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PREFACE

This document contains a set of
subroutines that provides solu-
tions for problems in numeric
analysis. These subroutines are
intended for the applications of
Users who provide their own pro-
gramming. The use of these sub-
routines permits a more rapid
analysis and development of the
applications.
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INTRODUCTION

WHAT 1S OLINUM

The M2@ Scientific Subroutine Library OLINUM provides users who develop
their own application programs with a set of pre-written mathematical
routines which can easily be incorporated into their work, forming single
program units. The routines described in this volume have been designed
to solve the more common computational problems in mathematics. The
routines are free of input/output; this enables one or more routines to
be used in the sequence appropriate to the computational requirements

of the particular application program.

The routines are written in BASIC and take the form of subroutines. They
are stored on a user floppy disk; each routine is in a single file with a
filename composed of the characters sl followed by a mnemonic related to
the computational method and completed with a full stop. The routines do
not include input (or output) statements but operate on data already in
memory; there is no fixed maximum dimensioning of the data array on which
the routines operate.

HOW TO USE OLINUM

In order to build a BASIC program incorporating one or more routines from
OLINUM, the user must write the main program taking into account the
following points:

- the program must contain input and output statements which use the same
global variables as the routines

- the program must contain the necessary DIM and DCL statements for the
global arrays

- the OLINUM subroutine is referred in the calling statement GOSUB
'address'; the address being fixed for each specified subroutine

- if several subroutines are incorporated in the same program each of
them must be called by it's corresponding GOSUB statement

- the program must not contain any line number which is used for the
subroutines

INPUT TO OLINUM SUBROUTINES

Before calling the routine the user must store the data on which the




routine is to operate, taking into account that data may be in the form
of single numeric variables or numerical arrays of one or two dimensions.

In the case of single numeric variables, they can be used as function
parameters and the user must select the address of the function and
provide the parameters for the function to be called before the statement
for calling it (GOSUB). In the case of numeric arrays they are global
variables for the program and the subroutine and must be dimensioned in
the program, declared in single or double precision as required and have
the same name in the function.

The name of the parameters is associated with the name of the subroutine
as well as the 'local' variables of which it makes use, so that there
will be no confusion with those used for calling the program.

OUTPUT FROM OLINUM SUBROUTINES

The results of a routine may be a single numeric variable (which may be
given by the return value FUN. of the function) or more than one numeric
variable or array; in the latter case the results will be global
variables and must be dimensioned and declared in the program.

Care must be exercised in choosing the names of application program
variables. If the same names are used both for application program
variables and subroutine internal variables, the value assigned to the
variables in the application program will be changed after the subroutine
calling statement.

HOW THIS MANUAL IS ORGANISED

The second chapter of this manual; How to Begin, describes how to load
the System and Application disks on the M2@ and how to incorporate the
OLINUM subroutines. The OLINUM subroutines are then described in 9 separ-
ate chapters, each chapter corresponding to a main area of Numerical
analysis. Within each chapter each subroutine is described in tabular
form as follows:

First Table (see Fig 1-1):
- The subroutine title, i.e. SL....

- A brief description of the purpose of the subroutine.

1-2 OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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- The input parameters listed with their meanings plus their values,
where known.

- The output parameters listed with their meanings plus their values,
where known. This section includes the possible FUN. values returned by
the subroutine; in general FUN. = @ signifies a correct calculation and
FUN. = an integer greater than @ signifies an error.

- The program variables or arrays required for calculation, if any.

- The calling statement GOSUB ....

- A cross-reference to the Appendix which contains the method used to
calculate the subroutine

- The calling statements of any associated subroutines.

This first table is followed by any general notes which are of importance
to the correct utilisation of the subroutine.



SUBROUTINE TITLE

- Lt

INPUT

VARIABLE

DESCRIPTION

VALUE

Parameter’
Parameter?2

Parametern

OUTPUT

Parameter
Parameter?2

Parametern

CALLING SEQUENCE GOSUB ...

METHOD See Appendix ...

CALLED SUBROUTINES

Figure 1-1 Subroutine Table

1-4
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The second table describes the Test Program for a subroutine and is
laid-out as follows (see Fig 1-2)

The subroutine title, i.e. SL ....

The Test Program name

Any notes considered relevant to the Test Program

The subroutine title or titles required for the Merge

An input and an output section which show the actual data input and
output during the Test Program

The Manual is concluded by two Appendices; the first containing a de-
scription of the Methods used for each subroutine and the second contain-
ing a list of the subroutines with their related Test Programs




TEST PROGRAM FOR SUBROUTINE TITLE

TEST PROGRAM NAME:

‘Note: Any relevant notes

MERGE: Subroutine title(s)

INPUT

OUTPUT

Data input by user

Data output by machine

Figure 1-2 Test Program Table
1-6

OLINUM (NUMERICAL ANALYSIS) USER GUIDE

@

X



2. HOW TO BEGIN




ABOUT THIS CHAPTER

This chapter contains an explanation of how to start the Olinum applica-
tion package on the M20 Computer System.

CONTENTS

INTRODUCTION

POWER ON

STARTING THE APPLICATION

PACKAGE

USING THE TEST PROGRAMS

2-1

2-1

2-5
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HOW TO BEGIN

INTRODUCTION

The instructions which follow are given in brief. For a complete discus-
sion of the M20 from an operational point of view refer to the Profes-
sional Computer Operating System PCOS User Guide code 3930090 C

POWER ON

Figure 2-1 ON/OFF SWITCH

ON/OFF
SWITCH

1) Press the ON/OFF switch on the rear of the machine to the ON position.
The red power-on-light at the top left of the keyboard, comes on and

the following appears on thz screen.

Bootstrap Loader Rev. 1.0
Insert Disk and type return

_

-

_J




o
o

2. Insert the System Disk (Figure 2-2) into the right hand disk drive as
indicated in Figure 2-3. Press the key.

) © PCOS Rel. 1.0 _ © BASIC - 8000
Mini FD 220 = ==
olivetti —

Cod B2 ™ Copyfight © by Ing. C. Olivetti & C. Sp.A. - 1981

Mini FD 220 u

Figure 2-2

(1) PULL THE COVER OUTWARDS (2) LET IT FLAP OPEN

PRESS THE DRIVE COVER DOWN
AND LET IT FLAP CLOSED

@6

Figure 2-3 Loading a Disk

2-2 ' OLINUM (NUMERICAL ANALYSIS) USER GUIDE




The screen illustrated in Figure 2-4 appears:

’ L1 M20 System Configuration
Total Memory Size: 192 Kbytes

User Memory Size: 55102 bytes
Disk Drive(s): 2 ready

L1M20 PCOS Rev. 1.0

Fe
_ _J

Figure 2-4 Start-up Screen

THE CURSOR~

The numbers which appear on your screen may be slightly different from
those shown in Figure 2-4. This depends on the configuration you are
using and will not affect the running of your application. 1f the start-

up procedure does not go as planned you should refer to the "PCOS User
Guide'" code number 3930090 C, Chapter 8 "TROUBLESHOOTING'.




STARTING THE APPLICATION PACKAGE

When the System disk has been loaded as described in the previous section
the Application can be started as follows:

- Enter the Command New and Load the main program

- Enter the merge command for the first called subroutine with the
format; Merge <filename> , where filename is the name of the file in
which the subroutine is stored (i.e. SL ....)

- Enter a Merge Command for each of the other subroutines called, if any

- The program plus the Merged Subroutines are now ready to run and maybe
listed or saved as any other program.

Example

For this example the test program for the subroutine SLCONN. will be the

application program; and a listing is provided to show the point of
merging:

Load "1: SLCONN
0.K.

MERGE '"1: SLCONN.
0.K.

RUN.

10 OPTION BASE 1 : DEFDBL A-Z : PI=3.141592653594
20 INPUT "ENTER BASE1.BASE2Z *,B1,B2

30 INPUT "ENTER INTEGER PART *.N

40 A="Base "+STRH(R1)

30 PRINT

40 PRINT USING ™\ \Integer Part  HH, RHEHARHUHHHEAAAAT QH,N
70 INPUT "ENTER FRACTIONAL PART “.F

80 PRINT USING * Fractional Part i, HRRHHRRRRNRRAAAAYF
90 PRINT

100 PCONN1=N: PCONN2=F : PCONN3=B1:PCONN4=B2: PCONNS=C1
110 GOSUB 30401 : FUNCONN=FUN.

120 IF ((FUNCONN+1) (,5) OR ((FUNCONN+1)) 6 ) GOTO 140
130 ON FUNCONN+1 GOTO 140,200,220,2¢40,260,280

140 A#="Base "+STR¥(B2)

150 PRINT USING ™\ \Integer Part  #it RRHNHHRRURRRAAAA"QE,R
160 PRINT USING " Fractional Part HE.HAHEEHERRRRRAAAA® RZ
170 PRINT

180 PRINT

190 GOTO 20
200 PRINT "INTEGER PART AN INTEGER )=0 ONLY"
210 GOTO 30

2-4 OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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220 PRINT "0(= FRACTIONAL PART(1 ONLY"
230 6010 70

240 PRINT "BASE MUST BE AN INTEGER 1"
250 G0TO 20

260 PRINT “ERROR IN INTEGER DIGITS®
270 60T 30

280 PRINT "ERROR IN FRACTIONAL DIGITS®
290 G0TO 70 '
30401 PI=3.141592653594

30402 REM SUBROUTINE

It is also possible to load the subroutines and then specify the line
. number for calling a particular subroutine in the application program.

USING THE TEST PROGRAMS

To test the subroutines the OLINUM disk should be loaded as described
previously and '"ba'" entered via the keyboard. If a printer is available
‘ and a print-out required then '"ba + prt" must be entered via the
keyboard.
The test program is called by entering;
load "1: test program name
. and the subroutine is merged with the test program by entering
merge '"1: subroutine name.
If the merge is successful then 0.K. will appear on the screen and the

test program can be started by entering RUN. The input for the various
test programs is described in the tables related to the subroutines.

To cancel a test program the blue JEIIEIM key and the key must be
depressed simultaneously.
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ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of pfoblems in
Combinatorial Analysis.

CONTENTS
SLCONN. Number System 3-1 SLMULT. Multinomial 3-21
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SLPRIM. Factoring and Prime 3-4 SLDUPL. Probability of 3-23 u
Number Generation Duplication in a
Given Universe
SLEUCL. Greatest Common 3-7
Denominator and
Lowest Common
Multiple
SLRFCO. Rational Fraction  3-9 \J

Conversion to
Continued Fraction

SLSUCO. Quadratic Surd Con- 3-11
version to Continued
Fraction

. SLCFCO. Convergents of a 3-13
Continued Fraction

SLFACT. Factorial and Log 3-16
Factorial

SLBINO. Binomial 3-19
Coefficients
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COMBINATORIAL ANALYSIS

NUMBER SYSTEM CONVERSION

SLCONN.

To convert an integer or decimal fraction from one polynomial base to

another
INPUT
VARIABLE DESCRIPTION VALUE
PCONN1 Integer part of number
PCONN2 decimal fraction part of number
PCONN3 conversion from base PCONN3
PCONN4 to base PCONN4 PCONN3, PCONN4 integers
>1
OUTPUT
R integer part of converted number
R2 decimal fraction of converted
number
FUN. Return Status @ = correct calculation
1 = PCONN1 other than
an integer>{
2 = PCONN2 not in the
range @< PCONNT< 1
3 = PCONN3 and/or
PCONN4 other than
integers > 1
4 = digit of PCONN1 >
PCONN3
5 = digit of PCONN2 >
PCONN3

3-1




CALLING SEQUENCE GOSUB 3@4@1

METHOD See Appendix A

CALLED SUBROUTINES




SLCONN.

TEST PROGRAM FOR

TEST PROGRAM NAME: SLCONN

Note:

MERGE: SLCONN.

INPUT

OUTPUT

ENTER BASE1, BASE2 14,2
ENTER INTEGER PART 123

ENTER FRACTIONAL PART .258

ENTER BASE1,BASE2 16,10
ENTER INTEGER PART 1@6@5
ENTER FRACTIONAL PART .2@8@7@211

ENTER FRACTIONAL PART .@2¢8@7@211

ENTER BASE1,BASE2

BASE 1¢, INTEGER PART 1.230¢@¢¢
PP@eED+p@2

FRACTIONAL PART 2.580¢@@@pa@@gD
-g3

BASE2, INTEGER PART 1.111¢11000000+
g6

FRACTIONAL PART 1.0@@@100@@811D
-g@2

BASE 16 , INTEGER PART 1.@6@5¢@@¢
pPeED+PP4

FRACTIONAL PART 2.@8@7¢21108@8@8@D
-g

ERROR IN FRACTIONAL DIGITS
FRACTIONAL PART 2.@8@78211@8@@D
-pg2

BASE 1@, INTEGER PART 3.570@@@p@
p@@eD+0@2

FRACTIONAL PART 1.579996386963D

-pp1




FACTORING AND PRIME NUMBER GENERATION

To determine whether or not a given integer is prime, or to decompose
a given integer into its prime factors

INPUT
VARIABLE DESCRIPTION VALUE
PPRIM1 positive integer
PPRIM2 determination or decomposition determine whether
of PPRIMI or not PPRIMI is
prime
decompose PPRIM1
into its prime
factors
OUTPUT
11 number of prime factors if
PPRIM2 = 2
A(11,2) two dimensional array containing
each prime factor, A(J,1) and its =1,2...,11 if PPRIM2
corresponding exponent, A(J,2).
None if PPRIM2 = 1
FUN. Return Status = PPRIM1 is prime
PPRIM1 is not
prime
PPRIM1 is not a
positive integer
PPRIM2 is other
than 1 or 2

3-4
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CALLING SEQUENCE GOSUB 3@6@1

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLPRIM.

TEST PROGRAM NAME: SLPRIM

Note:

MERGE: SLPRIM.

INPUT

OUTPUT

ENTERT (PRIMES) OR 2(FACTORS)1
ENTER LIMITS 1,15

ENTERT (PRIMES) OR 2(FACTORS) 1

ENTER LIMITS 23.5, 26

ENTER1 (PRIMES) OR 2(FACTORS) 2

ENTER INTEGER 18¢
ENTERT (PRIMES) OR 2(FACTORS) 2

ENTER INTEGER 37

ENTERT (PRIMES) OR 2(FACTORS)

PRIME NUMBERS BETWEEN 1 AND 15
12387 11 13

PRIME NUMBERS BETWEEN 23.5
AND 26

POSITIVE INTEGERS ONLY

PRIME FACTORS OF 180
180 = 272*372%5
PRIME FACTORS OF 37

37 1S PRIME




)

)

)

)

COMBINATORIAL ANALYSIS

GREATEST COMMON DENOMINATOR
AND LOWEST COMMON MULTIPLE

SLEUCL.

To determine the Greatest Common Denominator (G.C.D) and Lowest Common
Multiple (L.C.M) of two positive integers N1 and N2.

INPUT
VARIABLE DESCRIPTION VALUE
PEUCL1 positive integers whose GCD
PEUCL?2 and LCD are to be found
OUTPUT
G GCD of PEUCL1 and PEUCL2
L LCD of PEUCL1 and PEUCL2
FUN. Return Status @ = correct calculation

=
I

= PEUCL1 and/or

PEUCL2
not positive
integers

CALLING SEQUENCE GOSUB 3¢8@1

METHOD See Appendix A

CALLED SUBROUTINES

3-7



TEST PROGRAM FOR

SLEUCL.

TEST PROGRAM NAME:

SLEUCL

Note:

MERGE: SLEUCL.

INPUT

ENTER A,B 25,27

ENTER A,B 84,23

ENTER A,B

OUTPUT
25 AND 27 =1 .
25 AND 27 = 675
84 AND 23 =1
84 AND 23 = 1932




)

) )

COMBINATORIAL ANALYSIS

RATIONAL FRACTION CONVERSION
TO CONTINUED FRACTION

SLRFCO.

To convert a rational fraction into a 'regular' continued fraction i.e.
one whose successive numerators are unity.

INPUT
VARIABLE DESCRIPTION VALUE
PRFCO1 numerator and denominator of
PRFC02 rational fraction (positive
integers)
OUTPUT
N number of terms of continued
fraction
PRFCO1(N) First term and successive
denominators of continued
fraction
FUN. Return Status

correct calculation
PRFCO1 and/or
PRFC02 not

positive integer

CALLING SEQUENCE GOSUB 31¢@1

METHOD See Appendix A

CALLED SUBROUTINES

3-9




TEST PROGRAM FOR SLRFCO.

TEST PROGRAM NAME: SLRFCO

Note:

MERGE: SLRFCO.

INPUT

OUTPUT

ENTER A,B 151,119

ENTER A,B 771928,999999

ENTER A,B

REGULAR CONTINUED FRACTION OF
151/119

b@=1 b1=3 b2=1

b3=2 b4=1 b5=1

b6=4

REGULAR CONTINUED FRACTION

OF 771928/999999

b@=@ b1=1 b2=3 b3=2 b4=1 b5=1 bé=1
#=3 b11=1 b12=1 b13=1 b14=1 b15=1




QUADRATIC SURD CONVERSION
CONTINUED FRACTION

)

To convert a quadratic surd into a ''regular' continued fraction i.e.
one whose successive numerators are unity

INPUT
. VARIABLE DESCRIPTION VALUE
PSUCO1 positive integerV/PSUCO1 or
quadratic surd
PSUC02 number of terms of continued

fraction to be calculated

OUTPUT

. B(PSUC02)

FUN.

successive terms of continued
fraction
Return Status

=
n

correct calculation
= PSUCO1 and/or
PSUC02
other than positive
integers
2 2V/PSUCOT not a
quadratic surd

VPSUCO1 is returned
in B(1)

-
|

CALLING SEQUENCE GOSUB 312¢1

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLSUCO.

TEST PROGRAM NAME: SLSUCO

Note:

MERGE : SLSUCO.

INPUT

OUTPUT

ENTER SURD "2 3
ENTER NUMBER OF TERMS 5

ENTER SURD "2 2
ENTER NUMBER OF TERMS 5

ENTER SURD "2 3
ENTER NUMBER OF TERMS .5

ENTER SURD ~2

REGULAR CONTINUED FRACTION OF 3 °5
b@=1 b1=1 b2=2 b3=1 b4=2

REGULAR CONTINUED FRACTION OF 2° 5
b@=1 b1=2 b2=2 b3=2 b4=2

POSITIVE INTEGERS ONLY




CONVERGENTS OF A CONTINUED FRACTION

To calculate the successive convergents of a continued fraction

INPUT
VARIABLE DESCRIPTION VALUE
PCFCO1 To calculate the first convergent,
PCFCO1 is the first term of the
continued fraction, bo' Otherwise
PCFCO1 = -1
PCFCO02 numerator and denominator of
PCFCO3 successive terms of the continued
fraction
OUTPUT
P2,Q2 numerator and denominator of the
successive convergents
FUN. Return Status correct calculation




CALCULATION Pg, P1, Q4, Q1

CALLING SEQUENCE GOSUB 31401

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLCFCoO.

TEST PROGRAM NAME:

SLCFCO

Note:

MERGE: SLCFCO.

ENTER b

INPUT OUTPUT

ENTER bg 1 bg=1

ENTER al b1 .45,1 al=.45 b1=1
CONVERGENT1=1.45/1=1.45

ENTER a2 b2 .45,-2 a2=.45 b2=-2
CONVERGENT2=2.45/-1.55=1.58064
516129932

ENTER a3 b3 .45,3 a3=.45 b3=3

CONVERGENT3=-6.6975/-4.2=1.59464
285714286




EACTORIAL AND LOG FACTORIAL

SLFACT.

To evaluate N! and, using Stirling's Formula, to approximate the
natural logarithm of N!

INPUT

VARIABLE

DESCRIPTION

VALUE

PFACT1

PFACT2

non-negative or positive integer
depending on PFACT2

switch variable 1=

to calculate
PFACT1!

to calculate Ln
PFACT1!

OUTPUT

N1

FUN.

value of PFACT! or Ln PFACT1!
depending upon the value of
PFACT2

Return Status g =
= for PFACT2 = 1,

correct calculation

PFACT1 other than
a non-negative
integer less than
171 for PFACT2

= 2, PFACT1 other
than a positive
integer

PFACT2 other than
1 or 2

3-16
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CALLING SEQUENCE GOSUB 31601

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLFACT.

