal type in segment/offset of
: N absolute address

Bad Operand:
Error Number Meaning
38 Bad Use of Short Address
39 v Bad Argument or Context
40 Invalid Address Register
41 .0D, DDB or DDL operand, Wrong Size
42 : Index Register is Invalid
43 OD Repeat Nesting Error g
44 Wrong Register Type
45 Indirect Register is Zero
46 Immediate Operand Wrong Size
47 Base Register zero not allowed
48 Index Register zero not allowed
49 ‘ Even address required
50 Invalid Relative Address
51 Relative out of Range
52 Invalid Short Extraction
53 Absolute Address too Large for Short
Extraction
54 Invalid Segment or Offset Extraction
55 Invalid Small Immediate
56 Extra Operands Ignored
57 I1legal Operand
58 Truncation Warning

B-2 ASSEMBLER LANGUAGE USER GUIDE

S
@

e
q
I

ASM_ ERRORS

59

61
62

64
65
66 .

Section or Module Name out of place
Invalid Addrress ‘
DD overflows 64K

‘No prior Section for SECTION *

Page size specified is too small
Undefined or non-numeric page size
Unexpected end of line

Bad Operator/Value

Undefined Symbol:

Error Number

Meaning

70

Undefined Symbol (Second pass only)

Bad Location or Definition:

Error Number

Meaning

72
73
74
75

Symbol not defined until second pass

Symbol redefined in second pass

Location Counter overflowed 64K

Warning: Address incremented to even
value

first Pass Errors:

Error Number

Meaning

86
88
89

90

Multiple Definition

1F Value Not Defined

Invalid ATparm, DSparm or DD Repeat
Count

Undefined ATparm, DSparm Template Base

or DD

Fatal Errors:

Error- Numiyer~ Meaning -
93 Symbol Table Full - Terminate
94 Unknown Character in file
95 Internal Object Table full
96 : Internal Object Table full
97 . Too many INCLUDEs
98 Binary data file absent or improper

B-4 ASSEMBLER LANGUAGE USER GUIDE

- C. 'FUNCTIONAL LIST OF SYSTEM CALLS

FUNCTIONAL LIST OF SYSTEM CALLS

1. BYTESTREAM CALLS
E° N

LY

Sys tem ,
Name Call Parameter Register
LookByte 9 D1D R8
returned byte RL?
buffer status(00 or FF) RH7
error status R5
GetByte 10 D1D R8
returned byte R7
error status R5
PutByte 1 DID R8
input byte value RL7
error status R5
ReadBytes 12 D1D R8
' input count R9
input ptr to memory RR10
returned count R7
error status R5
WriteBytes 13 DID R8
: input count R9
input ptr to memory RR10
returned count R7
error status RS
ReadlLine 14 DiD) R8
input count R9
input ptr to memory RR10
count returned R6
error status R5
Eof 16 D1D R8
returned status R9
error status RS
ResetByte 18 DID RS
error status RS
. Close 19 D1D R8
error status R5
SetControlByte 20 DID R8
input word number R9
input word R10
error status RS

C-2

System

Name Call Parameter Register
GetStatusByte 21 DID. R8
input word number R9
returned word read R10
error status RS
Openfile 22 D1D : R8
(files) input extent length k6
input mode R7
input file id. length R9
input ptr to addr RR10
error status RS
OpenFile 22 DID R8
(RS-232) error status RS
DSeek 23 DID R8
' input position RR10
error status RS
DGetlLen 24 Dp1D R8
(files) returned length RR10
error status R5
DGetlLen 24 DID R8
(RS-232) returned zero status R10
returned number of bytes R11
error status R5
DGetPosition 25 DID R8
returned position RR10
error status RS
DRemove 26 input length R9
input ptr to name RR10
error status R5
DRename 27 input old address RR6
input old length R8
input new address RR10
input new length R9
error status R5
DDirectory 28 input file id. length R9
input address RR10
error status RS

ASSEMBLER LANGUAGE USER GUIDE

FUNCTIONAL LIST OF SYSTEM CALLS

2. BLOCK TRANSFER CALLS
»

System
Name Call Parameter Register

BSet 29 input n (byte value) RL7
S dnput ptr to memcry - -RR8

input length R10

error status RS

BWSet 30 4 input n (word value) R7
- input ptr to memory " RR8

input length R10

error status RS

BClear 3 input ptr to memory RR8
: S input length ' -R10°

error status RS

BMove .32 input length R7

input ptr to old memory RR8
input ptr to new memory RR10
error status RS

3. STORAGE ALLOCATION CALLS

System
Name Call Parameter Register
NewSameSegment 33 address of block pointer RR8
input length R10
error status RS
returned block pointer @RR8
Dispose 34 address of block pointer RR8
input length R10
error status RS
Hex FFFFFFFF @RR8
MaxSize 99 returned size R8
error status _ RS
NewAbsolute 104 address of block pointer RR8
input length R10
input block pointer @RR8
error status RS