TEST PROGRAM NAME: SLFACT

Note:

MERGE: SLFACT.

ENTERT(N!) OR 2(1nN!)? 2
ENTER N?

INPUT OUTPUT
ENTER N? 5

ENTERT(N!) OR 2(1nN!)? 1 5! = 1.200000000@0D+002
ENTER N? 10

1n 19! = 1.510441292822D+@¢"

OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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BINOMIAL COEFFICIENTS

Te generate the binomial coefficients (:)

INPUT

VARIABLE DESCRIPTION VALUE
‘ PBINO1 parameters of (")

PBINO2 For #<PBINO2< PBINO1 a single

coefficient is calculated

For PBINO2 = -1, (") is calculatec
for r=f,1...INT(5); where INT(Z)
is the integer part of n/2. The
coefficients from INT (n/2)+1 to
n are given by the relation

(:)=(")

n-r

OUTPUT

o o

FUN.

for #<PBINO2<PBINO1, B=(")
for PBINO2=-1, B() contging the
INT(%)+1 coefficients (r)' for
r=g@, 1...1NT(D), in ascending

2
order of r
Return Status

—

= correct calculation

PBINO1 and/or
PBINO2 not
integers > ¢
(PBIN02=-1 exclu-
ded)

PBINO2 >PBINO1

CALLING SEQUENCE GOSUB 31801

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR

SLBINO.

TEST PROGRAM NAME:

SLBINO

Note:

MERGE: SLBINO.

INPUT OUTPUT
enter n,r 5,2 n=5 r=2 BIN.COEFF=1¢
enter n,r 5,3 n=5 r=3 BIN.COEFF=14
enter n,r 6,2 n=6 r=2 BIN.COEFF=15
enter n,r 15,-1 r BIN.COEFF(n=15)

') 1
1 15
2 105
3 455
4 1365
5 3003
6 50@5
7 6435
enter n,r
3-20
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MULTINOMIAL COEFFICIENTS

To generate the general multinomial coefficient (n; Ny nz...ns)
INPUT
VARIABLE DESCRIPTION VALUE
PMULT1 number of factors n_,, n_...n
N(PMULT1) | vector of factors S
OUTPUT
@
- M Multinomial coefficient
‘ N2 . Sum of factors
FUN. Return Status @ = correct calculation

o
]

number of factors
not a positive
integer

CALLING SEQUENCE GOSUB 32@1

METHOD See Appendix A

‘ CALLED SUBROUTINES




TEST PROGRAM FOR

SLMULT.

TEST PROGRAM NAME:

SLMULT

Note:

MERGE: SLMULT.

INPUT

OUTPUT

enter number
enter factor
enter factor
enter factor
enter factor
enter factor
enter factor

enter number

of factors
?

o wN =
) ) ) ) ) e

of factors?

6
18
11

6

3
2
2

number of factors 6

nl =18
n2 = 11
n3 = 6
ngd = 3
n5 = 2
06 i=r 12
n = 42

multinomial coeff. = 3.18154257
178193D+23

3-22
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PROBABILITY OF DUPLICATION IN A _

GIVEN UNIVERSE

To evaluate the probability p,, that at least two elements of a set
K will be identical with respect to the same criteria, when there are
n possible choices for each element '

INPUT
VARIABLE DESCRIPTION VALUE
‘ , PDUPL1 number of possible choices for
each element (N)
PDUPL?2 number of elements in the set
OUTPUT
. P(PDUPL1) | probability of duplication for
' K=1, 2...PDUPL1 PDUPL2 = -1
P probability of duplication for a
given PDUPL2 PDUPL2 = 1,2,...PDUPLT
FUN. Return Status @ = correct calculation
| 1 = PDUPL1,PDUPL2
not positive
integers
(PDUPLT = -1 excluded)
with PDUPL1> PDUPL2
CALLING SEQUENCE GOSUB 32201
‘ METHOD See Appendix A
. CALLED SUBROUTINES




TEST PROGRAM FOR SLDUPL.

TEST PROGRAM NAME: SLDUPL

Note:

MERGE: SLDUPL.

INPUT

OUTPUT

ENTER n,k ? 365, 20
ENTER n,k ? 365, 10¢

ENTER n,k ? 14, -1

ENTER n,k ?

k

= I = - =

OCOwvwoOoO N, WN-=-=2X X

—_

= 365 K
= .41

= 365 k
= .999

=10 k
P

¢

= 20
43838358058
= 100
999692751972
= -1

k

L

.28

.496
.6976

. 8488
+93952
.981856
.9963712
.99963712

3-24
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4. ELEMENTARY FUNCTIONS




ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of Elementary
Functions.

CONTENTS

SLATN2. Arctangent of a 4-1
Ratio

SLCONV. Reduction of an 4-3
Angle to the First
Quadrant

SLRPCC. Rectangular to 4-5
Polar Coordinates
Conversion

SLPRCC. Polar to Rectan- 4-7
gular Coordinates
Conversion

C ¢

CC



ARCTANGENT OF A RATIO

To compute the arctangent of a ratio, y/x of two real numbers in the

range (-=,7)

INPUT
VARIABLE DESCRIPTION VALUE
I‘ PATN 21 Denominator
PATN 22 Numerator
|
OUTPUT

‘ FUN.

The arctangent of PATN22/PATN21

CALLING SEQUENCE GOSUB 32401

METHOD

'.

CALLED SUBROUTINES




TEST PROGRAM FOR SLATN2.

TEST PROGRAM NAME: SLATNZ
Note:
MERGE: SLATNZ2.
INPUT OUTPUT
ENTER x,y @, @ arctangent (g/9) = @
ENTER x,y @, 1 arctangent (1/@) = 1.570796326795
ENTER x,y -1, @ arctangent (@/-1) = 3.14159265359
ENTER X,y
4-2 OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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REDUCTION OF AN ANGLE
TO THE FIRST QUADRANT

To reduce an angle (measured in radians) to the range (- 7,7 )

INPUT
VARIABLE DESCRIPTION VALUE
_ PCONV1 angle in radians
OUTPUT
. FUN. The resultant value of the angle

CALLING SEQUENCE GOSUB 32601

METHOD

CALLED SUBROUTINES




TEST PROGRAM FOR SLCONV.
TEST PROGRAM NAME: SLCONV
Note:
MERGE: SLCONV.
INPUT OUTPUT
angle transformed angle
ENTER ANGLE (radians) 1 1 1
ENTER ANGLE (radians) 2 2 2
ENTER ANGLE (radians) 3 3 3
ENTER ANGLE (radians) 4 4 -2.2831853@718
ENTER ANGLE (radians) -3.1415927 -3.1415927 3.14159260718

ENTER ANGLE (radians)?

OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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RECTANGULAR TO POLAR COORDINATES

CONVERSION

To convert a complex number from rectangular to polar coordinates

INPUT
VARIABLE DESCRIPTION VALUE
PRPCC1 real part of the complex number
PRPCC2 imaginary part of the complex
number
OUTPUT
P modulus
Q Phase -T< Q<
FUN. Return Status

@ = correct calculation

CALLING SEQUENCE GOSUB 32801

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLRPCC.

TEST PROGRAM NAME: aL.RPCC

Note:

MERGE: SLRPCC.

INPUT

OUTPUT

ENTER x+iy As x,y -1, -1

ENTER x+iy As x,y 1, @

ENTER x+iy As x,y @, -10¢

ENTER x+iy As X,y

X = =1 y=—1

modulus = 1.41421353816986
phase = 2.35619446833686
x=1y=¢

modulus = 1 phase = @
x=0@y=-100¢

modulus = 100
phase = -1.57@796326795

4-6
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ELEMENTARY FUNCTIONS

POLAR TO RECTANGULAR COORDINATES

CONVERSION

To convert a complex number from polar to rectangular coordinates

INPUT
VARIABLE DESCRIPTION VALUE
PPRCC1 modulus of the complex number
PPRCC2 phase of the complex number
OUTPUT
P1 real part of the complex number
P2 imaginary part of the complex
number
FUN. Return Status

correct calculation

negative modulus

CALLING SEQUENCE GOSUB 33001

METHOD See Appendix A

CALLED SUBROUTINES

4-7




TEST PROGRAM FOR SLPRCC.

ENTER Modulus, Phase

TEST PROGRAM NAME:  SLPRCC

Note:

MERGE: SLPRCC.

INPUT OUTPUT

ENTER Modulus, Phase -1, -1 modulus = -1 phase = -1
modulus >= @ only

ENTER Modulus, Phase 10@@, 236 modulus = 1@@@ phase = 236
x = -928.463339805603
y = -371.42419815@635

ENTER Modulus, Phase 5, # modulus = 5 phase = @
x=5y=¢@

ENTER Modulus, Phase @, 25 modulus = @ phase = 25

X=¢y=¢




5. ELEMENTARY FUNCTIONS (COMPLEX)




ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of Complex Elementary

Functions.

CONTENTS

SLCSIN.

SLCCOS.

SLCTAN.

SLCASN.

SLCACS.

SLCATN.

SLCLN.

SLCEXP.

SLCRZ.

SLCZMZ.

Sine of a Complex
Number

Cosine of a Complex
Number

Tangent of a
Complex Number

Arcsine of a
Complex Number

Arcosine of a
Complex Number

Arctangent of a
Complex Number

Natural Logarithm of
a Complex Number

Exponential of a
Complex Number

Reciprocal of a
Complex Number

Multiplication of
Two Complex Numbers

5-1

5-3

5-5

5-7

5-9

5-13

5-15

SLCZDZ.

SLCSQR.

SLCZN.

SLCZA.

Division of Two
Complex Numbers

Square Root of a
Complex Number

Integral Power of a
Complex Number
(Z Recurrence)

Real Power of a
Complex Number

5-22

5-25

5-27

5-29

CcC C
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ELEMENTARY FUNCTIONS (COMPLEX)

SINE OF A COMPLEX NUMBER

To compute the sine of a complex number, expressed either in rectangular
or polar coordinates. The result is a complex number expressed in the
same coordinates as the argument

INPUT
VARIABLE DESCRIPTION VALUE
PCSIN1 type of coordinates @ = rectangular
1 = polar
PCSIN2 real part of number if PCSIN1 = ¢
modulus if PCSIN1 =1
PCSIN3 imaginary part of number if
PCSIN1 = @
phase if PCSINT =1
OUTPUT
P real part of sine if PCSIN1 = @
modulus if PCSINT =1
Q imaginary part of sine if PCSIN1
=0
phase if PCSINT = 1
FUN. Return Status @ = correct calculation
1 = negative modulus
2 = value of PCSIN1
is other than
@ or 1
CALLING SEQUENCE GOSUB 332¢1
METHOD See Appendix A
CALLED SUBROUTINES GOSUB 324@1

5-1




TEST PROGRAM FOR SLCSIN.

TEST PROGRAM NAME: SLCSIN

Note:

MERGE : SLCSIN.

INPUT

OUTPUT

ENTER @ (rectangular) or 1

(polar) ¢
ENTER x+iy As x,y .52359878, @

ENTER @ (rectangular) or 1
(polar) 1
ENTER modulus, phase 1, @

ENTER @ (rectangular) or 1 (polar)

real part imaginary part
z. 52359878¢¢¢¢  ¢.000000
sinz.50000¢ ¢.00000
modulus phase
z 1.000000 ¢.000000
sinz  .84147¢9 ¢.000000
568024




D O
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ELEMENTARY FUNCTIONS (COMPLEX)

COSINE OF A COMPLEX NUMBER

To compute the cosine of a complex number; both the argument and the
results can be expressed either in rectangular or polar coordinates

INPUT
VARIABLE DESCRIPTION VALUE
PCCOS1 type of coordinate @ = rectangular
1 = polar
PCCOS2 real part of number if PCCOS1 = @
modulus if PCCOS = 1
PCCOS3 imaginary part of number if
PCCOST1 = ¢
phase if PCCOS1 = 1
OUTPUT
P real part of cosine if PCCOS1 = ¢
modulus if PCCOS1 = 1
Q imaginary part of cosine if
PCCOST = ¢
phase if PCCOS1 = 1
FUN. Return Status @ = correct calculation
1 = modulus less than @
2 = PCCOS1 other than
g or 1
CALLING SEQUENCE GOSUB 334¢1
METHOD See Appendix A
CALLED SUBROUTINES GOSUB 3241




TEST PROGRAM FOR SLCCoOS.

TEST PROGRAM NAME : SLCCOS

Note:

MERGE: SLCCOS.

ENTER @ (rectangular) or 1 (polar)

INPUT OUTPUT

ENTER @ (rectangular) or 1 .
(polar) ¢ real part imaginary part
ENTRY x+iy As x,y @@ z g.000000 g.00000

cosz 1.00000¢ g.00000
ENTER @ (rectangular) or 1
(polar) 1 modulus phase
ENTER modulus, phase 1, 1 z 1.00000000 1.0000000

cosz 1.275615572 -.39067

9294 40248203 .
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ELEMENTARY FUNCTIONS (COMPLEX)

D O

TANGENT OF A COMPLEX NUMBER

To compute the tangent of a complex number; both the argument and the
results can be expressed in rectangular or polar coordinates

INPUT
VARIABLE DESCRIPTION VALUE
PCTAN1 type of coordinates @ = rectangular
1 = polar
PCTAN2 real part of number if PCTAN1 = @
modulus if PCTAN1 = 1
PCTAN3 imaginary part of number if
PCTANT1 = @
phase if PCTAN1 =1
OUTPUT
P real part of tangent if PCTAN1 = J
modulus if PCTAN1 =1
Q imaginary part of tangent if
PCTAN1 = @
phase if PCTAN1 = 1
FUN. Return Status @ = correct calculation
1 = modulus less than @
2 = PCTAN1 other than
g or 1

CALLING SEQUENCE GOSUB 33601

METHOD See Appendix A

CALLED SUBROUTINES GOSUB 32481
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TEST PROGRAM FOR SLCTAN.

TEST PROGRAM NAME: SLCTAN

Note:

MERGE: SLCTAN.

4983597

INPUT OUTPUT

ENTER @ (rectangular) or 1

(polar) @ real part imaginary part

ENTER x+iy As x,y 1, @ z 1.0000800 #.000000
tanz  1.5574¢7 ¢.000000

4957895

ENTER @ (rectangular) or 1

(polar) 1 modulus phase

ENTER modulus, phase 1, # z 1.000000 g.000000
tanz  1.5574¢7 ¢.000000




> O
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ELEMENTARY FUNCTIONS (COMPLEX)

ARCSINE OF A COMPLEX NUMBER

To compute the arcsine of a complex number expressed in either polar
or rectangular coordinates. The results are expressed in the same
coordinates as the argument

INPUT
VARIABLE DESCRIPTION VALUE
PCASN1 type of coordinates | @ = rectangular
1 = polar
PCASN2 real part of number if PCASN1 = ¢
modulus if PCASN1 = 1
PCASN3 imaginary part of number if
PCASN1 = ¢
phase if PCASN1 = 1
OUTPUT
P real part of arcsine if PCASN1 = @
modulus if PCASN1 = 1
Q imaginary part of arcsine if
PCASN1 = @
phase if PCASN1 = 1
FUN. Return Status @ = correct calculation
1 = modulus less than @
2 = PCASN1 other than
@ or 1
CALLING SEQUENCE GOSUB 33801
METHOD See Appendix A
CALLED SUBROUTINES GOSUB 32401

5-7




TEST PROGRAM FOR SLCASN.

TEST PROGRAM NAME: SLCASN

Note:

MERGE: SLCASN.

INPUT OUTPUT
ENTER @ (rectangular) or 1
(polar) @ real part imaginary part
ENTER x+iy As x,y .5, @ z . 5000000 ¢.000000
arcsinz .5235987 g.000000
9¢1688
ENTER @ (rectangular) or 1
(polar) @ real part imaginary part
ENTER x+iy As x,y @, 1.175281193 z ¢.000000 1.1752¢119
6430 36430
arcsinz @.0@0000 .9999999
403954
ENTER @ (rectangular) or 1
(polar) 1 modulus phase
ENTER modulus, phase .5, @ z 5000000  0.000000
arcsinz .52359879 ¢.¢@@@@g
01688
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ELEMENTARY FUNCTIONS (COMPLEX)

ARCCOSINE OF A COMPLEX NUMBER

To compute the arcosine of a complex number expressed in either polar
or rectangular coordinates. The results are expressed in the same
coordinates as the argument

INPUT
VARIABLE ~ DESCRIPTION VALUE
PCACS1 type of coordinates @ = rectangular
1 = polar
PCACS2 real part of number if PCACS1 = @
modulus if PCACS1 = 1
PCACS3 imaginary part of number if
PCACST1 = @
phase if PCACS1 =1
OUTPUT
P real part of arcosine if PCACS1
=0 .
modulus if PCACS1 = 1
Q imaginary part of arcosine if
PCACST = @
phase if PCACS1 =1
FUN. Return Status @ = correct calculation
1 = modulus less than @
2 = PCACS1 other than
@ or 1
CALLING SEQUENCE GOSUB 34001
METHOD See Appendix A
CALLED SUBROUTINES GOSUB 32481

5-9



TEST PROGRAM FOR SLCACS.

TEST PROGRAM NAME: SLCACS

Note:

MERGE: SLCACS.

INPUT OUTPUT
ENTER @ (rectangular) or 1
(polar) ¢ real part 1imaginary part
ENTER x+iy As x,y 1, @ z 1.000000 ¢.000000
arccosz §.0@0@@@¢¢ ¢.000000
ENTER @ (rectangular) or 1
(polar) 1 modulus phase
ENTER modulus, phase .7, @ z 7000000 g.000000
arccosz .79539889 -.g@@3d
#9721 69379539

5-10
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ELEMENTARY FUNCTIONS (COMPLEX)

ARCTANGENT OF A COMPLEX NUMBER

To compute the arctangent of a complex number expressed in either polar
or rectangular coordinates. The results are expressed in the same
coordinates as the argument

INPUT
VARIABLE DESCRIPTION VALUE
PCATN1 type of coordinate @ = rectangular
1 = polar
PCATN2 real part of number if PCATN1 = ¢
modulus if PCATN1 = 1
PCATN3 imaginary part of number if
PCATNT = @
phase if PCATN1 =1
OUTPUT
P real part of arctangent if
PCATN1 = ¢
modulus if PCATN1 = 1
Q imaginary part of arctangent if
PCATNT = ¢
phase if PCATN1 = 1
FUN. Return Status @ = correct calculation
1 = modulus less than @
2 = PCATN1 other than
1org
3 = 22 = =

CALLING SEQUENCE GOSUB 34201

METHOD See Appendix

CALLED SUBROUTINES GOSUB 32401

5-11




TEST PROGRAM FOR SLCATN.

TEST PROGRAM NAME: SLCATN

Note:

MERGE: SLCATN.

INPUT OUTPUT
ENTER @ (rectangular) or 1 '
(polar) @ real part imaginary part
ENTER x+iy As x,y 1.5574@77246 z 1.5574¢7 @.0000000
570, @ 7246570
arctanz 1.00¢@¢ ¢.0000000
@#@158934
ENTER @ (rectangular) or 1
(polar) 1 modulus phase
ENTER modulus, phase 1, # z 1.0000000 ¢.900000 ’
arctanz .7853981 @.00@000
256485
ENTER @ (rectangular) or 1 .
(polar) 1 modulus phase
ENTER modulus, phase 1, 1.57@796 z 1.0000008 1.57@79632
326795¢ 67950

z*2 other than -1 only
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ELEMENTARY FUNCTIONS (COMPLEX)

NATURAL LOGARITHM OF A COMPLEX NUMBER

SLCLN.

To compute the natural logarithm of a complex number; both the argument
and the results can be expressed either in rectangular or in polar

coordinates
INPUT
VARIABLE DESCRIPTION VALUE
PCLN1 type of coordinates @ = rectangular
1 = polar
PCLN2 real part of number if PCLN1 = ¢
modulus if PCLN1 =1
PCLN3 imaginary part of number if
PCLN1 = ¢
phase if PCLN1 =1
OUTPUT
P real part of logarithm if PCLN1
=0
modulus if PCLN1 =1
Q imaginary part of logarithm if
PCLN1 = ¢
phase if PCLN1 = 1
FUN. Return Status @ = correct calculation
1 = modulus less than
or equal to zero
2 = PCLN1 other than
g or 1
CALLING SEQUENCE GOSUB 344p1
METHOD See Appendix A
CALLED SUBROUTINES GOSUB 32481

5-13




TEST PROGRAM FOR SLCLN.

TEST PROGRAM NAME: SLCLN

Note:

MERGE: SLCLN.

INPUT OUTPUT

ENTER @ (rectangular or 1

(polar) @ real part imaginary part

ENTER x+iy As x,y 1, @ z 1.000000  0.0000000
1nz ¢.0000000 ¢.0000000

ENTER @ (rectangular) or 1

(polar) @ real part imaginary part

ENTER x+iy As x,y @, @ z ¢.000000 ¢.0000000
modulus >@ only

ENTER @ (rectangular) or 1

(polar) 1 modulus phase

ENTER modulus, phase @, @ z d.000000 g.0000000
modulus >@ only

ENTER @ (rectangular) or 1

(polar) 1 modulus phase

ENTER modulus, phase? 1, z 1.0000000 0.0000000
1nz g.0000000 0.000000
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EXPONENTIAL OF A COMPLEX NUMBER

To compute the exponential of a complex number; both the argument and
the results can be expressed in rectangular or polar coordinates

INPUT
VARIABLE DESCRIPTION VALUE
. PCEXP1 types of coordinates @ = rectangular
1 = polar
PCEXP2 real part of number if PCEXP1 = @
modulus if PCEXP1 = 1
PCEXP3 imaginary part of number
PCEXP1 = ¢
phase if PCEXP1 = 1
‘ OUTPUT
P real part of exponential if
‘ PCEXP1 = ¢
modulus if PCEXP1 = 1
Q imaginary part of exponential if
PCEXP1 = @
phase if PCEXP1 = 1
FUN. Return Status @ = correct calculation
1 = modulus less than @
2 = PCEXP1 other than

@ or 1

CALLING SEQUENCE GOSUB 34601

METHOD See Appendix A

CALLED SUBROUTINES GOSUB 3261




TEST PROGRAM FOR SLCEXP.

TEST PROGRAM NAME: SLCEXP

Note:

MERGE: SLCEXP.

INPUT OUTPUT
ENTER @ (rectangular) or 1 ‘
(polar) @ real part imaginary part
ENTER x+iy As x,y 1, @ z 1.0000000 ¢.0000000
expz 2.71828174 §.0000000
59106
ENTER @ (rectangular) or 1
(polar) 1 modulus phase
ENTER modulus, phase 1, # z 1.00000000 ¢.00000000
expz 2.7182174  §.00000000
59106

OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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RECIPROCAL OF A COMPLEX NUMBER

To compute the reciprocal of a complex number; both the argument and
the results can be expressed either in rectangular or polar coordinates

INPUT
VARIABLE DESCRIPTION VALUE
PCRZ1 type of coordinates @ = rectangular
1 = polar
PCRZ2 real part of number if PCRZ1 = @
modulus if PCRZ1 =1
PCRZ3 imaginary part of number if
PCRZ1 = ¢
phase if PCRZ1 = 1
OUTPUT
P real part of reciprocal if PCRZ1
=0 )
modulus if PCRZ1 = 1
Q imaginary part of reciprocal if
PCRZ1 = @
FUN. Return Status @ = correct calculation
1 = modulus less than @
2 = PCRZ1 other than

@ or 1

CALLING SEQUENCE GOSUB 34801

METHOD See Appendix A

CALLED SUBROUTINES GOSUB 32601




TEST PROGRAM FOR SLCRZ.

TEST PROGRAM NAME: SLCRZ

Note:

MERGE: SLCRZ.

INPUT OUTPUT
ENTER @ (rectangular) or 1
(polar) ¢ real part imaginary part
ENTER x+iy As x,y @, 5 z ¢.000000¢ 5.00000000
1/z ¢.000000 -.20000009¢
ENTER @ (rectangular) or 1
(polar) 1 modulus phase
ENTER modulus, phase 1, 2 z 1.0000000 2.0000000
1/2 1.0000000 -2.0000000
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MULTIPLICATION OF TWO COMPLEX NUMBERS

To compute the product of two complex numbers, both the argument and
the results can be expressed either in rectangular or polar coordinates

INPUT

VARIABLE DESCRIPTION VALUE

. PCMZ5 type of coordinates @ = rectangular \

= polar |

=
|

PCMZ1 real part of first number if PCMZ5
=

modulus of first number if PCMZ5
=1

PCMZ2 imaginary part of first number if

PCMZ5 = ¢
. phase of first number if PCMZ5 = 1
PCMZ3 real part of second number if
PCMZ5 = @
modulus of second number if

PCMZ5 = 1

PCMZ4 imaginary part of second number

if PCMZ5 = ¢

‘ ' phase of second number if PCMZ5
=1




OUTPUT

FUN.

real part of the product if
PCMZ5 = @

modulus of the product if
PCMZ5 = 1

imaginary part of the product
if PCMZ5 = ¢

phase of the product if

PCMZ5 = 1

Return Status

—_

correct calculation
modulus less than §
PCMZ5 other than @
or 1

CALLING SEQUENCE GOSUB 35¢@1

METHOD See Appendix A

CALLED SUBROUTINES GOSUB 326@1
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TEST PROGRAM FOR SLCZMZ.

TEST PROGRAM NAME: SLCZMZ

_Note:

MERGE: SLCZMZ.

INPUT

OUTPUT

ENTER @ (rectangular) or
(polar) @

ENTER x+iy As x,y for z1
ENTER x+iy As x,y for z2

ENTER @ (rectangular) or
(polar) 1

ENTER modulus, phase for
ENTER modulus, phase for

2173, 6
22?2, 3

22
z1xz2

z2
21%*z2

real part imaginary part
2 2
1 -4

1.000000  -6.00000009
d0009dD+001  GP0gD+009

modulus phase
3 6
2 3

6.0000000 2.716814692
g@geegD+a0g 82@D+@0@




To compute the ratio of two complex numbers; both the argument and the
results can be expressed either in rectangular -or polar coordinates

DIVISION OF TWO COMPLEX NUMBERS

INPUT
VARIABLE DESCRIPTION VALUE I
PCZDZ5 type of coordinates @ = rectangular
1 = polar

PCZDZ1 real part of Z, if PCZDZ5 = @

modulus of Z1 if PCZDZ5 =1 Z1 = PCZDZ1 + i PCZDZ2
PCZDZ2 imaginary part of 21 if PCZDZ5 = @

phase of Z, if PCZDZ5 = 1 .
PCZDZ3 real part of Z, if PCZDZ5 = @

modulus of 22 if PCZDZ5 =1 .Z2 = PCZDZ3+ i PCZDZ4
PCZDZ4 imaginary part of Z, if PCZDZ5 = ¢+

phase of Z2 if PCZDZ5 = 1




D @

D O

ELEMENTARY FUNCTIONS (COMPLEX)

OUTPUT
p real part of ratio if PCZDZ5 = ¢
modulus of ratio if PCZDZ5 = 1
Q imaginary part of ratio if
PCZDZ5 = ¢
phase of ratio if PCZDZ5 = 1
FUN. Return Status @ = correct calculation

-
|

= 12,1<8 or |2,I<4
2 = PCZDZ5 other than
@ or 1

CALLING SEQUENCE GOSUB 352¢1

METHOD See Apppendix A

CALLED SUBROUTINES GOSUB 326@1




TEST PROGRAM FOR SLCZDZ.

TEST PROGRAM NAME: SLCZDZ

Note:

MERGE: SLCZDZ.

INPUT OUTPUT
ENTER @ (rectangular) or 1
(polar) ¢ real part 1imaginary part
ENTER x+iy As x,y for z1 ? 2, 2 z1 2 2
ENTER x+iy As x,y for z2 2 1, -4 z2 1 -4
z1/z2  -3.5294 5.8823529
1176D-¢@1  4D-@@1
ENTER @ (rectangular) or 1
(polar) 1 modulus phase
ENTER modulus, phase for z1 ?
19, 3.14 z1 10 3.14
ENTER modulus, phase for z2 ?
2, 3.14 22 2 3.14
21/22 5. 00000 g.000000
gogD+@ee @oE+000

5-24

OLINUM (NUMERICAL ANALYSIS) USER GUIDE

s

¢



ELEMENTARY FUNCTIONS (COMPLEX)

‘ SLCSQR.
SQUARE ROOT OF A COMPLEX NUMBER ’
To compute the square root of a complex number; both the argument and the
results can be expressed either in rectangular or polar coordinates
INPUT
VARIABLE DESCRIPTION VALUE
PCSQR1 type of coordinates @ = rectangular
1 = polar
PCSQR2 real part of number if PCSQR1
=0
| modulus if PCSQR2 = 1
PCSQR3 imaginary part of number if
PCSQR1 = @
phase if PCSQR1 = 1
~
OUTPUT
() P real part ofVZ if PCSQR1 = @ Z = PCSQR2+iPCSQR3
modulus of VZ if PCSQR1 = 1
Q imaginary part ofV/Z if PCSQR1 = ¢
phase of VZ is PCSQR1 = 1
FUN. Return Status @ = correct calculation
1 = modulus less than @
2 = PCSQR1 other than
@ or 1
CALLING SEQUENCE GOSUB 35401
) METHOD See Appendix A
(4 CALLED SUBROUTINES GOSUB 32681




TEST PROGRAM FOR SLCSQR.

TEST PROGRAM NAME: SLCSQR

Note:

MERGE: SLCSQR.

INPUT OUTPUT

ENTER @ (rectangular) or 1

(polar) @ real part imaginary part

ENTER x+iy As x,y -1, @ z =1 @

z".5 ¢.00000 1.000000
goggE+000  0PPPD+000

ENTER @ (rectangular) or 1

(polar) 1 modulus phase
ENTER modulus, phase 1,-1.57@7964 z 1 -1.57@7964
z”.5 1.00000 -7.853982

gegegD+g0g  @egegD-gen
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ELEMENTARY FUNCTIONS (COMPLEX)

IN;EGRAL POWER OF A COMPLEX NUMBER
(Z RECURRENCE)

To compute the power 2" with Z complex and n integer >@. Both the
argument and the results can be expressed either in rectangular or polar

coordinates
INPUT
VARIABLE DESCRIPTION VALUE
PCZN1 type of coordinates @ = rectangular
1 = polar
PCZN2 exponent
PCZN3 real part of Z if PCZIN1 = @ Z = PCZN3+iPCZN4
modulus of Z if PCZN1 =1
PCZN4 imaginary part of Z if PCZN1 = @
phase of Z if PCZN1 =1
OUTPUT
P real part ofnZn if PCZN1 = @
modulus of Z if PC%N1 =1
Q imaginary Rart of Z if PCZIN1 = @
phase of Z if PCZIN1 = 1
FUN. Return Status @ = correct calculation
1 = modulus less than @
2 = exponent other than
an integer>{
3 = PCZN1 other than
@ or1
CALLING SEQUENCE GOSUB 35601
METHOD See Appendix A
CALLED SUBROUTINES GOSUB 32601
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TEST PROGRAM FOR SLCZN.

TEST PROGRAM NAME: SLCZN

Note: In this test program if the parameter PCZINZ = -1 the base and/or
the type of coordinate can be changed

MERGE: SLCZN.

INPUT OUTPUT

ENTER @ (rectangular) or 1
(polar) @ real part 1imaginary part
ENTER x+iy As x,y 1, 1 z 1 1

ENTER EXPONENT @ z°¢ g
ENTER EXPONENT 1 z™ 1 1
ENTER EXPONENT 2 272 2
ENTER EXPONENT 3 z 3 2
ENTER EXPONENT -1
ENTER @ (rectangular) or 1 B

(polar) 1 modulus phase
ENTER modulus, phase 1, 1 z 1 1
ENTER EXPONENT @ z°¢ 1 ')
ENTER EXPONENT 1 zM 1 1

ENTER @ (rectangular) or 1 (polar)




ELEMENTARY FUNCTIONS (COMPLEX)

™
REAL POWER OF A COMPLEX NUMBFR
To compute Za with Z complex and a a real number; both the argument and
the results can be expressed in either rectangular or polar
coordinates
INPUT
VARIABLE DESCRIPTION VALUE
™
PCZA1 type of coordinates @ = rectangular
1 = polar
PCZA2 exponent
PCZA3 real part of Z if PCZA1 = @ Z = PCZA3+1iPCZA4
modulus of Z if PCZA1 = 1
PCZA4 imaginary part of Z if PCZA1 = ¢
phase of Z if PCZA1 =1
N
\
OUTPUT
P real part ofaZa if PCZA1 = ¢ a(= PCZA2)
modulus of Z~ if PC§A1 =1
Q imaginary gart of Z° if PCZA1 = ¢
phase of Z~ if PCZA1 = 1
FUN. Return Status @ = correct calculation
1 = modulus less than @
2 = PCZA1 other than
@ or 1
CALLING SEQUENCE GOSUB 35881
~
METHOD See Appendix A
CALLED SUBROUTINES GOSUB 324@¢1, 326081
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TEST PROGRAM FOR SLCZA.

TEST PROGRAM NAME: SLCZA

Note: In this test program if the parameter PCZA2 =
and/or type of coordinate can be changed

9D99 the base

MERGE: SLCZA.

ENTER # (rectangular) or 1 (polar)

INPUT OUTPUT
ENTER @ (rectangular) or 1
(polar) @ real part imaginary part
ENTER x+iy As x,y 2, 0 z 2 )
ENTER EXPONENT .5 25 1.4142135 )

3816986

ENTER EXPONENT -1 "1 .5 g
ENTER EXPONENT 9D99
ENTER @ (rectangular) or 1
(polar) 1 modulus phase
ENTER modulus, phase 1, 1 z 1 1
ENTER EXPONENT .25 2 25 1 2D
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ABOUT THIS CHAPTER

This chapter contains subroutines for the Solution of Polynomials

CONTENTS

SLPLRC.

SLPLRR.

SLPRRR.

SLPLYM.

SLPLYD.

SLPTRA.

Evaluation of Real  6-1
Polynomials (Complex
Argument)

Evaluation of Real  6-3
Polynomials (Real
Argument)

Calculating the 6-5
Coefficients of a
Polynomial from

Roots

Multiplication of 6-7
Two Real Poly-
nomials

Division of Two 6-9
Real Polynomials

Translation of 6-12
Coefficients of a
Real Polynomial
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POLYNOMIALS

EVALUATION OF REAL POLYNOMIALS
(COMPLEX ARGUMENT)

To evaluate a polynomial with real coefficients and complex arguments

INPUT
VARIABLE DESCRIPTION VALUE
PPLRC1 real part of the argument
PPLRC2 imaginary part of the argument
PPLRC3 degree of polynomial
E(PPLRC3+1)| vector of coefficients
(in descending order)
OUTPUT
P real part of the value
Q imaginary part of the value
FUN. Return Status = correct calculation

degree other than
a positive integer

CALLING SEQUENCE GOSUB 36001

METHOD

CALLED SUBROUTINES




TEST PROGRAM FOR SLPLRC.

TEST PROGRAM NAME: SLPLRC

Note: In this test program if the real part of the argument (PPLRC1) =
9099 it 1is possible to change the degree of the polynomial and
then the values of the coefficients

MERGE: SLPLRC.

INPUT OUTPUT

ENTER DEGREE OF POLYNOMIAL ? 4 ~ DEGREE COF POLYNOMIAL 1S 4
COEFFICIENTS (in descending order)
ENTER C4 ? 1

ENTER C3 ? 2

ENTER C2 ? 3

ENTER C1 ? 4

ENTER C@ ? 5

ENTER ARGUMENT x+iy As x,y ? 1, 14| p(1+141i) = 35491 - 161841
ENTER ARGUMENT x+iy As x,y ? @, 1 p(@+11) = 3+2i

ENTER ARGUMENT x+iy As x,y ?
9099, @

ENTER DEGREE OF POLYNOMIAL?




D O

POLYNOMIALS

EVALUATION OF REAL POLYNOMIALS
(REAL ARGUMENT)

* SLPLRR.

To calculate the value of a polynomial with real coefficients and real

arguments
INPUT
VARIABLE DESCRIPTION VALUE
PPLRR1 argument
PPLRR2 degree
E(PPLRR2+1)| vector of coefficients
(in descending order)
OUTPUT
P value of polynomial
FUN. Return Status

correct calculation
degree other than
a positive integer

CALLING SEQUENCE GOSUB 36201

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLPLRR.

TEST PROGRAM NAME:

SLPLRR

Note: 1In this test program if the argument (PPLRR1) = 9D99 it is
possible to change the degree of the polynomial and the values
of the coefficients

MERGE: SLPLRR.

INPUT

OUTPUT

ENTER DEGREE ? 3

ENTER COEFFICIENT C3

ENTER DEGREE ?

9D99

?

COEFFICIENTS (in descending order)

1

ENTER COEFFICIENT C2 ? -6
ENTER COEFFICIENT C1 ? 11
ENTER COEFFICIENT C@ ? -6
ENTER ARGUMENT ? 1

ENTER ARGUMENT ? 2

ENTER ARGUMENT ? 3

ENTER ARGUMENT ? 4

ENTER ARGUMENT ? 3.1415927
ENTER ARGUMENT ?

DEGREE OF POLYNOMIAL 1S 3

P(1) =0
P(2) = ¢
P(3) =@
P(4) =6

P(3.1415927) = .346169598291242




CALCULATING THE COEFFICIENTS

OF A POLYNOMIAL FROM ROOTS

To compute the coefficients of a real polynomial from its roots

INPUT
VARIABLE DESCRIPTION VALUE
PPRRR1 number of roots
E(PPRRR1+1)| vector of roots

OUTPUT

. A(PPRRR1+1)

FUN.

vector of coefficients (in

descending order)
Return Status

=
1

correct calculation
= number of roots
other than a
positive integer

-
|

CALLING SEQUENCE GOSUB 36401

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR

SLPRRR.

TEST PROGRAM NAME:

SLPRRR

Note:

MERGE: SLPRRR.

ENTER #RO0OTS ? 5
ENTER ROOT 1 ? -1
ENTER ROOT 2
ENTER ROOT 3
ENTER ROOT 4
ENTER ROOT 5

N N R IRV
N ow =

ENTER #R0O0TS

-~

INPUT OUTPUT
ENTER #R0OTS ? 3 ROOTS: 3
ENTER ROOT 1 ? 1
ENTER ROOT 2 ? 2
ENTER ROOT 3 ? 3 DEGREE OF POLYNOMIAL 1S 3

COEFFICIENTS (IN DESCENDING ORDER)
1-611 -6
ROOTS: 5

DEGREE OF POLYNOMIAL IS 5 )
COEFFICIENTS (in descending order)
1 -15 7¢ -9¢ -71 185




POLYNOMIALS

)

MULTIPLICATION OF TWO REAL POLYNOMIALS

To compute the product of two polynomials with real coefficients

SLPLYM.

INPUT
VARIABLE DESCRIPTION VALUE
PPLYM1 degreee of polynomiall
PPLYM2 degree of polynomial?2

EC)

FC)
&)

array of coefficients of poly-
nomiall (one dimension) in
increasing order, E(1) = a ,

0
E(l) = a.

1-1

array of coefficients of poly-
nomial?2

OUTPUT

n P()

FUN.

array of coefficients of resultant
polynomial

degree of resultant poiynomial
Return Status

—

correct calculation
degree other than
a positive integer

CALLING SEQUENCE GOSUB 36601

METHOD See Appendix A

D ®

CALLED SUBROUTINES
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TEST PROGRAM FOR

SLPLYM.

TEST PROGRAM NAME: SLPLYM

Note:

MERGE: SLPLYM.

INPUT

OUTPUT

ENTER DEGREE OF POLYNOMIAL 1 ? 3
COEFFICIENTS (in descending order)
ENTER a3 ? 1

ENTER a2 ? -6

ENTER a1 ? 11

ENTER aff ? -6

ENTER DEGREE OF POLYNOMIAL 2 ? 5
COEFFICIENTS (in descending order)
ENTER a5 ? 1

ENTER a4 ? 1
ENTER a3 ? -8
ENTER a2 ? -16
ENTER a1 ? 7
ENTER a@ ? 15

ENTER DEGREE OF POLYNOMIAL 172

DEGREE OF POLYNOMIAL1 IS 3

DEGREE OF POLYNOMIALZ2 1S 5

DEGREE OF PRODUCT 1S 8
COEFFICIENTS (in descending order)
1 -5 -3 37 9 -155 83 123 -90




o
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POLYNOMIALS

DIVISION OF TWO REAL POLYNOMIALS

SLPLYD.