System

Name Call Parameter Register
New 120 address of block pointer RR8
input length R10
" error status RS
returned block pointer @RR8
BrandNewAbsolute 121 address of block pointer RR8
input length R10
input block pointer @RR8
error status RS
NewLargestBlock 122 - " address of block pointer RR8
returned block pointer @RR8
returned length R10 .
error status . R5 -\“fj
Rl
StickyNew 123 address of block pointer RR8 ‘
input length R10
error status R5
returned block pointer @RR8

4. GRAPHICS SYSTEM CALLS

System
Name Call Parameter Register
Cls 35 (no parameters)
ChgCur0 36 input column R8
input row R9 N
error status RS : z
ChgCuri 37 input x | R8
input y R9
ChgCur2 38 input blink rate R8
ChgCur3 39 : input blink rate R8
ChgCur4 40 input ptr to array . RR8
ChgCurs 41 input ptr to array RR8
ReadCur0 42 input ptr to array RR10
-output blink rate R7
output column R8
output row R9
error status RS

ASSEMBLER LANGUAGE USER GUIDE

FUNCTIONAL LIST OF SYSTEM CALLS

System
Name Call Parameter . Register
ReadCur1 43 input ptr to array RR10
output blink rate R7
output x-position R8
output y-position R9
error status R5
SelectCur 44 input select R8
Grfinit 45 output colour flag R8
) . output ptr to m-box RR10
PalatteSet a6 input colour A R8
input colour B R9
input colour C R10
input colour D R11
error status R5
DefineWindow 47 input quadrant ' R8
input position R9
input vert-spacing R10
input horz-spacing R12
output window number R11
error status RS
SelectWindow 48 input window number R8
error status RS
ReadWindow 49 output window number R7
output x-size R8
output y-size R9
output foreground colour R10
output background colour R11
error status RS
ChglWlindow 50 input foreground colour R8
input background colour R9 .
error status R5
CloseWindow 51 input window number R8
ScaleXY 52 input x-position R8
input y-position R9
return_value R10
MapXYC 53 input x-position R8
input y-position R9
MapCXY 54 returned x-position R8
returned y-pasition R9
FetchC 55 returned C-value RR8

System

Name Call Parameter ' Register
StoreC 56 input..C~vaiue~ A RR8 -
UpC 57 (no parameters)

DownC 58 (no parameters)
LeftC 59 (no parameters)
RightC - 60 (no parameters)
SetAtr 61 input colour R8
error status RS
“SetC 62 input operation R8 g;z:
Read(C . 63 returned colour R8
NSetCX - o 64 input hor. line count R8
: input operation R9
NSetCY 65 input .vertical line count R8
input operation R9
NRead 66 | input width (count) R8
input height (count) R9
input ptr to array RR10
always cleared RS
returned addr. of array ©RR10
NWrite 67 input logical function R7
input width (count) R8
input height (count) R9 “
input ptr to array RR10 d
always cleared R5
Pntinit 68 input paint colour R8
input border colour R9
error status RS
TDownC 69 returned check value R8
TupC 70 returned check value R8
ScanL 71 returned count-1 R9
returned margin flag ‘R10
returned painted flag R11

ASSEMBLER LANGUAGE USER GUIDE

FUNCTIONAL LIST OF SYSTEM CALLS

System :
Name Call Parameter . Register
ScanR 72 input maxcount R8
. ' returned C-type RRé6
returned maxcount 'R8
returned count-r R9
returned margin flag R10
returned painted flag R11
CloseAllWindows 113 - (no parameters)
ClearText 115 ~ input column R10
' -~ input row R11
input column count R12
- input row count R13
9 error status RS
‘ScrollText 116 input color plane mask R6
input logical function R7
input source column R8
input source row R9
input destination column R10
input destination row R11
input column count R12
input row count R13
‘ error status RS

5. TIME AND DATE CALLS

System
Name Call Parameter Register
\;) SetTime 73 input addr of data RR8
input length of string R10
error status RS
SetDate 74 input addr of data RR8
input length of string R10
error status RS
GetTime 75 input addr of data RR8
input length of string R10
error status RS
GetDate 76 input addr of data RR8
input length of string R10
error status R5