To compute the quotient and remainder of the division of two polynomials
with real coefficients

INPUT
VARIABLE DESCRIPTION VALUE
PPLYD1 degree of dividend
PPLYD2 degree of divisor, PPLYD2<PPLYD1
EC ) array of coefficients of
dividend in increasing order,
E(1) = a ...E(1) = a;_4
FC) array of coefficients of divisor
OUTPUT
P( ) array of coefficients of quotient
N degree of quotient
Q( ) array of coefficients of remainder
Q1 degree of remainder, Q1 = -1 if
there is no remainder
FUN. Return Status = correct calculation
= degree of dividend
or divisor other
than positive
integers with
PPLYD2 < PPLYD1
leading coefficient
of divisor is
zero
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CALLING SEQUENCE GOSUB 36801

METHOD See Appendix A

CALLED SUBROUTINES
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POLYNOMIALS

TEST PROGRAM FOR SLPLYD.

TEST PROGRAM NAME: SLPLYD

Note:

MERGE: SLPLYD.

INPUT

OUTPUT

ENTER DEGREE OF DIVIDEND ? 8
COEFFICIENTS (in descending order)
ENTER a8 ? 1

ENTER a7 ? -5
ENTER a6 ? -3
ENTER a5 ? 37
ENTER a4 ? 9
ENTER a3 ? -155
ENTER a2 ? 83
ENTER a1 ? 123
ENTER a@ ? -90

ENTER DEGREE OF DIVISOR ? 3
COEFFICIENTS (in descending order)
ENTER a3 ? 1

ENTER a2 ? -6

ENTER a1 ? 11

ENTER aff ? -6

DEGREE OF DIVIDEND IS 8

DEGREE OF DIVISOR 1S 3

DEGREE OF QUOTIENT IS 5

COEFFICIENTS (in descending order)

11 -8 -16 7 15

6-11



TRANSLATION OF COEFFICIENTS OF
A REAL POLYNOMIAL

Given the real polynomial p(x), to calculate the coefficients of
q(x) = p(x+s) where ¢ is a real constant. S is a root of p(x) of

multiplicity j if the coefficients of xJ-1,

xJ=2...x° of q(x) are all

zero
INPUT
VARIABLE DESCRIPTION VALUE
PPTRA1 degree of p(x)
PPTRA2 shift

E(PPTRAT+1)

coefficients of p(x)
in increasing order

OUTPUT

E(PPTRAT+1)

FUN.

coefficients of q(x) = p(x+s) in
increasing order

Note: p(x) is destroyed and re-
placed by p(x+s)
Return Status

correct calculation
degree of p(x) not
a positive integer

CALLING SEQUENCE GOSUB 37001

METHOD See Appendix A

CALLED SUBROUTINES
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POLYNOMIALS

TEST PROGRAM FOR SLPTRA.

TEST PROGRAM NAME:

SLPTRA

Note: In this test program if the shift parameter (PPTRA2) = 9D99 it is
possible to change the degree of the polynomial and the values of
the coefficients

MERGE: SLPTRA.

INPUT

OUTPUT

ENTER DEGREE ? 5

ENTER COEFFICIENT C5
ENTER COEFFICIENT C4
ENTER COEFFICIENT C3

ENTER COEFFICIENT C2
ENTER COEFFICIENT C1

ENTER SHIFT ? @

ENTER SHIFT ? 1

ENTER SHIFT ? 2

ENTER SHIFT ? 9D99

ENTER DEGREE ?

?

?
?
?
?

COEFFICIENTS (in descending order)

1
1
-8
-15
i3

ENTER COEFFICIENT C@ ? 15

DEGREE OF POLYNOMIAL 1S 5

COEFFICIENTS OF p(x)<<-p(x+@)
(in descending order)
171 -8-16 7 15

COEFFICIENTS OF p(x)<—-p(x+1)
(in descending order)
166 -24 -4¢ ¢

COEFFICIENTS OF p(x)<=-p(x+2)
(in descending order)
116 94 236 280 ¢
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7. HIGHER MATHEMATICAL FUNCTIONS




ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of problems in Higher

Mathematical Functions.

CONTENTS

SLKMF.

SLEMF.

SLLAGG.

SLHNF.

SLHEN.

SLFOUR.

SLGAMA.

SLERF.

SLBJN.

Complete Elliptic
Integral of First
Kind

Complete Elliptic
Integral of Second
Kind

Generalised
Laguerre Qg}y-
nomial Ln  (x)

:ﬁzw}te Polynomial

HerTiye Polynomial
Hen

Evaluation of
Fourier Series

Gamma Function
Error Function erf(x)

Bessel Function ?;)
Integer Order Jn

7-1 SLII@X. Definite Integral
of the Bessel
Function lo(x)

7-3 SLSF. Fresnel Integral S(x)
SLCF. Fresnel Integral C(x)

7-5 SLCHYF. Confluent Hyper-
geometric Function

SLGHYP. Gauss Hyper-
7-7 geometric Function
SLSIF. Sine Integral Si(x)
7-9
SLCINF. Cosine Integral
Cin(x)
7-11
SLEIF. Exponential
Integral Ei(x)
7-13
SLEINF. Exponential
7-15 Integral Ein(x)
7-17

7-21

7-23

7-25

7-27

7-29

7-31

7-33

7-35
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HIGHER MATHEMATICAL FUNCTIONS

COMPLETE ELLIPTIC INTEGRAL OF SLKMF.
FIRST KIND

Evaluation of the Complete Elliptic Integral of the First Kind
dd

n/2
K(x) = —
l f(, v/1 —asin? 9

INPUT
VARIABLE DESCRIPTION VALUE
PKMF1 argument
OUTPUT
F value of function
Q value of last term calculated
FUN. Return Status @ = correct calculation
1 = no convergence af-
ter 1000 terms
2 = Ixl>1
CALLING SEQUENCE GOSUB 37201
METHOD See Appendix A
CALLED SUBROUTINES
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TEST PROGRAM FOR SLKMF.
TEST PROGRAM NAME: SLKMF
Note:
MERGE: SLKMF.
INPUT OUTPUT
ENTER X ? -.9 -.9 1.329362192885
ENTER X ? -.55 -.55 1.4@357375@272
ENTER X ? @ g 1.57@796326795
ENTER X ? .3333 .3333 1.7338963@7695
ENTER X ? .999999 * | last term !
* 3,17911319855@89D-@4
. 999999 5.128653257586
ENTER X ?
7-2 OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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HIGHER MATHEMATICAL FUNCTIONS

COMPLETE ELLIPTIC INTEGRAL SLEMF,
OF SECOND KIND

Evaluation of the Complete Elliptical Integral of the Second Kind

/2
E(x):/ /1 —asin?y  do
0

INPUT
VARIABLE DESCRIPTION VALUE
PEMF1 argument
OUTPUT
F value of function
Q value of last term evaluated
FUN. Return Status @ = correct calculation
1= [x|>1
2 = no convergence af-
ter 100@ terms
CALLING SEQUENCE GOSUB 374@1
METHOD See Appendix A
CALLED SUBROUTINES




TEST PROGRAM FOR SLEMF.

TEST PROGRAM NAME: SLEMF
Note:
MERGE: SLEMF.
INPUT OUTPUT
X Complete elliptic
ENTER X ? @ 1} 1.570¢796326795
ENTER X ? .1 . 1.53@757636899
ENTER X ? .3333 .3333 1.43@33@437176
ENTER X ? -.9 -.9 1.879834731649
ENTER X ? -.999999 * llast term!
* 3,15@062939249677D-04
-.99999 1.91@@#9577387¢
ENTER X ?
7-4 OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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DO

HIGHER MATHEMATICAL FUNCTIONS

GE?E?ALIZED LAGUEREE POLYNOMIAL SLLAGG.

Ln " (x)

Evaluation of the Generalised Laguerre Polynomial Ln

(a)(x)

INPUT
VARIABLE DESCRIPTION VALUE
PLAGG1 degree (n) (a)
PLAGG?2 parameter, a, of Ln . (x)
PLAGG3 argument
OUTPUT
L value of Ln(a)(x)
FUN. Return Status @ = correct calculation

-
1]

degree other than
a non-negative
integer

CALLING SEQUENCE GOSUB 37601

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR

SLLAGG.

TEST PROGRAM NAME:

SLLAGG

nomial

Note: In this test program if the argument (PLAGG3) = 9D99 it is
possible to change the degree and the parameter a of the poly-

MERGE: SLLAGG.

INPUT

OUTPUT

ENTER a,n? 1.5, 3

X a n generalised
Laguerre poly-
nomial L(a)n(x)

ENTER X ? ¢ ) 1.5 3 6.5625000000
g@D+30¢
ENTER X ? 1 1 155, - 3 7.7¢8333333
333D-¢@1
ENTER X ? 9D99
ENTER a,n ?
7-6
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HIGHER MATHEMATICAL FUNCTIONS

HERMITE POLYNOMIAL Hn (x)
Evaluation of the Hermite Polynomial Hn(x)
INPUT
VARIABLE DESCRIPTION VALUE
‘ PHNF1 degree (n)
PHNF2 argument (x)
\ OUTPUT
Y
‘ H value of Hn(x)
FUN. Return Status @ = correct calculation
1 = degree not a inte-
ger>@
CALLING SEQUENCE GOSUB 378@1
~ METHOD See Appendix A
,-n\ CALLED SUBROUTINES

7-7



TEST PROGRAM FOR SLHNF.
TEST PROGRAM NAME: SLHNF
Note: 1In this test program if the argument (PHNF2) = 9D99 it is
possible to change the degree of the polynomial
MERGE: SLHNF.
INPUT OUTPUT
X n Hermite Polynomial
Hn(x)
ENTER n ? 2
ENTER X 2 1 1 2 2.000000000000D+000
ENTER X ? 2.5 2.5 2 2.30000000000D+9¢
ENTER X ? -.1 -.1 2 -1.96000000000D+300
ENTER X ? 9D99
ENTER n ?
7-8 OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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HIGHER MATHEMATICAL FUNCTIONS

HERMITE POLYNOMIAL Hep (x)

Evaluation of the Hermite Polynomial Hen(x)

SLHEN.

INPUT
VARIABLE DESCRIPTION VALUE
PHEN1 degree (n)
PHEN2 argument (x)
OUTPUT
H value of Hen(x)
FUN. Return Status

correct calcula-

tion
degree not an
integer> @

CALLING SEQUENCE GOSUB 38@@1

METHOD See Appendix A

CALLED SUBROUTINES

7-9



TEST PROGRAM FOR SLHEN.

TEST PROGRAM NAME: SLHEN

Note: 1In this test program if the argument (PHEN2) = 9D99 it is
possible to change the degree of the polynomial

MERGE: SLHEN.

INPUT OUTPUT
X n Hermite Polynomial
Hen(x)
ENTER n ? 2
ENTER X ? @ ) 2 -1.0000000000D+000
ENTER X ? -2 ) 2 3.0000000030D+000
ENTER X ? 9D99
ENTER n ?

7-10 OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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HIGHER MATHEMATICAL FUNCTIONS

EVALUATION OF FOURIER SERIES

Evaluation of a Fourier series

INPUT
VARIABLE DESCRIPTION VALUE
PFOUR1 maximum harmonic order to be
considered
PFOUR2 value for which the series will
be evaluated
A(PFOUR1+1)| array of A values (See Appendix A)
B (N) array of B values
OUTPUT
F value of the function
FUN. Return Status @ = correct calculation

=
]

harmonic order not
an integer>@

CALLING SEQUENCE GOSUB 38201

METHOD See Appendix A

CALLED SUBROUTINES

7-11




TEST PROGRAM FOR

SLFOUR.

TEST PROGRAM NAME:

SLFOUR

Note: In this test program if the value of the argument (PFOUR2) =
9D99 the Harmonic Order and values of the coefficients can be
changed

MERGE: SLFOUR.

INPUT OUTPUT

COEFF1
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER

ENTER
ENTER
ENTER
ENTER
ENTER

CIENTS:
A5, B5
A4, B4
A3, B3
A2, B2
A1, B1
Ag ? 6

NN N ) N

1
2

9

? 9D99
HARMONIC ORDER ?

<X X X X
-o - "\’

ENTER HARMONIC ORDER ? 5

F(1)
F(2)
F(9)

5.8386978656@535
2.17@85722@88814
1.27171117867337

7-12
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GAMMA FUNCTION

~o0

To evaluate the gamma function ['(x) = / tr-le—tdt (x > 0)
v o0
INPUT
VARIABLE DESCRIPTION VALUE
PGAMA1 value for which the function

will be calculated

OUTPUT
FUN. the value of /'(x). For x = @,
-1, -2,...-n a value of 9.D99

is returned

CALLING SEQUENCE GOSUB 3841

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR

SLGAMA.

TEST PROGRAM NAME:

SLGAMA

Note:

MERGE : SLGAMA.

INPUT OUTPUT
X Gamma Function .
ENTER X 2 1 1 1.0000000000D+000
ENTER X ? -.5 -.5 -3.5449¢7983672D+00@
ENTER X ? 2.5 2.5 1.329340493877D+300
ENTER X ? =2 -2 9.0000000000dD+399
ENTER X ?




ERROR FUNCTION erf(x)

2 C
To calculate the value of the error function erf(z) = \/—_f et dt
T Jo
INPUT
VARIABLE DESCRIPTION VALUE
PERF1 value for which the function is

to be calculated

OUTPUT

. FUN. The value of erf(x)

CALLING SEQUENCE GOSUB 38601

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR

TEST PROGRAM NAME:

Note:

MERGE: SLERF.

INPUT OUTPUT
X error function
ENTER X 2 @ g g.00000000000E+000
ENTER X 2 1 1 8.427@@7477117D0-9¢1
ENTER X ? 4.9 4.9 9.999998981192D-@@#1
ENTER X ? -100 -10 -1.000000000009D+000
| ENTER X ?




BESSEL FUNCTION OF INTEGER ORDER J(x)

To evaluate the function y, where Jn(x) is a solution of the differ-
ential equation 42

at y+xdy + (a2 —nt)y =9
d x? dx
INPUT
VARIABLE DESCRIPTION VALUE
PBJN1 order (n)
PBIN2 argument (x)
OUTPUT

FUN.

value of Jn(x)
Return Status

()
1

= correct calculation
= order not an inte-
ger

CALLING SEQUENCE GOSUB 38801

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLBIN.

TEST PROGRAM NAME: BIN

Note: In this test program if the argument (PBIN2) = 9D99 it is
possible to change the value of the order (PBIN1)

MERGE: SLBIN.

INPUT OUTPUT
X n Bessel Function of
integer order Jn(x)
ENTER n ? @
ENTER X ?2 .1 1 g  9.975¢1562@66@D-@@1
ENTER X ?2 .5 5 g 9.3846980724¢2D-3¢1
ENTER X ? 9D99
ENTER n 2 3
ENTER X ?2 2 7 3 1.289432494744D-0@1

ENTER X

=)




DEFINITE INTEGRAL OF THE BESSEL FUNCTION 1,(x)

To evaluate the integral _ﬂx)=:I‘IoU)dt
v 0

INPUT
VARIABLE DESCRIPTION VALUE
| P11@X1 Superior limit of integration

OUTPUT

‘ FUN.

value of the function

CALLING SEQUENCE GOSUB 39¢@1

METHOD See Appendix A

| l

CALLED SUBROUTINES




SLII@X.

TEST PROGRAM FOR
TEST PROGRAM NAME : INT
Note:
MERGE: SLII@X.
INPUT OUTPUT

ENTER X ? @
ENTER X ? .1
ENTER X ? 50
ENTER X ?

definite integral of
Bessel Function lo(x)

g
.10@@83364589534
2.96296592994721D+20

\




FRESNEL INTEGRAL S(x)

To evaluate the integral S(x) =f sin (—:— t”)dt
0

INPUT
VARIABLE DESCRIPTION - VALUE
PSF1 upper limit of integration
OUTPUT
Sk the value of the function
FUN. Return Status @ = correct calculation
1 = |x[>3.5
CALLING SEQUENCE GOSUB 39281
‘ METHOD See Appendix A
. CALLED SUBROUTINES




TEST PROGRAM FOR SLSF.
TEST PROGRAM NAME:  SFR
Note:
MERGE: SLSF.
INPUT OUTPUT
X Fresnel Integral S(x)
ENTER X ? @ g ¢
ENTER X ? -.5 = -6.47324328600@34D-02
ENTER X ? 3.3 3.3 .519286@797330¢48

ENTER X ?




FRESNEL INTEGRAL C(x)

ne T
To evaluate the integral C(x) =] cos (—Q—tﬁ)dt

0

INPUT
VARIABLE DESCRIPTION VALUE
PCF1 superior limit of integration
OUTPUT
I € the value of the function
FUN. Return Status @ = correct calculation
. CALLING SEQUENCE GOSUB 394@1
METHOD See Appendix A
‘ CALLED SUBROUTINES




TEST PROGRAM FOR SLCF.

TEST PROGRAM NAME: CFR

Note:
MERGE: SLCF.

INPUT OUTPUT

X Fresnel Integral C(x) .

ENTER X ? @ ) g
ENTER X ? -1 -1 -.779893387273324
ENTER X ? 3.1 3.1 .561593949173428
ENTER X ?




CONFLUENT HYPERGEOMETRIC FUNCTION

Evaluation of the confluent hypergeometric function

INPUT
VARIABLE DESCRIPTION VALUE
PCHYF1 parameters a,b and argument
PCHYF2 x of M(a,b,x) See Appendix A
PCHYF3
OUTPUT
S value of M(a,b,x)
FUN. Return Status = correct calculation

-f b =5 ¢, -1, -2-'-

CALLING SEQUENCE GOSUB 39601

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLCHYF.

TEST PROGRAM NAME: CHYF

Note: In this program if the argument (PCHYF3) = 9D99 it is possible
to change the values of the other two parameters

MERGE: SLCHYF.

INPUT OUTPUT

X a b Confluent
hypergeometric
function
M(a,b,x)

ENTER a,b ? -.5, .2

ENTER X ? .3 .3 -.5 .2 1.997319258826D

-ge

ENTER X ? .4 .4 -.5 .2 -9.15428@123¢3

7D-@@2

ENTER X ? 9D99

ENTER a,b ? -1, .6

ENTER X ? -5 -5 -1 .6  9.3333333333D+

gag

ENTER X ?




GAUSS HYPERGEOMETRIC FUNCTION

Evaluation of the Gauss hypergeometric function

INPUT
VARIABLE DESCRIPTION VALUE
PGHYP1
PGHYP2 parameters a,b,c and argument x See Appendix A
PGHYP3 of F(a,b,c,x)
PGHYP4
OUTPUT
S value of function
FUN. Return Status @ = correct calculation
1 = incorrect parameter
c
2 = invalid x for
a,b,c
3 = no convergence af-
ter 1000 terms
CALLING SEQUENCE GOSUB 398¢1
. METHOD See Appendix A
. CALLED SUBROUTINES




TEST PROGRAM FOR SLGHYP.

TEST PROGRAM NAME : GHYP

Note: 1In this program if the argument (PGHYP4) = 9D99 it is possible
to change the values of the other parameters

MERGE: SLGHYP.

ENTER a,b,c ? 2,2,4.5
ENTER X 2 5

ENTER X ? 9D99
ENTER a,b,c ? -1.5, -2.5, 5
ENTER X 2 1

ENTER X ?

INPUT OUTPUT
X a b c Gauss Hyper
geometric
function F(a,b,
c,X)

1

2 2 4.5 1.75518@915381D
+00g

-1.5 -2.5 5  1.7963@25914960
+00¢




)

D @

HIGHER MATHEMATICAL FUNCTIONS

SINE INTEGRAL Si(x)

To evaluate Si(z) =

SLSIF.

INPUT
VARIABLE DESCRIPTION VALUE
PSIF1 value for which the function
will be calculated
OUTPUT

FUN. value of function

CALLING SEQUENCE GOSUB 4¢@@1

METHOD See Appendix A

CALLED SUBROUTINES
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TEST PROGRAM FOR

SLSIF.

TEST PROGRAM NAME:

SIF

Note:

MERGE: SLSIF.

INPUT

OUTPUT

ENTER X ?
ENTER X ?
ENTER X ?
ENTER X ?

«D
1:5
19

sine integral Si(x)

4.93107418@¢431D-¢@1
1.324683531172D+00¢
1.6583475942190+@0¢¢




)
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HIGHER MATHEMATICAL FUNCTIONS

COSINE INTEGRAL Cin(x)

To calculate Chﬂx):‘/ e

(1 — cost
)(lt

Jo t

SLCINF.

INPUT

VARIABLE

DESCRIPTION

VALUE

PCINF1

upper limit of integration

OUTPUT

FUN.

value of function

CALLING SEQUENCE GOSUB 4¢2¢1

METHOD See Appendix A

CALLED SUBROUTINES
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TEST PROGRAM FOR

SLCINF.

TEST PROGRAM NAME :

CINF

Note:

MERGE: SLCINF.

INPUT

OUTPUT

ENTER X ? -.5

ENTER X ? 10
ENTER X ?

X cosine integral Cin(x)
-.5 6.18525631482@D-00¢

190 2.92525719¢90@D+0dg




D @

HIGHER MATHEMATICAL FUNCTIONS

EXPONENTIAL INTEGRAL FEi(x)

o0 e_g
To evaluate E,(v) = { —7——d( (r > U)

v =

SLEIF.

INPUT
VARIABLE DESCRIPTION VALUE
PEIF1 inferior limit of integration
0)
OUTPUT
E value of function
FUN. Return Status @ = correct calculation
1:%x< @
CALLING SEQUENCE GOSUB 4@4@1
METHOD See Appendix A
CALLED SUBROUTINES
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TEST PROGRAM FOR

SLEIF.

TEST PROGRAM NAME:

EIF

Note:

MERGE: SLETIF.

INPUT

OUTPUT

ENTER X ?
ENTER X ? 1
ENTER X ? 5
ENTER X ?

o1
=

X

exponential integral Ei(x)

.1 -6.22812845946D+30@¢

1
5

.7 3.920963214242D+@00
4.018527538587D+@@1




EXPONENTIAL INTEGRAL Ein(x)

To calculate the value of

. Dy
E;.(x) =fx —t—dt+ Ina + yp

INPUT
VARIABLE DESCRIPTION VALUE
PEINF1 inferior limit of integration(x)

OUTPUT
FUN. the value of the function

CALLING SEQUENCE GOSUB 47¢@1

METHOD See Appendix A

CALLED SUBROUTINES




|

TEST PROGRAM FOR SLEINF.
TEST PROGRAM NAME : EINF
Note:
MERGE: SLEINF.
INPUT OUTPUT

ENTER X 2 .1
ENTER X ? 3
ENTER X ? 5

ENTER X ?

exponential integral Ein(x)

.9755453@327D-@@1
.16888763347D+@@1
.21878@18729D+@@1




8. SOLUTION OF EQUATIONS




ABOUT THIS CHAPTER

This chapter contains subroutines for the Solution of Equations.

CONTENTS

SLBAIR.

SLRBIS.

SLNLIN.

Roots of a Real 8-1
Polynomial (Newton-
Bairstow)

Roots of a Real 8-4
Function
(Bisection)

Solution of a Non- 8-7
linear System

—
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ccC




ROOTS OF A REAL POLYNOMIAL
(NEWTON - BAIRSTOW)

The routine calculates real or complex roots of a polynomial with real

coefficients
INPUT
VARIABLE DESCRIPTION VALUE
PBAIR1 first approximation to p
PBAIR2 first approximation to 9
PBAIR3 tolerance(E)
PBAIR4 maximum number of iterations (Z)
PBAIRS deflation switch @ = no deflation
for PBAIRS = 1 the original poly- | 1 = deflation
nomial f(x) will be deflated by a
found factor g(x). The coeffi-
cients of f(x)/g(x) will replace
those of f(x) in the vector E( ).
Repeated application of the
routine with PBAIRS = 1 will find
all roots of f(x)
D degree of polynomial f(x)
E(D+1) coefficients of f(x) in ascending

order




OUTPUT

R1,R2
or
R1
or
RT
R2
P1,P2

Q1,Q2
FUN.

two real roots of f(x)
one real root of f(x)

real part of complex
imaginary part conjugates
real and imaginary parts of

value of polynomial at complex
roots, or value at each real root
last computed values of Pk,Qk
Return Status

only one real root
R1,R2=0

two real roots

two complex roots

= no solution after

PBAIR4 iterations
degree other than
positive integer

CALLING SEQUENCE GOSUB 4@6@1

METHOD See Appendix A

CALLED SUBROUTINES GOSUB 36@@1

8-2
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SOLUTION OF EQUATIONS

TEST PROGRAM FOR SLBAIR.

TEST PROGRAM NAME: BAIR

Note: 1In this program if the approximations to Pk (PBAIR1) = 9D99 it
is possible to change the value of the tolerance (PBAIR3); and
if the tolerance = 9D99 it is possible to change the values of
the degree of the polynomial and the coefficients

MERGE: SLBAIR.

INPUT

OUTPUT

ENTER DEGREE ? 5
COEFFICIENTS (in descending order)
ENTER C5 ? 1

ENTER C4 ? 1
ENTER C3 ? -8
ENTER C2 ? -16
ENTER C1 ? 7

ENTER C@ ? 15

ENTER TOLERANCE ? .@@g@g@1
ENTER MAX # OF ITERATIONS ? 50
DEFLATION ? 1(YES),@(NO) ? 1

ENTER APPROXIMATION p,q ? -@, -@

ENTER APPROXIMATION p,q ? 9D99, ¢
ENTER TOLERANCE ? 9D99
ENTER DEGREE ?

DEGREE OF POLYNOMIAL 1S 5

c5
C4
3
€2 =
Cl1 =7
Cg =15

o o n
- g =% =b
— @

o

TOLERANCE = .(@@@@1 MAX # OF
ITERATIONS = 50
DEFLATION REQUESTED
APPROXIMATION FACTOR p=@ g=@
TWO REAL ZEROS .9999999, -1.400¢d¢
7
FACTOR p=-@00¢0dg2
q=1. 000080
VALUES OF POLYNOMIAL

4.00000001121725D-@7
-1.6000000@803961D-37
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ROOTS OF A REAL FUNCTION (BISECTION)

To locate a root of a real function by bisection of a user-defined

interval
INPUT
VARIABLE DESCRIPTION VALUE
PRBIS1 tolerance
Q1,Q2 start and end of interval to
be examined
OUTPUT
U root of f(x)
Q1,Q2 final extremes of interval
FUN. Return Status = root found
= a pole is found
in the interval
01 [} 02
= no root in interval
= tolerance not
positive
CALLING SEQUENCE GOSUB 4¢8@1
METHOD See Appendix A
CALLED SUBROUTINES

OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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Note

The function f(x)xmust be included in the calling program as FNB. For
example, f(x) = e - x would be coded as DEF FNB(x) = EXP(-x) - x




TEST PROGRAM FOR SLRBIS.

TEST PROGRAM NAME: BISEL

Note:

MERGE: SLRBIS

INPUT

OUTPUT

ENTER start,end of INTERVAL
20,1
ENTER tolerance ? .@@1

ENTER start,end of INTERVAL
21, 14¢
ENTER tolerance ? .@@1

ENTER start,end of INTERVAL ?

interval [@,1] tolerance = -@@1
a solution is x = .56689453125
f(x) = 3.8927398147583D-@4

interval [1,1¢] tolerance = .@@1

interval

there is no root in the given

OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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SOLUTION OF EQUATIONS

SLNLIN.
SOLUTION OF A NON-LINEAR SYSTEM
Computation of a solution vector (a,...,a) of the system
Py, gy ooy @p), oo Fnl@y, &gy oo vy Tn) i.e. an n-tuple («,,...,a,) such that:
‘Fl(ul: ....L(,,) = ]"i(al! ....(X,,) = === fwn(“l* ...,(l”) :0
INPUT
VARIABLE DESCRIPTION VALUE
N order of the system
X maximum number of iterations
E tolerance
PNLIN2() vector of approximations (xi)
OUTPUT
PHLIMN2() solution vector
F(C) vector of the values of the
functions
FUN. Return Status @ = correct calculation
1 = no solution after
PNLIN2 iterations
2 = Jacobian matrix
is singular
3 = algorithm diverges
4 = tolerance not
positive
5 = maximum number of
iterations or
order not a
positive integer




CALCULATION A(12)

CALLING SEQUENCE GOSUB 41¢¢1

METHOD See Appendix A

CALLED SUBROUTINES

Note

The non-linear system of equations must be included in the calling
program as a subroutine whose first line is line 2@. Each function is
defined as F(i) and each variable x; as PNLIN2(i), 1 =1,2,...,N.

For example the system:

y1 = x1 + x2 -4

y2=xx-1 ‘

12

would be coded as:

2¢ F(1) = PNLIN2(1) * PNLIN2(1) + PNLIN2(2) * PNLIN2(2) - 4
3¢ F(2) = PNLIN2(1) * PNLIN2(2) - 1
4¢ RETURN




TEST PROGRAM FOR SLNLIN.

TEST PROGRAM NAME: NLIN

Note: User defined system:

' 20(F1) = PNLIN2(1)*PNLIN2(1)+PNLIN2(2)*PNLIN2 -4
3@ F(2) = PNLIN2(1)*PNLIN2(2) -1
4¢ RETURN

MERGE: SLNLIN.

INPUT OUTPUT

. ENTER ORDER OF THE SYSTEM ? 2
ENTER TOLERANCE ? .@@g@g@g1

ENTER MAX. NUMBER OF ITERATIONS
? 50 ORDER OF THE SYSTEM 2

MAX. NUMBER OF ITERATIONS 5¢
TOLERANCE .@¢@gg@
APPROXIMATION VECTOR

. ENTER X 1 2 ¢ i xi Fi
ENTER X 2 2 1 1 .517638068814319 7.3476855
@#@@365D-07
2 1.93185184848185 6.@¥@8351594¢
3346D-@8

ENTER TOLERANCE ?




C ¢
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9. LINEAR ALGEBRA




ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of problems in Linear

Algebra

CONTENTS

SLCRO.

SLCHO.

SLJAC.

SLHES.

SLHEV.

SLCHA.

Solution of a Linear
System and Matrix
Inversion for a
General Matrix

Solution of a Linear
System and Matrix
Inversion for a
Symmetric Positive-
definite Matrix

Eigenvalues and
Eigenvectors of a
Symmetric Matrix
using the Jacobi
Method

Eigenvalues of a
General Matrix using
the Q-R Algorithm

Eigenvectors of a
General Matrix

Characteristic Poly-
nomial of a General
Matrix

9-1 SLJCB.

9-5

9-10

9-13

9-17

Evaluation of the
Jacobian Matrix

9-23
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SOLUTION OF A LINEAR SYSTEM AND MATRIX
INVERSION FOR A GENERAL MATRIX

Solution of a linear system for multiple right-hand sides, matrix inver-
sion and evaluation of the determinant for a general square matrix of

order N
INPUT
VARIABLE DESCRIPTION VALUE
PCRO1 order of matrix (N)
PCRO2 tolerance(no test for singularity)
PCRO3 switch variable 1,2 = solution of
_ linear system
-1,-2 = matrix inver-
sion
PCRO2(N,N)| elements of matrix A (overwritten
by decomposition matrix)
G(N) right hand side (linear system
only)
OUTPUT
0 1 determinant of A
G(H(N)) solution vector (linear system
only) -1
F(N,N) inverse matrix, A  (inversion
only)
FUN. Return Status @ = correct calculation
1 = order other than
a positive integer
| 2 = tolerance<@ or>1
3 = matrix is singular
4 = matrix is nearly
singular
PCRO2 (H(N),N)
<PCR0O2
5 = PCRO3 other than
+ +
-1 or =2




CALCULATION  G(N) (inversion only) ; H(N)

CALLING SEQUENCE GOSUB 412¢1

METHOD See Appendix A

CALLED SUBROUTINES

Note

PCRO3 equals X1 for the first function call such that the matrix A is
decomposed.

For a second or subsequent function call PCR0O3 equals t2 which causes
the routine to bypass decomposition.

Failure to follow this procedure will generate erroneous results since
the matrix A is overwritten by the decomposition matrix.




TEST PROGRAM FOR

SLCRO.

TEST PROGRAM NAME: SLCROZ

Note: In this program if the switch variable (PCR03) = 9D99 the order
and the elements of the matrix can be changed

MERGE: SLCRO.

INPUT

OUTPUT

ENTER order of matrix ? 3

ENTER element
ENTER element
ENTER element
ENTER element
ENTER element
ENTER element
ENTER element
ENTER element
ENTER element

W w w NN N ===
“ - W e e e e o=
W= W= W =

ENTER tolerance ?

4

B I I B R B I
O NP OoONO0OTW oW

1d-9

ENTER 1 (system) or 2 (inverse)

21

ENTER b1 ? 4
ENTER b2 ? 6
ENTER b3 ? 1

matrix order 3

tolerance .@@g@@g@R1

right-hand side

bl = 4
b2 = 6
b3 =1

matrix is nearly singular - last
element of decomposition matrix is
-.272727272727273

determinant (in absolute value) =

3.00000000090

solution
x1 = =17
x2 = 3

x3 = 6.9999999998




INPUT

OUTPUT

ENTER 1 (system) or 2 (inverse)
2 2

ENTER 1 (system) or 2 (inverse)
? 9D99
ENTER ORDER OF MATRIX ?

inverse matrix

-1.1000000000¢D+001 3.000000EE3ED
+000  9.0000000000D+000
1.0000000000D+00¢ 8.8817841970@D-
@16 -1.0000000000D+000
1.00000000000@D+3@@ 8.881784197@@FD
-g16 -1.0000000000D+000
4.6666666667D+@@F -1.3333333333D+
@08 -3.6666666667D+@@d




SOLUTION OF A LINEAR SYSTEM AND
MATRIX INVERSION FOR A SYMMETRIC _
POSITIVE DEFINITE MATRIX

Solution of a linear system for multiple right-hand sides, matrix inver-
sion and evaluation of the determinant for a symmetric positive definite

matrix
INPUT
. VARIABLE DESCRIPTION VALUE
PCHO1 order of matrix (N)
PCHO2 tolerance (to test for positive
definiteness)
PCHO3 switch variable 1,2 = solution of
linear system
-1,-2 = matrix inver-
. PCHO2 s3on
(N(N+1)/2) elements of upper triangle of A
F(N) right-hand side (linear system)
OUTPUT
| ' F(N) solution vector (linear system)
0 determinant in absolute value
G(N(N+1)/2)| elements of upper triangle of
inverse A (inversion)
RE,Q see FUN. values 4 and 5
FUN. Return Status @ = correct calculation
1 = order other than
a positive integer
2 = tolerance<@ or>1
3 = matrix not positive
definite
4 = matrix not positive
definite or round-
‘ ing errors. The
diagonal element
. in row R@ of the
’ decomposing




OUTPUT

matrix is not
positive

matrix may not be
positive definite
The diagonal
element in row

R@ = Q(KPCHO2)
PCHO3 other than k4|
or -2

CALCULATION F(N) (inversion only): A, R1, R

CALLING SEQUENCE GOSUB 414¢1

METHOD See Appendix A

CALLED SUBROUTINES




Note

PCHO3 equals ¥1 for the first function call such that the matrix A is
decomposed. :

For a second or subsequent function call, PCHO3 equals 12 which causes
the routine to by-pass decomposition.

Failure to follow this procedure will generate erroneous results since
the matrix A is overwritten by the decomposition matrix




TEST PROGRAM FOR SLCHO.

TEST PROGRAM NAME: SLCHO2

elements

Note: 1In this program if the switch variable PCHO3 = 9D99 it is
possible to change the order of the matrix and the values of the

MERGE: SLCHO.

INPUT

OUTPUT

ENTER order of matrix ? 4

ENTER element 1,1 ? 2
ENTER element 1,2 ? -1
ENTER element 1,3 ? @
ENTER element 1,4 ? @
ENTER element 2,2 ? 2
ENTER element 2,3 ? -1
ENTER element 2,4 ? @
ENTER element 3,3 ? 2
ENTER element 3,4 ? -1

ENTER element 4,4 ? 2
ENTER tolerance ?.000@0@8@@1

ENTER 1 (system) or 2 (inverse)
21

ENTER b1 ? 1

ENTER b2 ? 4

ENTER b3 ? 6

ENTER b4 ? 9

symmetric matrix order 4

symmetric elements -1

symmetric elements @ -1

symmetric elements @ @ -1

tolerance for positive definite

test (@@@FBMN

right-hand side

b1 = 1
b2 = 4
b3 = 6
b4 =9

determinant (in absolute value) =

5.00000816081147

solution




INPUT

ENTER 1 (system) or 2 (inverse)
2 2

ENTER 1 (system) or 2 (inverse)
? 9D99
ENTER ORDER OF MATRIX ?

OUTPUT
X1 = 7.3999998238164
X2 = 13.799999141¢5¢4
X3 = 16.2000002010804
X4 = 12.5999996996847

Inverse matrix
.800000@11224664
.39999999991637

59999996768366
.79999997244996

.399999999916397
1.200000046@81518

.399999973499408

.600000033919231

.59999996768366
.19999993595412

1.199999894293¢7
.3999999734994¢8

.79999997244996
.60000P3@#3919231

.199999993595412

.7999999765@8471




EIGEN VALUES AND EIGEN VECTORS OF A SYMMETRIC
MATRIX USING THE JACOBI METHOD

Calculation of the eigen values and, optionally, the eigen vectors of
a symmetric matrix A, i.e. solution of the matrix equation Ax = 1x

Note: The routine uses the
function FNF

INPUT
VARIABLE DESCRIPTION VALUE
PJACT order of the matrix (N)
PJAC2 tolerance
PJAC3 switch variable @ = without eigen
vectors
1 = with eigen vectors
PJAC2(N) diagonal elements of the matrix
F(N(N-1)/2)| upper off-diagonal elements of
the matrix
OUTPUT
PJAC2(N) eigen values
VJAC7(N,N)| eigen vectors (columns of
VIAC7 ( )
FUN. Return Status @ = correct calculation
1 = PJAC3 not equal to
g or 1
2 = PJAC2 tolerance not
positive
3 = Order N other

than a positive
integer




CALCULATION F, B, J, 71, sz

u, c¢, s¢, D, Q, R

CALLING SEQUENCE GOSUB 41601

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLJAC.

TEST PROGRAM NAME: SLJAC2

.Note:

MERGE: SLJAC.

INPUT

OUTPUT

ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER

eigen

ENTER

order of matrix ? 3
element 1
element 1
element 1
element 2
element 2
element 3

tolerance

O W o~ N b O X

a.clr
17
27
37
2 ?
372
37
? 1d-1¢

vectors ? 1(yes), @#(no) ? 1

order of matrix ?

symmetric matrix order 3

symmetric elements 4

symmetric elements 2 3

tolerance .@@@@@@d@d31

eigen vectors requested
eigen values
13.687339256 2.619921695
6.692739049

eigen vectors (row-wise)
.590940671 .541016969
.598406@26

-.527975155 .82@223273
-.220172769

-.609943755 -.185834468
.77@346785




EIGEN VALUES OF A GENERAL MATRIX
USING THE Q-R ALGORITHM

Calculation of the eigen values of a general matrix A, i.e. solution

of the matrix equation Ax = Ax

INPUT

‘ VARIABLE

DESCRIPTION

VALUE

PHES1
PHES2
E(N,N)

order of the matrix (N) ~
tolerance
elements of the matrix

OUTPUT

F(N),G(N)

E(N,N)
P(N,N)
FUN.