6. USER CODE CALLS

c-8

System
Name Call Parameter Register
CallUser 77 input pointer RR14
(system stack has a
pointer to 2-character
symbol, list of parameter
pointers, number of
parameters)
" error status RS
7. 1EEE-488 CALLS } ‘g
o .. .System
Name Call Parameter Register
1IB5rQ0 78 error status RS
1BSrQ1 79 error status R5
1BPoll 80 input talker addr R8
returned ptr to status RR10
error status RS
I815et 81 input operand R8
error status RS
1BRSet 82 error status R5
IBPrnt 83 input buffer addr RR6
input listener addr R8
input buffer length R9
input delimiter R10
error status R5
1BWByt 84 input numval addr RRé
input comlist addr R8
input numval length R9
input comlist addr RR10
error status RS
1BInpt 85 input buffer length R7
input talker addr R8
input listener addr R9
input buffer addr RR10
returned buffer length R7
error status RS

ASSEMBLER LANGUAGE USER GUIDE

FUNCTIONAL L1IST OF SYSTEM CALLS

‘ Name Call

System
Parameter Register
IBLinpt 86 input buffer length R7
input talker addr R8
input listener addr R9
input buffer addr RR10
returned buffer length R7
error status RS
IBRByt 87 input buffer addr RR6
input comlist length R8
input buffer length R9
input comlist addr RR10
error status RS
8. MISCELLANEOUS SYSTEM CALLS
System
Name Call Parameter Register -
. : Error 88 input parameter num RH5
: input error code RL5
DString 89 input addr of string RR12
error status R5
CrLf 90 error status RS
DHexByte 91 input byte R12
g error status RS
' DHex 92 input word R12
error status R5
DHexLong 93 input long word RR12
error status RS
DNumi 94 input integer R12
input field width R13
error status RS
- DLong 95 input long integer RR12
error status R5
DisectName 96 input string length R9
‘ input string addr RR10
input names record addr RR12
_ error status RS
‘ returned volume number R7
_ returned names record @RR12

Cc-9

System

Name Call Parameter Register
CheckVolume 97 } error stasus. RS.
Search 98 input drive R6
input search mode R7
input length - R9
input file pointer RR10
input file name pointer RR12
returned length R9
returned file pointer RR10
modified RR12
_error status R5
SetVol 102 input volume number R7
error status RS .
StringlLen 105 input pointer RR12 ﬁ‘::
‘ returned length R7 -
error status RS
DiskFree 106 input volume number R7
returned num of sectors RR10
error status , RS
BootSystem 107 error status R5
SetSysSeg 108 error status - R5
SearchDevTab 109 input ptr device name RR10
input dev name length R9
returned entry number RLS
returned device type RH5
returned ptr table entry RR8
error status RS
KbSetLock 114 input integer flag ' Ré6 &
returned previous state R7
error status RS

C-10 ASSEMBLER LANGUAGE USER GUIDE

D. DEVICE ID (DID) ASSIGNMENTS

3

DEVICE 1D (DID) ASSIGNMENTS

The following table describes the allocation of DID's to various func-
tions. Some of these D1D's represent devices which are always open; oth-
ers are assigned to files or screen windows by system calls.

1 BASIC files

2 .

15 .

17 Console

18 Printer

19 Communications RS-232-C

20 System Disk Files (Not accessible to BASIC)
24 .

25 Com1 (RS-232-C)

26 Com2 (RS-232-C)

D-1

E. SYSTEM ERRORS

SYSTEM ERRORS

ERROR CODE

ERROR Error code in hexadecimal
(Decimal) Description (returned,\in R5)
0 no error 00
3 invalid termination of 03
input bytestream
7 out of memory 07
9 invalid listener or 09
talker address
10 no 1EEE board 0A
11 »fime out error 08
13 bad data type oD
35 window does not exist 23
36 window create error 24
53 file not found 35
54 - bad file open mode 36
55 file already open 37
57 disk i/o 39
58 file already exists 3A
60 disk not initialized 3C
61 disk filled 3D
62 end of file 3E

E-1

63

(4l
73
75

76

78
79
90
N
92
96
99
101
106
108
110

111

E-2

bad record number

bad~file name

volume name not found
invalid yolume number
volume not enébled
password not valid |
illegal disk change
write protected file
copy protected file
error in parameter
too may parameters

command not found

 file not open

bad load file

time or date

function key already
exists
call-user

time-out

invalid device

- 3F

47
49
48

4C

4F
5A
58
5C
60
63
65
6A
6C
6E

. 6F

ASSEMBLER LANGUAGE USER GUIDE

32

F. M20 1/0 PORT ADDRESSES

M20 1/0 PORT ADDRESSES

Port Addresses are here listed in 4 groups:
1. Main Motherboard Ports
2. 1EEE Expansion Board Ports

3. Hard Disk Unit Expansion Board Ports

4, RS-232-C Twin Expansion Board Ports

MAIN MOTHERBOARD PORTS:

DEVICE ADDRESS COMMENT
FDC %001 Status/Command
- %003 Track

%005 Sector

%007 Data
TTL Latch %021
CRTC (Video) %061 Address

%063 Data
8255A %081 Port A
(Centronics %083 Port B
%arallel %085 Port C
Interface) %087 Control
8251 %0A1 Data
(Keyboard) %0A3 Status/Control
8251 %0C1 Data
(TTY/PRTR) %0C3 Status/Control

»

8253 %121 Ctr 0 (TTY/printer timing)
%123 Crt 1 (Keyboard timing)
%125 Crt 2 (Real time clock-NV1)
%127 Control register

8259 (Master) %140-1
%142-3

REG FILE %181 Loc 1

(4 colours) %183 Loc 2
%185) Loc 3
%187 Loc 4

1EEE EXPANSION BOARD PORTS:

DEVICE ADDRESS COMMENT

8292 %101 A0 =0

(6P1B CTLER) %103 A0 =1

827 %161 Data in / Data out)

(GP1B Talker/ %163 Interrupt status / Mask 1

Listener) %165 Interrupt status / Mask 2
%167 Serial poll status / Mode
%169 Address status / Mode)
%168 Cmd pass through / Aux mode) ,
%16D Address 0 / Address 0/1
%16F Address 1 / EOS

8259 (1EEE) %1A0
%1A2

F-2 ASSEMBLER LANGUAGE USER GUIDE

M20 1/0 PORT ADDRESSES

HARD DISK UNIT EXPANSION BOARD PORTS:

DEVICE ADDRESS COMMENT

cyl hi %1cb cylinder address high register

cyl lo %1c9 cylinder address low register

head %1cd head select register (also
contains drive select and bytes
per sector)

sector %1c7 sector for operation

command %l1cf command status register address

error %1c3 contains error information

wr prcomp %1c3 value * 4 = cylinder to start

- write precompensation

data %1¢1 data port to the interface board

sec_cnt %1ch sector count for the format
command .

RS-232-C TWIN EXPANSION BOARD PORTS

DEVICE ADDRESS COMMENT
for the modem interface
modem_prt %881 modem status port
for the interrupt sub-system
exp_int %841 8259 interrupt command
register
%843 8259 data register
for the serial ports
tp 0 %803 8251a 0 control port
%801 8257a 0 data port
tp 1 %823 8251a 1 control port
%821 8251a 1 data port
exp_baud %867 8253 control port
%861 8253 out O register
%863 8253 out 1 register
%865 8253 out 3 register

G. MAILBOX

MAILBOX

A mailbox area (8 bytes), used by the 1EEE driver, is declared globally
by PC0S. The first 6 bytes comprise the array "IEEE"; the next byte is
the flag "srq 488" (see also section on 1EEE ¢alls and system calls #78
through #87). The next byte indicates which carriage return key, /s1/,
/S2/ or the standard /CR/, was pressed last (it should be noted that a

zero is returned for any key except /S1/ or /S2/).

' On calling Grflnit (SC 45), the interpreter will be passed the address

of this area in RR10.
Format of Mailbox Area

bytes description

0-5 - “IEEE' Array; values set by 1EEE driver
, ~' for use by BASIC interpreter.

6 ' ‘" srq_488 " flag; value set by IEEE
interrupt service routine " ibsrq92 ",
tested by the BASIC interpreter. This
indicates that a service request has’
been received.

7 S1 and S2 key depression flag. Set in
keyboard driver; (0 = neither key de-
pressed, 1 =/S1/ depressed, 2 =/52/ de-
pressed)

H. M20 - RS-232-C DEVICE PARAMETER TABLE

M20 - RS-232-C DEVICE PARAMETER TABLE

This appeandix details the structure of the Device Parameter Table used
by System Calls 20 and 21. These system calls are used for reading and
writing device parameters for devices connected to the RS-232-C inter-
faces. ' . '

A knowledge of the hardware in question 1is useful for a deeper

comprehension of this appendix (see M20 hardware literature).