'Il I

real and imaginary parts of the
eigen values
matrix U
matrix W=PQ
Return Status

see method

eigen values
calculated

PHES1 is a non
positive integer
PHES2 is not
positive

no convergence
after 3¢
iterations




CALCULATION  O(N), L!, K!, B, Q, R, S, X, Y, W, Z

CALLING SEQUENCE GOSUB 41801

METHOD See Appendix A

CALLED SUBROUTINES  GOSUB 46@@1

Note

The progress of the calculation may be followed on the display by remov-
ing REM from line 41893. The display then shows the iteration being
performed in each of the N-2 steps of the Q-R algorithm




TEST PROGRAM FOR

SLHES. and SLHEV.

TEST PROGRAM NAME: SLHES2

Note: The calculation of the eigen values is followed by the calcula-
tion of the corresponding eigen vectors using SLHEV. (GOSUB

460@1)

MERGE: SLHES. SLHEV.

INPUT

OUTPUT

ENTER order ? 4
ENTER elements row-wise
ENTER element row 1

al 1=2"1

al 2=1?5

at 3=128

al 4=224

ENTER .element row 2

a2 1 =26

az2=173

Az 8d= U

a2 4 =178

ENTER element row 3

a3i1 = 7 1.5

a3 2=?1N

a3 3=1?9

a3 4="?6

ENTER element row 4

ad 1 =175

a4 2 =78

a4 3 = 7 3.7

ad 4 =? 4 MATRIX (row-wise)
1 5 8 4
6 3 7 8
1=5" 11 9 6
5 8 3.7 4




INPUT

OUTPUT

tolerance ? 1d -1¢

ENTER order ?

-

and 3

eigen value j
-5.126106@7584948
-.579869218693827+2.42693
11428@7¢11
-.5798621893827+-.242
6931142807@1
23.2858438460¢84

eigen vector j
-.231220¢286728237
-.6932206133
52799

.304962295655581

.610721181895829

-.545794465208018+-.2210-

85637759322.1

@37¢3830¢56315 +-1.48@41

1194861461

-.327278951080694+~-.35815

51134729471

.610288157833865+-.112785

796835@971
.30585@574192517
.56@817326238133
.595621533278672
.487@@5517499808




N

LINEAR ALGEBRA

,Calculation of the eigen vectors of a general matrix A, i.e. solution
of the matrix equation Ax = Ax, given the eigen values Ai, and the

EIGEN VECTORS OF A GENERAL MATRIX

matrices U and W, where U = QtPtAPQ and W = PQ (see SLHES.)

INPUT
VARIABLE DESCRIPTION VALUE
PHLEV1 order of matrix A (N)
PHLEV2 tolerance
E(N,N) matrix U
P(N,N) matrix W SH ki

F(N),G(N) | real and imaginary parts of eigen
values of A

OUTPUT

P(N,N) eigen vectors of A (see note)

FUN. Return Status @ = correct calculation

1 = tolerance not
positive
2 = order other than a

positive integer

9-17




CALCULATION  O(N), B, H, M, P, Q, R1, 51, T1, T2, Z, 21, Z2, Y2

CALLING SEQUENCE GOSUB 46@@1

METHOD See Appendix A

CALLED SUBROUTINES

Notes

1.

If 4; is ith eigen value and x.. the jth element of the ith eigen
vector then for Zi real, P(i,j}J= x;.. If 2; is complex (G(i) # @)

then 4. is its conjugate; P(i,j) 14 then the real part of x.. and
i+ he. & Il Mg, ij
X5 1 j and P(i+1,j) and -P(i+1,j) are the imaginary parts of xij and
’
xi+1,j respectively

. For the test program see SLHES.




CHARACTERISTIC POLYNOMIAL OF
A GENERAL MATRIX

Calculation of the coefficients of the characteristic polynomial of
a general matrix A. Evaluation of the determinant (in absolute value)

INPUT
VARIABLE DESCRIPTION VALUE
PCHA1 order of the matrix (N)
E(N,N) elements of the matrix
OUTPUT
H(N+1) Coefficients of the characteristic
polynomial in descending order.
(The absolute value of the deter-
minant of A is the absolute value
of H (N+1)).
FUN. Return Status @ = correct calculation
1 = order N is not a
positive integer




CALCULATION  G(N), F(N,N)

CALLING SEQUENCE GOSUB 42201

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLCHA.

TEST PROGRAM NAME: SLCHAZ2

Note:

MERGE: SLCHA.

ENTER elements row 2
E(2,1) 2 2

'I" E(2,2) ? 8

E(2,3) 2 9

E(2,4) 2 1M

ENTER elements row 3

E(3,1) 2 5

E(3,2) ? 4

E(3,3) ? 8

E(3,4) ? 6

ENTER elements row 4

E(4,1) 2 3

E(4,2)

E(4,3)

E(4,4)

) ) )

5
7
2

INPUT OUTPUT
. ENTER ORDER OF MATRIX ? 4
ENTER elements row 1
E(1,1) 2 7
E(1,2) 2 6
E(1;3) 7 5
E(1,4) 2 3

MATRIX (row-wise)

lw o0 v~
oo » © o
<N © o w
I o0 = w




INPUT

OUTPUT

ENTER ORDER OF MATRIX?

COEFFICIENTS OF THE POLYNOMIAL
(in descending order)

1 =25 43 182 -1040




EVALUATION OF THE JACOBIAN MATRIX

To evaluate the Jacobian matrix of a user defined system of functions

INPUT
VARTABLE DESCRIPTION VALUE
PJCB1 order of the system (N)
PJCB2 increment for the five point
differencing scheme
F(N) functions
G(N) variables
OUTPUT
E(N,N) Jacobian matrix
FUN. Return Status @ = correct calculation
1 = order of system is

not a positive
integer
increment is not
positive




i

CALCULATION  B( )

CALLING SEQUENCE  GOSUB 424¢1

METHOD See Appendix A

CALLED SUBROUTINES

Note

The system of equations must be included in the calling program as a
subroutine whose first line must be line 20.

For exgmple, the system

Yy = Xy -
y2 = X1X2

would be coded in the calling program as follows:

20 F(1)
3¢ F(2)
4¢ RETURN

6(1) - 6(2)
6(1) * 6(2)




TEST PROGRAM FOR SLICB.

TEST PROGRAM NAME: SLJICB2

20 F(1) = 6(1) - G(2)
3¢ F(2) = G(1) * G(3)

. 4@ RETURN

Note: user defined functions:

MERGE: SLJICB.

ENTER increment ? @
ENTER X 1 2 1
ENTER X 2 ? 1

ENTER increment ?

INPUT OUTPUT
‘ ENTER order of system ? 2
ENTER increment ? .@1 increment .@1
ENTER X 1 ?2 6 X1 =6
ENTER X 2 ?2 3 X2 = 3

Jacobian matrix
.999999999999979 -1.00@@0@00d0d
g

3.00000000014 6.0000000000005
increment @

X1 =1

X2 =1

error positive increment only




CC

cC



10. CURVE FITTING AND INTERPOLATION




ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of problems in Curve
Fitting and Interpolation.

CONTENTS

SLLLSQ.

SLNLLS.

SLFSYT.

SLFTRP.

SLFOUIL.

SLPLYF.

SLCSPC.

Least Squares Curve 10-1
Fitting to User
Supplied Basis

Non-linear Least 10-4
Squares Curve Fit-

ting to an Arbi-

trary Scalar

Function

Weighted Least 10-8
Squares Orthogonal
Polynomial Curve Fit
(Forsythe)
Coefficients of 10-12
Fourier Series to
Represent Discrete
Data

Fourier Inter- 10-17
polation
Lagrangian Inter- 10-19
polation

Cubic Spline 10-23

SLCSPI.

SLPADE.

Cubic Spline Inter- 10-24
polation

Rational Function 10-28
Fitting (Padé
Approximation)

CC

cC



LEAST SQUARES CURVE FITTING TO USER ©siusa.
SUPPLIED BASIS

To determine the coefficients of an approximating function, which is
a linear combination of user-supplied basis functions '

INPUT
. VARIABLE DESCRIPTION VALUE
PLLSQ1 number of data points (N1)
PLLSQ2 number of basis functions (M1)
PLLSQ3 tolerance
E(N1),F(N1) xi, yi 3 e 1,25, <21
OUTPUT
I G(M1) basis coefficients
D standard deviation
N! number of basis functions used
FUN. Return Status @ = tolerance reached
1 = tolerance not
reached
2 = number of data
points less than
the number of
functions
3 = normal system is
singular
‘ 4 = tolerance negative




QUTPUT

5 = number of data
points other than
a positive
integer

6 = number of basis

functions other
than 1,2...6

CALCULATION  q(,), R(,), H( ), 0C), P, U, F

CALLING SEQUENCE GoSuB 42601

METHOD See Appendix A

CALLED SUBROUTINES

Note

The basis functions must be included in the calling program as a sub-
routine whose first line must be line 2@. For example, the basis

2

would be coded in the calling program as:

206(1)
306(2)
40 RETURN

X

xT2

10-2 OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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TEST PROGRAM FOR SLLLSAQ.

TEST PROGRAM NAME: RRLLSQ

Note: user-defined basis functions:
20 G(1) = X
3¢ 6(2) = X"2
4@ RETURN
MERGE: SLLLSAQ.
INPUT OUTPUT
. ENTER number of points ? 7 number of points = 7
ENTER interval limits ? 1.1, 9 interval [1.1, 9]
ENTER E(1) F(1) 2 1.1, 3
ENTER E(2) F(2) ? 2.3, @
ENTER E(3) F(3) ? 3, 4
ENTER E(4) F(4) ? 4.5, -3
ENTER E(5) F(5) ? 6, -12
ENTER E(6) F(6) ? 9, 456
. ENTER E(7) F(7) ? 12, 4
ENTER number of basis functions
? 6 6 basis functions
ENTER tolerance ? @ tolerance = @
***resul ts***
6 basis functions used
basis fn coefficient
1 207.413547964336
2 -362.077179199238
3 213.013346355761
4 -53.941622@¢9¢9832
5 5.94626574262395

ENTER tolerance ?

6 -.2275553@678@735
standard deviation = 2.210411787¢3
38 (tolerance not reached)




NON-LINEAR LEAST SQUARES CURVE FITTING
TO AN ARBITRARY SCALAR FUNCTION

To calculate a least squares approximation to a given model with six
or less parameters

INPUT
VARIABLE DESCRIPTION VALUE
PNLLS1 number of data points (N)
PNLLS2 number of parameters in model <6
PNLLS3 tolerance to determine presence
of maximum
PNLLS4 tolerance for line minimisation
PNLLS5 bound for line minimisation
PNLLS6 maximum number of iterations
P(PNLLS2) initial approximation to a set
of parameters
:Eﬁzttgli' x and y data values
OUTPUT
P(PNLLS2) final set of parameters
F residual value
K1 number of iterations
FUN. Return Status @ = correct calculation
1 = no solution after
PNLLS6 iterations
2 = max. no. of iter-
ations not a posit-
ive integer
3 = tolerances and
bound not
positive
4 = no. of data points
not a positive
integer
5 = no. of parameters
other than 1.,2...6

10-4 OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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CALCULATION S(,),D0),Q(),z(),B#,H,1!,]!,F9,m,M2,S,Q,Z,T1

CALLING SEQUENCE GOSUB 46401

METHOD See Appendix A

CALLED SUBROUTINES

Notes

1.

2.

The model f (a_, SPYRREL Y x) must be defined in the calling

program as FNFIX), with argument X and parameters P(1%, P(2),...P(6).
For example, the modified exponential curve a, +a,.a, would be
coded as DEF FNF(X) = P(1) + P(2) * P(3) 1 X

The progress of calculation may be followed on the display by remov-
ing REM from statements 46472 and 46655. The last line minimisation
and value of the residual are given




TEST PROGRAM FOR SLNLLS.

TEST PROGRAM NAME: RRNLLS

Note: user-defined model

3¢ DEF FNF(x) = P(1) + P(2) * P(3) "

MERGE: SLNLLS.

INPUT

OUTPUT

ENTER number of points ? 24
ENTER interval limits ? .2, 7.3

X(1) ()
X(2) Y(2)
X(3) Y(3)
X(4) Y(4)
X(5) Y(5)
X(6) Y(6)
X(7) Y(7)
X(8) Y(8)
X(9) Y(9) ?
x(10) Y(19)
X(11) v(11)
X(12) 'Y(12)
X(13) Y(13)
X(14) Y(14)
X(15) Y(15)
X(16) Y(16)
X(17) Y(17)
X(18) Y(18)
X(19) Y(19)
X(28) Y(20)
X(21) Y(21)
X(22) Y(22)
X(23) Y(23)

B I R VL LN IR LS IEES B LN ]

-
~
O - W oo =

) ) ) ) ) ) ) A ) ) ) ) ) ) ) = = .
.
w
w
-
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o
O - W W

number of points 24
interval [.2, 7.3]
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INPUT

OUTPUT

X(24) Y(24) ? 7.3, 15.7

ENTER number of parameters ? 3
ENTER tolerance ? .@#1

ENTER line min. tolerance ? .@@1
ENTER bound for line min. ? 5
ENTER maximum # of iterations? 5§

initial parameters:
ENTER parameter1 ? 1¢
ENTER parameter2 ? 14
ENTER parameter3 ? 1

ENTER tolerance ?

number of parameters 3

bound for line min. 5

solution after 34 iterations

1 parameter i

1 15.1539120999214

2 9.947260@76961454
3 .6837992526@72@5

residual value = .932332519366355




WEIGHTED LEAST SQUARED ORTHOGNAL POLYNOMIALS
CURVE FIT (FORSYTHE) '

To compute the coefficients of the Forsythe polynomials approximating
a set of observed data

INPUT
VARIABLE DESCRIPTION VALUE
PFSYT1 tolerance
PFSYT2 maximum degree of resultant poly-
nomial (M)
PFSYT3 number of points (N)
E(N) array of data points abscissae
F(N) array of data points ordinates
G(N) array of data points weights
OUTPUT
P1 degree of resultant polynomial
R(P1+1) coefficients of polynomial in
ascending order
S@ standard deviation
FUN. Return Status @ = correct calculation
1 = tolerance not
reached
2 = no. of data points
other than a posi-
tive integer
3 = maximum degree of
polynomial other
than #,1...N-1
4 = tolerance negative




CALCULATION H (7, M+2), D1

- CALLING SEQUENCE GOSUB 43¢@1

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR

SLFSYT.

TEST PROGRAM NAME:

RRFSYT

vNote:

MERGE :

SLFSYT.

INPUT

OUTPUT

EC(T)
E(2)
E(3)
E(4)
E(5)
E(6)
E(7)
E(8)
E(9)
E(10)
E(11)
E(12)
E(13)
E(14)
E(15)
E(16)
E(17)
E(18)
E(19)
E(20)
E(21)
E(22)

F(1)
F(2)
F(3)
F(4)
F(5)
F(6)
F(7)
F(8)
F(9)

6(1)
6(2)
6(3)
G(4)
6(5)
G(6)
6(7)
G(8)
G(9) ?

) V) ) NV ) ) ) N

F(18) 6(10)

F(11) 6(11)
F(12) 6(12)
F(13) 6(13)
F(14) 6(14)
F(15) 6(15)
F(16) G6(16)
F(17) 6(17)
F(18) 6(18)
F(19) 6(19)
F(20) 6(29)
F(21) 6(21)
F(22) G(22)

3 ) ) tAd sa) tA) ) fA) sa) *A) ea) eA) ) e

ENTER number of points ? 24

ENTER interval limits ? .2, 7.3

24.3,1
23.4,1
22.8,1
22.5,1
,21.5,1
28 T
20.5,1
,28.1,1
,19.4,1
2.5,19.1,1
2.7,18.8,1
3,18.4,1
3.3,18.1,1
3.6,17.8,1
3.9,17.5,1
4.1,17.3,1
4.4,17.1,1
4.7,6.9,1
5 ,16.7,1
5.3,16.5,1
5.7,16.3,1
6.2,16.1,1

number of points = 24

interval

[.2, 7.3]




INPUT

OUTPUT

E(23) F(23) G(23) ? 6.7,15.9,1
E(24) F(24) G(24) ? 7.3,15.7,1

ENTER x,y scale factors ? 1,1
ENTER tolerance ? #
ENTER maximum degree ? 10

ENTER tolerance ?

scale factor x =1 y =1

tolerance = §

maximum degree = 1§

degree of polynomial is 5
coefficients (in descending order)
- 5.40069907256268D-36
1.724348@4771512D-@3 -473893690@9
4188D-@2 .558221064403478 -3.475-
68158279795

24.976952050¢8887

standard deviation = 1.91369¢75328
112D-@2




COEFFICIENTS OF FOURIER SERIES _
TO REPRESENT DISCRETE DATA

To compute the coefficients of a Fourier Series to represent discrete
data equally spaced over the interval (0,2n)

INPUT
VARIABLE DESCRIPTION VALUE
PFTRP1 maximum harmonic order to be
considered
PFTRP2 tolerance >0
PFTRP3 number of base points (N)
X(N),F(N) | N base points and function
values
OUTPUT
P1! number of harmonics computed
G(P1!), coefficients ak and bk , K=¢g,1,...P1!-1
H(P1!)
E(P1!) least squares error at step k;
if N is even and P1! = M+2 then
a dummy value of 9D99 is returned
for E(M+1)
P see FUN. value 1
FUN. Return Status | @ = correct calculdtion
1 = maximum harmonic
order other than
0,1...P where P = 5
for N even, P = N-1
for N odd 2
3 = tolerance negative




OUTPUT

4 = number of base
points other than a
positive integer

CALLING SEQUENCE GOSUB 4321

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLFTRP. and SLFOUIL.

TEST PROGRAM NAME: RRFTRP

Note:

In this program after the calculation of the coefficients the
program stops; to continue press CR. If the a "scale code" of
9099 1is entered it 1is possible to change the value of the
tolerance and if an argument x = 9D99 it is possible to change
the ''scale code"

MERGE: SLFTRP. SLFOUIL.
INPUT OUTPUT

ENTER number of points ? 2@

ENTER interval limits ? @, 38 number of points = 20
interval [@, 38]

X(1) F(1) 2 4,0

X(2) F(2) ? 2,1

X(3) F(3) ? 4,2

X(4) F(4) ? 6,3

X(5) F(5) ? 8,4

X(6) X(6) ? 10,5

X(7) F(7) 2 12,4

X(8) F(8) ? 14,3

X(9) F(9) ? 16,2

X(19) F(10) ? 18,1

X(11) F(11) ? 26,0

X(12) F(12) ? 22,-1

X(13) F(13) ? 24,-2

X(14) F(14) ? 26,-3

X(15) F(15) ? 28,-4

X(16) F(16) ? 3¢,-5

X(17) F(17) ? 32,-4

X(18) F(18) ? 34,-3

X(19) F(19) ? 3%,-2

X(20) F(208) ? 38,-1

ENTER tolerance ? §
tolerance ¢




INPUT

OUTPUT

ENTER max harmonic order ? 1§

SELECT CODE ? 1

maximum harmonic order 1@

ak=@ bk=0

error at order ¢ 179
ak=3.0000@0@20¢84744D-D7
bk=4.@86343

error at order 1 3.¢18
ak=-5.57295@@@#386778D-@7
bk=.#@@@@@7641208@5
error at order 2 3.018
ak=-6.0@0@@@@#172685D-37
bk=.4851837

error at order 4 .664
ak=3.21345966410@38D-16
bk=1.689416@5D-16

error at order 4 .664
ak=2.00000@0028@¢431D-08
bk=.2

error at order 5 .264
ak=6.0739380¢@153443D-@8
bk=@@@@@#@d1588739@5

error at order 6 .264
ak=4.19999999978771D-@7
bk=.1259615

error at order 7 .1@53
ak=@ bk=0

error at order 8 .1@53
ak=-5.100000@003#9114D-07
bk=.1025@91

error at order 9 .0@@200@0@0@5

1 ¢ ak=¢ bk=. ¢¢¢¢¢¢1

error at order 1(f ¥¥¥kikk

interpolation
scale codes

1

2
3
4

original
unit spacing
radians
degrees




INPUT

OUTPUT

ENTER X ? 2
ENTER X ? 3
ENTER X ? 4
ENTER X ? 9D99

SELECT CODE ? 2
ENTER X ? 2
ENTER X ? 9D99

SELECT CODE ? 3
ENTER X ? 1.57@7963

ENTER X ? 9D99
SELECT COBE 2

x=2 y(x)=.99999987@212393 Codel
x=3 y(x)=1.44573944215214 Codel
x=4 y(x)=1.999996988373@9 Codel

x=2 y(x)=1.999996988373@9 Code2

x=1.57¢7963
y(x)=4.999997796555@6 Code




FOURIER INTERPOLATION

Evaluation of the Fourier approximating expansion

INPUT
. VARIABLE DESCRIPTION VALUE
PFOUT1 scale code 1 = original
PFOUI2 abscissa of first observation 2 = unit spacing
PFOUI3 increment between two successive 3 = radians
abscissae (H) 4 = degrees
PFOUI4 abscissa to be interpolated
PFOU15 number of observations (N)
PFOU16 maximum harmonic order of Fourier
. expansion (M)
G(M+1), Fourier Coefficients for cosines
H(M+1) and sines respectively
OUTPUT
o value of Fourier expansion
FUN. Return Status @ = correct calculation

-—

= scale code other

than 1,2,3 or 4

no. of observations
other than a posi-
tive integer
maximum harmonic
order other than
g,1...P, where

P= g for N even,
P = % for N odd




CALLING SEQUENCE GOSUB 434¢1

METHOD See Appendix A

CALLED SUBROUTINES

Note

For the test program for this subroutine see SLFTRP.




LAGRANGiAN INTERPOLATION

To calculate, for a given set of n, arbitrarily spaced data points
(xi,yi), i=1,2,...n, the coefficients of the polynomial of degree
(n-1) that passes through the given points

INPUT
; VARIABLE DESCRIPTION VALUE
PPLYF1 number of points (N)
X(N),Y(N) | given x,y values
OUTPUT
I E(N) coefficients of interpolating
polynomial in ascending order
FUN. Return Status @ = correct calculation
1 = two x values equal.
Denominator A.
equals zero
(see Method)
2 = number of points
other than a posi-
tive integer




CALCULATION  H(N)

CALLING SEQUENCE GOSUB 4361

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR

SLPLYE -

TEST PROGRAM NAME:

RRPLYF

Note:

MERGE: SLPLYF. SLPLRR.

X(10) Y(1d) ? 4,555
X(11) Y(11) ? 5,2400

INPUT OUTPUT

‘ ENTER number of points ? 11

ENTER interval limits ? -5,5 number of points = 11

interval [-5, 5]

X(1) Y(1) ? -5,199¢¢

X(2) Y(2) ? -4,-525

X(3) Y(3) ? -3,-96

X{4) Y(4) ? -2,-15

X(5) Y(5) ? -1,¢
. X(6) Y(6) ? #,15

X(7) Y(7) 21,0

X(8) Y(8) ? 2,-51

X(9) Y(9) ? 3,0

coefficients of polynomial

order coefficient

10 -1.0842@21724855D-19
9 4.336808689942@2D-19
8 g

7 1.38777878@78145D-17
6 -2.77555756156289D-17
5 1

4 1




INPUT OUTPUT
3 -8
2 -16
1 7
) 15
interpolation

-5<=X<=5)
-5 <=X<=5)
=X<=5)
=X<=5)
=X<=5)

<
<
<

w N
- O,

) N ) N )

X=2.5 Yi{X)=55.78125
X=3.1 Y(X)=23.255610
.5 Y(X)=7.¢3125
4.7 Y(X)=1645.2942




CUBIC SPLINE

'To determine the interpolating cubic spline for the given data set

INPUT
VARIABLE DESCRIPTION VALUE
PCSPC1 number of data points (N)
PCSPC2 2nd derivative at the first point
PCSPC3 2nd derivative at the last point
F(N),G(N) | x,y data values
OUTPUT
‘ E(N-1,4) matrix of coefficients of cubic
spline (i.e. E(1,1) = ag .- See Method
E(1,4) = a_)
FUN. Return Stagus @ = correct calculation

= data not increasing

order of x

number of data
points other than
a positive integer

CALLING SEQUENCE GOSUB 43801

METHOD See Appendix A

~ CALLED SUBROUTINES




CUBIC SPLINE INTERPOLATION

Given a data set x., y., 1 = 1,2...N and a set of interpolatry cubics

fi(x), is= 1,2...Nl1, to evaluate the cubic spline for x1<>(<xn
INPUT
VARIABLE DESCRIPTION VALUE
PCSP11 number of data points {N)
PCSP12 value to be interpolated
F(N),G(N) Xi0Ys data values i = T5esel
E(N-1,4) coefficients of interpolatory
cubics in descending order
(i.e. E(1,1) = a3...E(I,4) = aw)
OUTPUT
P value of cubic spline at «x
FUN. Return Status @ = correct calculation

-—

= data not in in-

creasing order

of x

number of data
points other than

a positive integer
x outside the range
of given x values

CALLING SEQUENCE GOSUB 4401

METHOD See Appendix A

CALLED SUBROUTINES




' Note

For the test program for this routine see SLCSPC




TEST PROGRAM FOR SLCSPC. and SLCSPI.

TEST PROGRAM NAME: RRSPC

Note:

The test program uses SLCSPI. to evaluate the cubic spline.
In this program if the i value to be interpolated (PCSPI2) is
equal to 9D99 the data values (xi,yi) can be changed

MERGE: SLCSPC. SLCSPI.

INPUT OUTPUT

ENTER number of points ? 8
ENTER interval limits ? @, 7

F(1) 6(1) 2 ¢,0
F(2) G6(2) ? 1,1
F(3) 6(3) ? 2,4
F(4) G(4) ? 3,9
F(5) G(5) ? 4,16
F(6) G(6) ? 5,25
F(7) 6(7) ? 6,36
F(8) G(8) ? 7,49
ENTER y"(x.),y"(x ) ? 2,2 y' (X)) = 2
1 n
yn (xn) = 2
spline coefficients
g 9 1
g ¢
1 1) 1
2 1
2 g 1
4 4
3 g 1
6 19
4 "] 1
8 16




INPUT OUTPUT
5 g 1
19 25
6 g 1
12 36
interpolation
ENTER X ? 1 X=1 Y=1
ENTER X ? 2.5 X=2.5  ¥=6.25
ENTER X ? 3.35 X=3.35". Y=11.2225
ENTER X ? 6.15 X=6.15 Y=37.8225

ENTER X ? 9D99
ENTER number of points




RATIONAL FUNCTION FITTING
(PADE' APPROXIMATION)

To calculation the coefficients of the rational function (a quotient
of two polynomials of specified degree) which best approximates a given
function on an interval

INPUT
VARIABLE DESCRIPTION VALUE
PPADE1 degree of the numerator (M) <10
PPADE?2 degree of the denominator (N) <19
PPADE3 to enter Taylor coefficients set
PPADE3 = 1 to enter derivatives
set PPADE3 = 2
E(M,N+1) coefficients of Taylor series or
derivatives
OUTPUT
F(M+1) coefficients of numerator
G(N+1) coefficients of denominator
FUN. Return Status @ = correct calculation
1 = impossible to solve
the system
2 = degree of numerator
or denominator
other than a
positive integer
<19
3 = PPADE3 other than

1 or 2




CALCULATION  H(N), O(N+1), P(N,M+1)

CALLING SEQUENCE GOSUB 44201

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLPADE.

TEST PROGRAM NAME: RRPADE

Note: 1In this program if the argument x or the centre point = 9D99 it
is possible to delete the f(x) function and the sum of the
degrees of the numerator and the denominator must be < 10

MERGE: SLPADE. SLPLRR.

INPUT OUTPUT

ENTER 1 (coeffs) or 2 (derivs)

22
ENTER degree numerator ? 2 degree numerator = 2
ENTER degree denominator ? 3 degree denominator = 3
ENTER derivative of order @ ? 1
ENTER derivative of order 1 ? 1
ENTER derivative of order 2 ? 1
ENTER derivative of order 3 ? 1
ENTER derivative of order 4 ? 1
ENTER derivative of order 5 ? 1 order derivative
') 1
1 1
2 1
3 1
4 1
5 1

degree of the numerator is 2
coefficients in descending order
g5 .4 1

degree of the denominator is 3
coefficients in descending order
-1.66666666666666D-@2 .15 -.6 1
evaluation

ENTER centre point ? @
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INPUT | OUTPUT

ENTER X ? 2.1 X=2.1 f(x)=8.33704228201497
ENTER X ? @ X=@ f(x)=1
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& 11. NUMERICAL INTEGRATION AND
DIFFERENTATION




ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of problems 1in
Numerical Integration and Differentiation.

CONTENTS

SLITEQ. Integration of a 11-1
Tabulated Function
(Equal Spacing)

SLDTEQ. Differentiation of 11-5
a Tabulated Func-
tion (Equal Spa-
cing)

SLDIFF. Differentiation of 11-9
a Non-tabulated
Function

SLROMB. Romberg Integration 11-13

SLGAUS. Guass - Legendre 11-16
Quadrature

SLLAGU. Guass - Laguerre 11-19
Quadrature

cC



INTEGRATION OF A TABULATED FUNCTION
(EQUAL SPACING)

y N

Integration of a tabulated function for equally spaced abscissae
(xi,yi) : g PN

INPUT
. VARIABLE DESCRIPTION VALUE
PITEQ1 number (N) of equally spaced
abscissae minus 1; i.e. the
number of subdivisions in the
interval. N must ke a positive
integer >P (order of quadrature)
PITEQ2 order of quadrature P = 1,2...8
. but if N<8 then PN
X(N+1), the N+1 abscissae and ordinates
Y(N+1) of the tabulated function (in
ascending order of X)
OUTPUT
1N value of the integral
R order of quadrature on remainder
FUN. Return Status @ = correct calculation
1 = order of quadrature
other than 1,2...,
8
2 = invalid number of
subdivisions
| 3 = data not equally
spaced
4 = start interval>=
end




PITEQ2(P+1); stores the coefficients of the quadrature

CALCULATION of the formula

CALLING SEQUENCE GOSUB 444¢1

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLITEQ.

TEST PROGRAM NAME: SLITEQ

Note:

MERGE: SLITEQ.

INPUT

OUTPUT

X(1) Y(1)
X(2) Y(2)
X(3) Y(3)
X(4) Y(4)
X(5) Y(5)
X(6) Y(6)
X(7) Y(7)
X(8) Y(8)
X(9) Y(9) ?

) 2N N N ) N ) N

ENTER ORDER

ENTER ORDER

ENTER ORDER

ENTER ORDER

X(18) Y(10) 7
X(11) Y(11) 2

INTERVAL LIMITS AND No. OF
SUBDIVISIONS ? @,5; 10

g,0
/525
1,1
1.:5,2.25
2,4
2.5,6.25
3,9

3.5, 12,25
4,16

? 4.5,20.25
? 5,25

OF QUADRATURE ?

OF QUADRATURE ?

OF QUADRATURE ?

OF QUADRATURE ?

INTERVAL [0 5] 14 SUBDIVISIONS

ORDER1 QUADRATURE 1@ SUBDIVISIONS
VALUE OF INTEGRAL=41.875

ORDER2 QUADRATURE 1@ SUBDIVISIONS
VALUE OF INTEGRAL=41.6666679¢843@1
ORDER3 QUADRATURE 9 SUBDIVISIONS
ORDER1 QUADRATURE REMAINDER

1 SUBDIVISIONS

VALUE OF INTEGRAL=41.6875

ORDER7 QUADRATURE 7 SUBDIVISIONS
ORDER 3 QUADRATURE REMAINDER




INPUT OUTPUT

3 SUBDIVISIONS

VALUE OF INTEGRAL=41.066667

ENTER ORDER OF QUADRATURE ?




DIFFERENTIATION OF A TABULATED FUNCTION
(FOUAL SPACING)

Differentiation of a tabulated function for equally spaced abscissae
(xi yi) i=1,..., N

INPUT
VARIABLE DESCRIPTION VALUE
PDTEQ1 number (N) of equally spaced
abscissae minus 1 i.e. the
number of subdivisions in the
interval. N must be an integer
>= 5
PDTEQ2 derivative evaluations first derivative
only
first and second
derivatives
X(N+1), the N+1 abscissae and ordinates
Y (N+1) of the tabulated function
OUTPUT
S(N+1), first and second derivative at
Q(N+1) each of the N+1 base points Q( )
is returned only for PDTEQ2 = 2
FUN. Return Status = correct calculation

= PDTEQ2 other than

1 or 2

no. of subdivisions
not an integer >5
data not equally
spaced

start interval

>= end




A( ), B( ) store the coefficients of the difference

CALCULATION
formula

CALLING SEQUENCE GOSUB 4461

METHOD See Appendix A

CALLED SUBROUTINES




TEST PROGRAM FOR SLDTEQ.

TEST PROGRAM NAME : SLDTEQ

Note:

MERGE: SLDTEQ.

INPUT

OUTPUT

ENTER INTERVAL LIMITS and
NUMBER OF SUBDIVISIONS ?
g, 5, 10

X(1) Y(1) ? ¢¢

X(2) v(2) ? .5,.25
X(3) Y(3) ? 1,1

X(4) Y(4) ? 1.5,2.25
X(5) Y(5) ? 2,4

X(6) Y(6) ? 2.5,6.25
X(7) Y(7) ? 3,9

X(8) Y(8) ? 3.5,12.25
X(9) Y(9) ? 4,16
X(18) Y(1d) ? 4.5,20.25
X(11) v(11) ? 5,25

ENTERT (Y') OR 2 (Y'&Y") ? 1

INTERVAL [@ 5] 1@ SUBDIVISIONS

O 0 N0 W= e

o NoOUThAE WwWwN W<

(o




INPUT

ENTERT (Y') OR 2 (Y'&Y") ? 2

ENTERT (Y') OR 2 (Y'&Y") ?

N OBs W = e
OB D WWMNN= 2. 5

Y

.

OUTPUT
28.25 9
25 10
Yi Y
) g
.25 1
1 2
2.25 3
4 4
6.25 5

9 6
12.25 7
16 8
28.25 9
25 19

NN NDNDNND N <




DIFFERENTIATION OF A NON-TABULATED _

FUNCTION

Evaluation of the first and second derivatives of a user-defined
function given in non-tabular form

INPUT
VARIABLE DESCRIPTION VALUE
PDIFF1 point at which derivatives are to
be evaluated
PDIFF2 increment (H) used in 5-point

central difference formula H must
be positive
PDIFF3 derivative switch 1 = evaluate first
derivative only
2 = evaluate first
and second deriva-

tives
OUTPUT
D1,D2 first and second derivatives of
the function at PDIFF1. D2 is
returned only for PDIFF3 = 2
FUN. Return Status @ = correct calculation
1 = increment non-pos-
itive

2 = PDIFF3 other than
1 or 2




CALLING SEQUENCE GOSUB 448@1

METHOD See Appendix A

CALLED SUBROUTINES

Notes

=

2:

The function to be differentiated must be included in the calling
program as FNF.

For example:
2¢ DEF FNF(X) = X * X
2

would describe the function f(x) = x

The increment H is set by the user and the following rules will give
accurate results:

h>@.005 to evaluate the first derivative only
h>@.06 (minimum) to evaluate both derivatives




TEST PROGRAM FOR SLDIFF.

TEST PROGRAM NAME: SLDIFF

Note: User defined function:
2@ DEF FNF(x) = x*x

MERGE: SLDIFF.

INPUT

OUTPUT

ENTER INCREMENT ? @@5

ENTER 1(f') or 2 (f'&f'") 2 1
ENTER START,END,STEP ?

Ty 2.85, »1

ENTER INCREMENT ? .@6

ENTER 1 (f') or 2 (f'&f'") ? 2
ENTER START,END,STEP ?

1, 14, 1

INCREMENT = .@@5

X f(x)
.99 2.9¢
.19 2.43
.20 2.93
.3¢ 3.5¢
.4¢ 4.14
.50 4.88
.60 5.70
.7¢ 6.61
.8¢ 7.63
.9¢ 8.76
.99  19.9¢
INCREMENT =
X f(x)
1.6 1.0¢
2.0 4.9¢
3.0 9.9¢
4.00 16.90
5.00 25.0¢0

9.62
19.72
11.83
13.00

.96

f'(x)
2.9¢
4.00
6.00
8.0¢
19.00




ENTER INCREMENT ?

INPUT OUTPUT
6.00 36.9¢ 12.09 2.9
7.90 49.90 14.09 2.0
8.00 64.0¢ 16.00 2.9
9.0¢ 81.0¢ 18.0¢ 2.9
19.00 100.9¢ 20.90 2.9
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NUMERICAL INTEGRATION AND DIFFERENTIATION

SLROMB.
ROMBERG INTEGRATION

Integration of a user-defined function in non-tabular form i.e. evalua-
. B
tion of f‘_ﬂx)dx
A

where f(x) is defined on the interval [A,B]

INPUT
VARIABLE DESCRIPTION VALUE
PROMB1, start and end of interval of
PROMB2 integration PROMB2 >PROMB1
PROMB3 maximum number of lines of
triangular scheme to be
calculated
PROMB4 tolerance
OUTPUT
11 value of the integral
K! number of lines of triangular
scheme calculated
FUN. Return Status @ = correct calculation
1 = tolerance not
reached after
PROMB3 iterations
2 = PROMB3 not a posi-
tive integer
3 = tolerance not posi-
tive
4 = start of interval
> end

11-13




CALCULATION  (PROMB3+1, PROMB3+1), S

CALLING SEQUENCE GosuB 45¢@1

METHOD See Appendix A

CALLED SUBROUTINES

Note

The function to be integrateg must be included in the calling program
as FNF. For example f(x) = e  would be coded as

DEF FNF(X) = EXP(X)




TEST PROGRAM FOR SLROMB.

TEST PROGRAM NAME: SLROMB

Note: User-defined function
20 DEF FNF(x) = EXP(x)

MERGE: SLROMB.

INPUT OUTPUT
. ENTER START,END INTERVAL ? @,1
ENTER MAXIMUM# OF ITERATIONS ? 2
ENTER TOLERANCE ? .g@@ggn INTERVAL [§ 1]

MAXIMUM# OF ITERATIONS = 2

TOLERANCE = .@@@gg1

2 STEPS - NO SOLUTION YET

LAST VALUE = 1.7188611@3@5786

. ENTER START,END INTERVAL ? #, 1
ENTER MAXIMUM # OF ITERATIONS

? 15

ENTER TOLERANCE ? .¢@g@g@gn INTERVAL [@ 1]

MAXIMUM# OF ITERATIONS = 15

TOLERANCE = .@ggg@

4 STEPS - VALUE OF INTEGRAL

= 1.71828818221@367

ENTER START, END INTERVAL ?




SLGAUS.
GAUSS - LEGENDRE QUADRATURE

Integration of a user-defined function given in a non-tabular form i.e.
evaluation of =

- S(2) da

A

where f(x) is a function defined on the interval (A,B]

INPUT
VARIABLE DESCRIPTION VALUE
PGAUST order (N) of quadrature N=2,3...16,24,48
PGAI!S2 start and end of interval of

integration B>A

X(1),W(1) | zeros of the LEGENDRE, poly-
nomials and corresponding weights
I1=1,...,107.

N-1 | N, ;
I = X2 v 'to 1) —1, where 1
i=1 i=1

is the integer part of (i+1)/2 is
data relevant to an order N quad-
rature. Data is read from WEIGH1
(as shown in the test program)

OUTPUT
19 value of Integral
FUN. Return Status @ = correct calculation
1 = invalid order of
quadrature
2 = start of interval
>end
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CALLING SEQUENCE GOSUB 4521

METHOD See Appendix A

CALLED SUBROUTINES

Notes

1.

2

The user-defined function f(x) must be included in the calling pro-
gram as FNF. For example, f(x) = x would be coded as

DEF FNF(X) = X * X

The abscissae and weight factors for Gaussian integration are taken

from: M. Abramowitz and 1. Segun - Handbook of Mathematical functions
(page 916 - 917)




TEST PROGRAM FOR SLGAUS.

TEST PROGRAM NAME: SLGAUS

Note: In this program if the order of quadrature (PGAUS1) = 9D99 it is|
possible to change the start and end of the interval (PGAUS2),
User-defined function:

2 DEF FNF(x) = SIN(x)

MERGE: SLGAUS.