WORD NUMBER DESCRIPTION

0-1 Ring buffer address (long word)
2 Ring buffer input address (word)
3 Ring buffer output address (word)
4 Ring buffer count (word)
5 Ring buffer size (word)
6 75% of ring buffer size (word)
7 - 50% of ring buffer size (word)
8 8251A USART control port address (word)
9 8251A USART state and error flags (word)
10 8251A USART time out for data output (word)
11 (high) 8251A USART mode (byte)
11 (low) 8253 timer command (byte)
12 8253 timer control port address (word)
13 8253 timer baudrate data port address (word)
14 8253 timer baud rate count (word)
15 8259A P1C port A address (word)
16 8259A P1C SEQO1 command word (word)
17 8259A PIC - master interrupt mask bit’ (word)
18 8259A PIC - slave interrupt mask bit (word)

Word numbers 0 to 7 contain the state of the ring buffer. Words 8 to 1
(high) contain information relative to the 8251A (Programmable Communi-
cation lnterface).

Word 8 contains the control port address. This can assume the following
values:

%00C3 : USART motherboard control port.
%0803 : USART expansion board 1 control port.

%0823 : USART expansion board 2 control port.

H-1

Word 9 represents the status and the error flags for the 8251 and

organised in the ‘ollowing way:

‘h

is

STATUS

BIT POSITION

LEGAL VALUES

MEANING

Duplex mode

15

full echoing of all
input
No echoing of input

(reserved)

14

Q] o

{not used)

Framing
Error

13

-

a valid stop bit has
not been detected at.
the end of each

character. (Reported

_ from 8251A)

No Framing Error

Overrun
. Error

© 12

a character has not
been read before the
next one becomes
available. (Reported
from B251A)

No Overrun Error

Parity
Error

1

a change in parity
value has been
detected. (Reported
from 8251A)

No Parity Error

Timeout
Error

10

a timeout has occured
while waiting for the
Transmit Ready line
on the 8251A

No Timeout Error

Memory
Error

driver failed to open
buffer - no Open Port
call or insufficient
memory.

No Memory Error

Buf fer
grror

interrupt routine
tried to overwrite
the buffer.

No Buffer Error

H-2

ASSEMBLER LANGUAGE USER GUIDE

M20 - RS-232-C DEVICE PARAMETER TABLE

STATUS

BIT POSITION

LEGAL VALUES

MEANING

(reserved)

(not used)

free-running
protocol

free~-running protocol,
Handshake protocol
using XON/XOFF

XOF 7 /XON
Flag (M20
previously
acted as
trans-
mitter)

XOFF character, sent
in previous trans-
mission.

Buffer is 75% full.
XOFF is sent from
M20 i.e. other sender
should stop.

XON character, sent
in previous trans-
mission.

Input buffer is ready
to receive characters
(default state.) XON
is sent from M20 i.e.
other sender should
start again.

Hardware
State

hardware present and
B8259A passed interrupt
mask test.

No hardware or failed
test

XOFF /XON
Flag (M20
acts as
receiver)

XOFF character, de-
tected in current
reception.

XOFF character is
received from outside.
No characters will be
transmitted.

XON character, de-
tected in current
reception.

XON received from
outside. Characters
will be transmitted
(default state).

(reserved)

(not used)

(reserved)

(not used)

(reserved)

(not used)

Word 10 contains the time-out value for the transmission of data.

The high byte in word 11 is the 8251A Mode byte and is described below:

S$2 S1 EP PEN L2 L1 B2 81

Number of Stop Bits: 2 S5
- ' 0 1 1 stop bit
1 0 1.5 stop bits a
1 1 2 stop bits (default) - '
0 0 ILLEGAL ‘
Even Parity/ : EP PEN
Parity Enable: '
. ' 0 0 Disable Parity/0dd Parity (default)
0 1 Enable Parity/0Odd Parity
1 1 Enable Parity/Even Parity
1 0 Disable Parity/Even Parity
Character Length: L2 L1 :
0 0 5 Data bits
0 1 6 Data bits
1 0 7 Data bits ‘ (default)
1 1 8 Data bits
Baud Rate Factor: B2 B1 %
1 0 Asynchronous Mode 16 x (default)
0 0 Synchronous Mode
0 1 Asynchronous Mode 1 «x
1 1 Asynchronous Mode 64 x

The low byte in word 11, and words 12 to 14 concern the 8253 timer (Pro-
grammable interval timer). The low byte in word 11 is the 8253 command
byte described below:

7 6 5 4 3 2 1 g
SC1 scd RL1 RLY M2 M1 Mg BCD

H-4 : ASSEMBLER LANGUAGE USER GUIDE

M20 - RS-232-C DEVICE PARAMETER TABLE

Counter Select:

Read/Load
Instruction:

Mode:

4 BCD's/
Binary
Word:

- - OO0

)
w00
-
o)
o

co N

0 Select Counter 0
1 Select Counter 1
0 Select Counter 2
1 ILLEGAL

L
0 Counter Latching Operation

1 Read/Load most sig. byte only (msb)
0 Read/Load least sig. byte only (1sb)
1 Read/Load 1lsb first, then msb

-

Mode
Mode

M

0 Interrupt on Terminal Count
1

0 Mode

1

0

1

Programmable One-Shot

Rate Generator

Square Wave Rate Generator
Software Triggered Strobe
Hardware Triggered Strobe

Mode
Mode
Mode

OCO= 20032
nmbhwmn-—-20

Binary Counter (16 bits)
BCD Counter (4 decades * 4 bits/
decade)

Word 12 contains the 8253 pontrol port address; this can be either

%0127
%0867

motherboa

expansion

rd timer control port

board timer control port

Word 13 contains a channel address of an 8253 timer. The address can bde
one of the following:

%0121
%0123
%0125
%0861

%0863

%0865

channel 0
channel 1
channel 2
channel O
channel 1

channel 2

motherboard timer
motherboard timer
motherboard timer
expansion board timer
expansion board timer

expansion board timer

H-5

Word 14 sets the transmission baud rate as follows:

1538 baud count for baud rate of 50
699 baud count for baud~“rate of 110
256 baud count for baud rate of 300)
128 baud count for baud rate of 600

64 baud count for baud rate of 1200
32 baud count for baud rate of 2400
16 baud count for baud rate of 4800
8 baud count for baud rate of 9600
4 baud count for baud rate of 19200

Word 15 contains the 8259 control port address (Programmable Interrupt
Controller (PIC)). These can be:

%0140 mother board PIC control port A address

-%0840 expansion board P1C control port A address
Word 16 contains the SEOL (Specific End Of Interrupt) command to be
issued before exiting the interrupt routine. The SEO1 is calculated
using the formula:

SE01 = %C0 + (2* IRn)

where IRn is an interrupt routine number from 0 - 7.

The RS-232 SEO1's are the following:

%00C6 master 8259A PIC SEO1 for IR3 (tty mother)
%00CE master 8259A P1C SEOI for IR7 (expansion)
%00C0 slave 8259A PIC SEO1 for IR0 (port 1)
%00C4 slave 8259A P1C SEOI for IR2 (port 2)

H-6 ' ASSEMBLER LANGUAGE USEZR GUIDE

M20 - RS-232-C DEVICE PARAMETER TABLE

I

The following table gives all the M20 interrupt assignments.

Master B259A P1C Mother Board Interrupt Assignments:

IRO: Floppy Disc Controller

IR1: External Daisy Chain Request (potentially a slave 8259A)

1R2: External Daisy Chain Request (potentially a slave 8259A)

IR3: RxD: DTE TTY/Remote 8251A ‘

IR4: RxD: keyboard 8251A

IR5: TxD: DTE/TTY/Remote 8251A (not used)

IR6: Parallel 8255A PCO or PC3

IR7: External Daisy Chain Request (used w/ RS-232 Expansion Board)

Slave 8259A PIC Expansion Board Interrupt Assignments:

1RO: RxD: DTE/TTY port 1/Remote 8251A

1R1: TxD: DTE/TTY port 1/Remote 8251A - (not used)
1R2: RxD DTE/TTY .port 2/Remote 8251A .

IR3: TxD: DTE/TTY port 2/Remote 8251A (not used)
IR4: grounded (not used)

1RS: grounded (not used)

1R6: grounded (not used)

Words 17 and 18 contain the masks relative to the interrupt levels.
mask values are the following:

The

82594 PIC Interrrupt Assignments (by bit with data bus shift):

%0100 IR7 interrupt mask
%0080 IRS6 interrupt mask
%0040 IRS interrupt mask
%0020 IR4 interrupt mask
%0010 IR3 interrupt mask
%0008 IR2 interrupt mask
%0004 IR1 interrupt mask
%0002 1RO interrupt mask

I ASCIl CODE

ASCI1 CODE

ASC11 CODE ‘ : -

o
-

This table shows decimal, hexadecimal, and binary representation of the
ASC11 code. (Boxed characters are different on national keyboards.)