INPUT OUTPUT
ENTER START,END OF INTERVAL ? ‘
g, 3.14159265
ENTER ORDER OF QUADRATURE ? 3 ORDER3 QUADRATURE

INTERVAL (@ 3.14159267]
VALUE OF INTEGRAL = 2@@138897538472

ENTER ORDER OF QUADRATURE ? 5 ORDERS QUADRATURE
INTERVAL [¢ 3.14159265]
VALUE OF INTEGRAL = 200@9gg18615244 ‘

ENTER ORDER OF QUADRATURE ? 9D99

ENTER START,END OF INTERVAL ?




GAUSS - LAGUERRE QUADRATURE

To evaluate fe-'f(x)dx or fo}(x)dx
0 0

where f(x) is a user-defined function in non-tabular form

INPUT
VARIABLE DESCRIPTION VALUE
PLAGU1 order of quadrature (N) N=2,3,...10 only
PLAGU2 type of integrand 1=¢e " f(x)
2=f(x)
X(1), zeros of the Laguerre polynomials | I = 1,...54
W(1,1), and corresponding weights W and
W(I,2) W' N N see Method
I=2X4i %o (2@)—1
i=1 i=1
is data relevant to an order N
quadrature. Data is read from
WEIGH2 (as shown in the test
program)
OUTPUT
19 value of integral
FUN. Return Status @ = correct calculation
1 = invalid order of
quadrature
2 = type of integrand

other than 1 or
2




CALLING SEQUENCE GOSUB 454¢1

METHOD See Appendix A

CALLED SUBROUTINES

Notes

1. The user-defined function f(x) mus; be included in the calling pro-
gram as FNF. For example, f(x) = e would be coded as

DEF FNF(X) = EXP(X)

2. The abscissae and weight factors for Laguerre Interpretation are taken
from: M. Abramowitz and I. Segun - Handbook of Mathematical Functions
(page 923)
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TEST PROGRAM FOR SLLAGU.

TEST PROGRAM NAME: SLLAGU
Note: 1n this program if the order of quadrature (PLAGUT) = 9D99 it is
possible to change the type of integrand.
User-defined Function
2@ DEF FNF(X) = EXP(X)
MERGE: SLLAGU.
INPUT OUTPUT
ENTER TYPE OF INTEGRAND ? 1
ENTER ORDER OF QUADRATURE ? 3 ORDER3 QUADRATURE TYPE 1
VALUE OF INTEGRAL = 1.9999998738314
ENTER ORDER OF QUADRATURE ? 4 ORDER4 QUADRATURE TYPE 1
VALUE OF INTEGRAL = 2.0@@@0@@672526
ENTER ORDER OF QUADRATURE ? 9D99
ENTER TYPE OF INTEGRAND ? 2
ENTER ORDER OF QUADRATURE ? 5 ORDER5 QUADRATURE TYPE 2
VALUE OF INTEGRAL = 14@9.3774
ENTER ORDER OF QUADRATURE ? 16 ORDER1@ QUADRATURE TYPE 2
VALUE OF INTEGRAL = 14133.2¢4
ENTER ORDER OF QUADRATURE ? 11 ORDER11 QUADRATURE TYPE 2
ORDER OF QUADRATURE 2, 3...1@ ONLY
ENTER ORDER OF QUADRATURE ?

™
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ABOUT THIS CHAPTER

This chapter contains a subroutine for the
Differential Equations.

CONTENTS

SLEROM. 1Integration of Dif- 12-1
ferential Equations
(Euler-Romberg
Method)

JERLE ol

solution

of Ordinary

 C




INTEGRATION OF DIFFERENTIAL EQUATIONS -
(EULER - ROMBERG METHOD) :

To integrate over an interval [x ,x.| a system of first order ordinary
differential equations with initial conditions

Yi@) = filz, 5, (@), .., yn()]
Yi(xy) = Yo i=1...,N
or an Nth order ordinary differential equation with initial conditions

yM(x) = gz, y(@), y'(®), .. ,y¥ ()]

diy(x,)
y) =y, , -L=yi LR N

. -

INPUT
VARIABLE DESCRIPTION VALUE
PEROM1, start and end of interval of
PEROM2 integration, PEROM1< PEROM2 PEROM1 = X@
. PEROM3 number of points at which the

solution is to be calculated i.e.
the step size h = (PEROM2 -
PEROM1) /PEROM3 and the solution
is given at X@+h, X@+2h,...,

PEROM2
PEROM4 order of system/equation (N)
PEROMS maximum number of step-size
. halvings 9

PEROM6 tolerance, PEROM6 >1¢

PEROM7 system/equation switch 1 = first order system
2 = single, higher

order equation
Y(N) The N initial conditions %i?'

Yi (x¢), i =1,...,Nor Y
(xg¢), i = ¢,1,...,N-1

Y( ) is destroyed during
calculation




OUTPUT

S(PEROM3, solution at each of the PEROM3
N+1) points requested. S(I1,J), J=1,
LNy T o= 1(j;i§EROM3 is either
Y; (XI) or Y (X1) depending
on PEROM7.S(I,N+1), 1 =1,...
PEROM3 equals zero if the requir-
ed tolerance has been reached
for the solution at XI, and equals]
unity if not.
K7 total number of system
evaluations
FUN. Return Status = correct calculation
1 = start of interval
> end
2 = order other than a
positive integer
3 = maximum number of
step-size halv-
ings other than a
positive integer
4 = number of points
other than a posi-
tive integer
9l = tolsrance less than
19
6 = PEROM7 other than 1
or 2
CALCULATION VEROM3 (N, 22),VEROM2(N),H9,K2!,K4,K8,31!,J4!,X,X2,PB1,PB2

PB3,PB4
CALLING SEQUENCE GOSUB 456@1

METHOD See Appendix A

CALLED SUBROUTINES
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Note

The user must include the system of first order equations or the single,
higher order equation in the calling program as a subroutine whose first
line is the line 2. For example, the system:

-
Y, =YY,

=

Yo

Y4

would be coded as:
20 F(1) = Y(1) * Y(1) * Y(2)
3¢ F(2) = -1/Y(1)
40 RETURN
The second order equation
-y

Y = — -y
X

would be coded as:

29 F(2) = -F(1)/X - Y(1)
3¢ RETURN




TEST PROGRAM FOR SLEROM.

TEST PROGRAM NAME: SLEROM

User-defined system
Note: 28 (F1) = Y(1)72%/(2)
3¢ (F2) = -1/Y(1)
4@ RETURN
And for equation (second example)
20 F(2) = -F(1)/x - Y(1)
4¢ RETURN

MERGE: SLEROM.

INPUT OUTPUT

ENTERT (SYSTEM) or 2 (EQUATION)

? 1
ENTER ORDER ? 2 ORDER 2 SYSTEM
ENTER INITIAL, FINAL X ? @, 3 INTERVAL (¢ 3]
ENTER Y1 (@) 2 1
ENTER Y2 (@) 2 1 INITIAL CONDITION
% =
Y1(x) = 1
ENTER # OF POINTS ? 3¢ Y2(x) =

ENTER TOLERANCE .@@@@gn
ENTER MAX#OF HALVINGS ? 5

INTERMEDIATE POINTS 3¢
MAX # OF HALVINGS 5
TOLERANCE .(@@gg@1

SOLUTION (see next page)
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INPUT

OUTPUT

ENTER INITIAL, FINAL X ? .17, 3,1

? .9975@156

ENTER Y [@] [.1
1] -4.9937526d

]
ENTER Y [1][.1]
2

-~

ENTER # OF POINTS ? 3¢
ENTER TOLERANCE ? .@@@@gg1
ENTER MAX# OF HALVINGS ? 5

DO

aidd A pipn
Q2 i
&
m -
5
1
il
4
g
o
~J

&)

T e Y TN T A IR '

INTERVAL [.1, 3, 1]

INITIAL CONDITION

[¥x] = .9975@156
[X] = -.0#49937526

< < x
[ Sy S Y
I

[
(-1

INTERMEDIATE POINTS 3¢
MAX# OF HALVINGS 5
TOLERANCE .g@@gdgg
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COMBINATORIAL ANALYSIS

SLCONN.

Since the integer and fractional parts are converted separately they are
supplied to the function as separate parameters so as to allow a maximum
of 13 significant digits for each. The digits of the converted number
will each be represented by two decimal digits for bases greater than 14,
three for bases greater than 1¢@, and so on. Input of numbers to bases
greater than 1@ must also follow this convention.

Consider conversion from base 1§ to base b, and let N be the decimal
number and B the corresponding number to base b.

Let

Iys Igy Dyy Dg

be the whole and decimal fraction part of N and B respectively.

Step 1: Calculate the modulus, m, of base b, i.e. the smallest power of
1@ greater than or equal to 1@. For example, the moduli of 2, 8 and 16

are 10,19 and 100 respectively.

Step 2: The following integral divisions are carried out:

I,/b Qo, remainder R,

Qo/b = Q,, remainder R,

Division termirates when Q = .

Then

Ig= Ry mRy+ M2 Rg# wssnsen m" R,

Step 3:

Dyx b =.,i, (whole part) and d, (decimal part); %#
d, x b = i, (whole part) and d,(decimal part); i}

3




The operation is completed when d.= 7 or when 13 significant digits have
been generated for [, where

i iz is 1,
D.=H+;l‘,‘+m—3+....m—..
To convert from base 1@, the above procedure is used with b and m inter-
changed. The conversion of the fractional parts is completed when all the
significant lines have been evaluated. To convert from base bl to base b2
(b1,b2,#10).
When converting to a base 6 through 9 the last digit may appear to be
incorrect i.e. equal to the base, due to rounding up. This situation can
also occur when converting to a base >14.

SLPRIM.

The prime factors of any positive integer may be determined by dividing
by 2, 3 and then all odd numbers between 5 and the square root of the
number, or the last quotient found. The number is prime if no remainder
less divisors are found. If a prime number occurs more than once as a
factor, the appropriate exponent is returned.

SLEUCL.

Euclid's algorithm is used to evaluate the G.C.D of N1 and N2. The L.C.M
is then given by N1.N2/G.C.D. Euclid's algorithm is the following recur-
rence:

%f = Lo+ %f , I is the integral part of the
quotient
Rk is the integral remainder
Forw =R
q,, = P«
Po = N1
Qo = N2

When R.= %, the G.C.D. is given by q..




SLRFCO.

The rational fraction'% may be represented by the continued fraction

A 11 1
B = bo + b‘. b2’ . . . bll

L 5 _— -
b = (Ph| ). and (n., l indicates the integer part

and hﬂ the remainder part of —

i+l

of
Tieq

This representation terminates after a finite number of terms.

SLSuUCo.

The quadratic surd, |/D, may be represented by the continued fraction

vD =b, -
where

b‘==(fﬁ;tfﬁ) ,(); denotes the integer part of the
9 ¥ expression in brackets.

P,=b;y ¢i— Pi

g = (D — p:2)/q:,

by = (/D)
D=9
7 =1

This representation is non-terminating, but repeats after a finite
number of terms.




SLCFCO.
Given the continued fraction

a, a, a,
bl+ b'l? b3+

the first convergent is given by

a
b0+Tl'9

1

the second by

5 2 a, a,
b by
and so on.

The successive convergents are calculated using the following recurrence:
pi=b; piy +a; Pies
gi=0bi ¢y~ Qi

P

Gp=1,q9,=o0 The ith convergent is then -

SLFACT.
N! is evaluated in accordance with N(N-1) (N-2)...2.1.

N! may only be evaluated for N <17 since larger values would cause
numeric overflow, i.e. N! 1.797693134862D 308

Stirling's Formula for LnN! is the following:

In N! = 1n 2 + 1In(N+.5) - N + 1n k,

where




1 1 139 571
y RS | - =4 =4

12V 288 N2 51840 N3 2488320 Z*

1 1 1 1 —139 1
=1+ 1+ (———-— - ( + B
3 12N 12N X 2 12N 30 12N

This approximation of 1nN! is useful for large values of N.

SLBINO.

is evaluated using the recurrence:

= (R [T

SLMULT.
n! i+ 1), +2)...m
Ry n, 0, o0 M) =
TS S N R A
where
=" > I,

for 4= 12, ..,8

P =piy (@ + )i j=1,2....m

po = p"i




Qiv1i = ¢ + Miyy

(n;my, By o ov s M) =pn'
SLDUPL.
pn—k-l'
p=1— =
m—1)n—2)... n—k—1)
N A nk-1 i
k=1,2 ...,m

is evaluated using the recurrence:

b0=l
n—1
bi= bl—l '=l’2)' ;k_l
n
pe=1—bp,

ELEMENTARY FUNCTIONS

SLRPCC.
Given z = x + iy, then:
-9 = Vx* + y* (modulus)

- 9= atn (%) (phase)

SLPRCC.
Given z = Qei', , then:

x =gcosd  (real part)

y =@sin?d (imaginary part)




ELEMENTARY FUNCTIONS (COMPLEX)

SLCSIN.

- rectangular coordinates:

sinz = sin(x — 7 y)

= sin x cosh y — isinh y cos @

e; o e—U
—=Sinse (——)) — icosx (

- polar coordinates:

2=Qeil9

= pcos Y — i posin i}

=xr+iy

'sinz | =4/}(cosh 2 y —cos 2 )

ph (sinz) = arctan (

SLCOS.

- rectangular coordinates:

cosz = cos(x — i Y)

cos v

sin @

sinh y-
g o7

coshy.

= cos 2 cosh y — i sinxsinh y

eV — e
—_-cos.r(————) );zsmx

- polar coordinates:

z = pei?
= pcos ) — iopnsin

=a iy

s

|cosz| =4/}(cosh2y — cos2x

sin @

sinh y

ph (cosz) = arctan (

cos x

cosh y

)

/

e~y — e¥

e

el — e~ Y

)

)




SLCTAN.

- rectangular coordinates

tan(z) = tan(r + 1 y)

sin(2 ) o sinh(2 )
= — ——
cos(2 x) -+ cosh(2 y) cos{2 x) + cosh(2 )

- polar coordinates
z=ope?
= pcos i — §psine

= =1y

cosh 2y —cos 20
tan: =

cosh 2y — cox 20

phitanz) = arc-tan( — ’
\ sin 2.

csinh 2y

SLCASN.

r=x+1y

aresinz = arcsin g +— iln(e + (¢ — 1)12)
where

€= M= 2= R (@ — 12 = g

and

B = Mlx+ 12 =y — J((x — 12 + 22
SLCACS.

Z=x+ 40U

aresin z = arccos 3 — 7 In(«¢ — («> — 1)2)
where

@ = A = D g R — R g

and

B= d(r = 12— 22— R — 1)+ 22

SLCATN.
2=ty
1 2 i
arctan z = —— arctan ( —) = —In
2 DY 2 1




SLCLN.

N )
log(z) = log(x — i y) = log(n/x* — y?) — iarctan(——) 12| >0,
»

z= ge?

[log = | =4/ (log g)® — #?

i
ph(log z) = arctan ( )

0g ¢

SLCEXP.
T=x +1yYy
e — et el

erCosy —iersiny

z=pe
. 2ei}
[=ai—

ceosd
el =€

ph(ef) = o sin #

SLCRZ.
1 1
. x4y
x—1iy
ot
& 1
= : —1 . 8| =0
a2+ g a + P
1 1
" _’ oei®
1
0
1 I
= — 9
SLCZMZ.

Zp = (0 =y (2, =dy,) = % 2, — Y Yo~ (Y, 23— ¥ X))

=2 H— Y Y+ (Y, 2+ Yy Ty)




i i, |

I — s 2
le._,|—-lele Q‘!e I

= 0109

ph(z,2,) = &, + &,

SLCZDZ.
Let

z=a+ib=ge™

z2=6+id=02€"2

2, a+1i1b c¢c—id

(@ac +bd) +ibc—ad)

2, c+id c—id

i Y
2y Q.
%
ph (—) =8 — 5,
23
SLCSQR.
Let
2=x+1y
— Qeiﬂ
e (ke O B | RVl et
\/Z = -+ 2

2

vz = +/e
) o

ph(y/2) = =

SLCZN.

Let

z=x+iy=ope’

PRl




28 =3, 5= i.’/u
Xy, =TTy — Y Yn-

Yn = T Ynr = Y Tny

z=x+ 1y
=een9

28 — i 2 la einph(z)

= |z |*cos(a ph(z)) + i | z | sin(a ph(z)).

| 2= ¢
ph(z?) = a ¢

,. .

POLYNOMIALS

SLPLRC.

Horner Scheme

SLPLRR.

Horner Scheme

SLPRRR.

The coefficients are computed by multiplying the roots and summing up the

terms of the same degree.




SLPLYM.

N M M*N
Laxt* That= X ¢
i=0 i=0 i=0
where

c,- == :ah bk “’ith h + k &, 'i

HIGHER MATHEMATICAL FUNCTIONS

SLKMF.

The value is computed by means of the representation

K ) | " 1,2 1-3)22 (l-3~5)2x3+

4 = iz +__. N +— @ & e

) 21[ (2)““(2-435 246 ]

This series is valid for |[x| <1, but speed of convergence decreases as
[x] 1.

SLEMF.

The value is computed by means of the representation

1 132 @ 00 L 153542 28
E(x) =-7—-n-§1——(——) — == ) __._.(______) a— ..%
2 2 1 2-4) 3 2:4-6 5

This series 1is valid for |x|< 1, but speed of convergence decreases as
[x|=1.

SLLAGG.

The value [?(x) 1is computed by means of the recurrence
relation

L'@=1 , L'@)=a+1—na
(a)

nL' @) = @2n+a—1—2) L@ —(@+n—1)- L@



SLHNF.

The value is computed by means of the recurrence relation

Hix=1 , Hj)=2r

H,(v)=2xH,_ (¥) —2(n — 1) H,_,(x)

SLHEN.

The value is computed by means of the recurrence relation
7 Heyjx)=1 , Heyr)==x

He,(r) = v Hve,,_l (¥) — (n — 1) He,_.(v)

SLFOUR.

The following expression is used for calculation

d, Ay . -
F(x) = — Y (dgcos K v — Bgsin K x)

2 K=

SLGAMA.

For x in the range of @ < x <1 an approximating polynomial is used to
calculate ¥ (1+x). The associated error is less than 3 x 107in absolute
value. Outside this interval the following recurrence formulae are used.

Fa—=1)y=al(x)
I'm—ax)y=mn—1—-—2a)(n—2—2)... (1l —2)I'(1 =)
'l —ux)

r@—1)... (r —n)

I'x —n) =

SLERF.

An approximation series is used




(—1)» p2n+l

o
o o
erf(x)—\/?n:o n'(2n + 1)
As
x| >0, 'erf|—>1

A value of 1 is returned for |er‘f(x)| for lxl}S.

SLBIN.

The value is computed by means of the series representation:

1 k
x 4
v

L y\a
Ja(x) = (Tz) N T . rnot>>n

Joa(r) = (=) J. ()

SLII@X.

The following approximation is used:

=)

TS e - 1))

SLSF.
An approximation series is used:

4 " 2n+l

(=1
y(v) = ..‘T - N3 for 2, < 3.5
S =2 2n+ 1) (4n — 3) e

SLCF.

A series approximation is used:

4 \2n

—]1)n

o (\ 5 .

Gle)=.2 xin+l for x| < 3.5
"0 (2n)! (40 + 1)




SLCHYF.

The value is computed by means of the representation:

= (a) n 2

M(a, b, 2) == . b%£0,—1,—2 ...,
(e l)_ o (byn n! *
'y = n)
(.I/)H—W y=ab
SLGHYP.

The value is computed by means of the representation:

o (@ (), e

Flabeia) =2
. ) ©n. !
I'(y —n)
(l)n=—,—_— ? y=a’b’c
; I'(y)
‘ For a or b a negative integer or zero, this series reduces to a poly-
nomial in x. The series is not defined for ¢ a negative integer or zero

if a or b is not a negative integer or zero greater than c. For a or b
negative integer or zero, |x| must be<1 or < 1 if ¢ -a -b>{

SLSIF.
. Si(x) is evaluated using the series expansion:
B (—1)n g2n+1
W) = n = ) @ = 1)1
SLCINF.

Cin(x) 1is evaluated using the series expansion:

- (_ 1 )n .1'2"

N = — Y —
Cin(v) = — = 2n (2n)!
. SLEIF.
1 z '
. E,‘(-l‘) - /' — nr - n:1 n n!

where y 1is the