o
o

c | d4d]aib]| ¢ alb|] ¢© ja{bj|j ¢

128 | 80 | 10000000 § 192] CO | 11000000
129 { 81 | 10000001 § 193] C1 | 11000001
130 | 82 | 10000010 | 194 C2 | 11000010
131 | 83 | 10000011 | 195] C3 | 11000011
132 | 84 | 10000100 { 196 | C4 | 31000100
13) {85 10000101 | 197| C3 | 11000101
134 | 86 [10000110 | 198] Cé | 11000110
133 | 87 | 10000111 | 199 €7 | 11000111
136] 88 | 10001000 § 200| C8 | 1100 1000
137 | 89 | 10001001 | 201 | C9 | 11001001
138 | 8A { 10001010 | 202 CA | 11001010
139 | 8B | 10001011 § 203} CB | 11001081
140 | 8C | 10001100 § 204 1100 1100
141] 8D { 10001101 | 203 11001101
142) 8E | 10001110 | 206| CE| 11001110
143 | 8F | 10001111 § 207] CF{ 11001111

00 | 00000000 § NUL | 64 | 40 | 01000000
01 | 00000001 | SOH | 63 | 41] 01000001
02] 00000010 | STX | 66 | 42 | 01000010
03 | ooo0o011 | ETX | 67] 43 | 01000011
04 | ovvo0i00 | EQT | 68 | 44 | 01000100
00000101 | ENQ{ 69 | 43 | 0100010}
06 | 00000110 | ACK | 70 | 46 | 01000110
07 J 0000011l | BEL } 71 { 47 | 01000011
08 | 00001000) BS 72| 48 | 01001000
09 { 00001001 | HT 73| 49 | 0100 1001
10 | oA joooototo] LF'J 74 | 4A | 01001010
1 oB | 00001011 | VT 73 | 4B | 01001011
12 | oC | 0000 1100 FF 76 | 4C { 01001100
1y | oD ooooit01| CR 77 | 4D } 01001101
14 oE | 00001110} SO 78 | 4E | 01001110
15 | OF { o000 1111 S1 79 | 4F] 01001111

0B N s w N - O
3
-

g8

144] 90 | 10010000 | 208{ DO | 11010000
143 [91]| 10010001 | 209| D1 | 11010001
146 | 92 | 10010010 | 210] D2{ 11010010
147 93 | 10010081 | 211} D3| 11010011
1481 94 | 10010100 | 212] D4 | 11010100
1491 95 | 1ooto101 § 213| D3} 11010101
150 | 96 | 100510110 | 214] D6 | 11010110
151] 97 { 10010111 } 215{ D7 | 11010111
152] 98 | 10011000 { 216| D8 | 11011000
1531 99 | 100t 100t | 217| D9} t1011001
1354 9A | 10011010 § 218] DA{ 11011040
155{ 98B | 10011011 { 219} DB{ 11011011
156 | 9C | 10011100 | 220) DC| 11011100
157 9D § 10014101 | 221| DD} 110i 1104
158] 9€ | 1001 1110 | 222{ DE{ 11011110
i39| 9F [1001 1101] 223} DF| 11011141

16 10 | 00010000} DLE | 80| 30 | 01010000
17 11 | 00010001 | DCy 81| 51 | 0101 0001
18 12 | 000100101 DG 82§ 52 | 01010010
19 13 | ocoi o011 | DG, 831 33 } 01010011
20 14 { 00010100 | DCy 84| 34 | 01010100
P 15 | coor10t01 | NAK | 85§ 53 | 01010101
22 16 { 00010110 | SYN | 86 36 } 01010110
23 17 | ooo10111 | ETB | 87| 57 | 0j01 0111
24 18 | voo1 1000 { CAN | 88| 58 | 0101 1000
23 19 | 0001 100t | EM 89} 39 | 010t 1001
26 | 1A] oool1010| SUB | 90 SA | 01011010
2 1B | 00011011] ESC 91| 5B | 0101 1011
28 1C { o001 (100} FS 92| 5C | o101 1100
29 tD | ooy 1101 | GS 93 { 5D | 0101 1101
30 | 1E [o001 1110 | RS 941 3E { 01011110
3 IF § ovot 1111 us 9s{ SF | oio1 111t

A
B

c
D
E
F
G
H
1

}

K
L
M
N
)
3
Q
R
s
T
u
v
w
x
¥
z

L]

33 1 2t | 00100001 ! 97| 61 | 01100001 161} A1 | 10100001 { 225] E1 | 11100001
34 | 22 { 0100010 d 98§ 62 { 01100010 162 A2 | 10100010 | 226} E2| 11100010
35 1 23 | 00100011 ﬂ 99| 63 | MIDOOTI 163 A3 | 10100011 | 227] E3] 11100001
36 | 24 | nojootLoo 100 | 64 | 01100100 164 | A4 110100100 | 228] E4| 1il100100
37 { 25 joni0010 10t | 65 | 01100100 1651 As | totootol § 229 E> | 1110mol
38 | 20 { 00100110 & 1021 66 | 01100110 166] A6 § 10100110 | 230] E6{ L1IOOLID
¥9 | 27 | 00100111 M 103 | 67 | Otto0O1l} 67| A7 | tor0011t | 231} E7 | tlio00tl
40 | 28 { 00101000 (104 | 68 | 01101000 168{ A8 { 10101000 | 232| E8 | 11101000
41 2% | 00101001 169 | A9 | 10t01001] 233] E9{ 1110100}
170 | AA | 10101010 | 234]| EA] 11101010
171 | AB { 10101011 | 235] EB§ t1101011

¥ 105 { 69 | 01101001
42 | 2A | 0010 1010 » 106 | 6A | 01101010
43 28 oolo 10l + 107] 68 § 01101011

44 | 20 | o0 1100 . 108 | 6C { 0110100 172 AC | 10101100 | 236] EC| 11101100
43 | 20 | voio 1101 - 109 | 6D | 01101101 173| AD | 10101101 | 237] EDJ 11101108
46 | 2E | 00101110 . 110 | 6E | MIN1110 t74| AE | 10i0 1110 § 238] EE| tii0il10

[
D]
v

32 | 20 | 00100000 | SPACE} 96 | 40 | 01100000 [:_] 160 | A0 | 10100000 § 224] EO | 11100000
s
b
<
¢
e
f
&
h
i
1
k
:
m
n
o

47 | 2F pooiortnl / 111} 6F 10110111 175 | AF 10101111 | 239} EF| 11101111

48 30 | 0011 0000 V] 112{ 70 | 01110000 P 176 | Bo { 101310000 | 240(FO | 11110000
49 31 | 60110001 A 113] 70 | 0161000} q 1771 B1 { 101510001 | 241§ F1 | 11110004
30 32 | 001 00i0 2 114 } 72 j 01110010 ¥ 178} B2] 10110010 | 242] F2 | 11110040
31 33 | 00110081 3 t13] 73 | o1t 001t s 179 | B3 | 10110011 § 243} F3 | 11110010
32 | 34 | 00110100 4 f16§{ 74 | 01110100 t 180 | B4 | 10110100 } 244| F4 | 11110100
33 33 | 00110101 3 17| 73 {otli0i0! u 181 | B5 | to11 0108 | 245| F3 } 11110100 °
34 36 | 00110110 [(18| 76 01110110 v 1821 B | 10110110 | 246| Fo | 11110110
33 | 37 | o011 0Lt 7 119 .77 o1110111 w 183§ B7 (10010111 { 247] F7 | 11110811
36 | 38 | 00111000 8 120} 78 | 0111 1000 x 184 | B8 {10511000 | 248) F8 | 11111000
$7 1 39 | 00111001 9 124 | 79 [Ol1t 1000 y 185} B9 | 10111001 § 249{ F9 | 11111001
38 | 3A | 00111010 : 122 | 74| 0111 1010 2 186 | BA [10111010 | 250| FA | 11111010
59 3B | 0011 301t H 123 | 7B { ott1 o1t “ 1871 BB | 10111011 | 251] FB | 1111 1011
60 WC {0011 1100 < 124 | 7C [o111 1100 n 188 | BC { 10111100] 252} FC | 11111100
6l 3D | 0011 5101 = 1251 7D | 0t11 1101 “ 189 { 8D {1051 1101 | 233 FD | 11111101
62 JE | voil 110 > 126 | 7E | 01111110 = 190} BE | 10111110 § 234] FE { 11111010
&) 3F | 0ol i) ? 127 L 7F |orrtnnnd | DEL J 191} BF |1001 4111 f2ss| FF | 1113114t

a,

W

NOTICE

Ing. C. Olivetti & C. S.p.A. reserves the right to make improvements in
the product described in this manual at any time and without notice.

This material was prepared for the benefit of Olivetti customers. 1t is
recommended that the package be test run before actual use.

Anything in the standard form of the Olivetti Sales Contract to the
contrary not withstanding, all software being licensed to Customer is
licensed '"as is'. THERE ARE NO WARRAMNTIES EXPRESS OR IMPLIED 1HNCLUDING
WITHOUT LIMITATION THE 1IMPLIED WARRAMTY OF FI1TNESS FOR PURPOSE AND
OLIVETTI SHALL NOT BE LIABLE FOR AHY DIRECT, INDIRECT, CONSEQUEMTIAL OR
INCIDENTAL DAMAGES TN CONNECTION WITH SUCH SOFTHARE.

The enclosed programs are protected by Copyright and may be used only by
the Customer. Copying for wuse by third parties without the express
written consent of 0livetti is prohibited.

N’

GR Code 3987670 L (0)
Printed in Italy

—~

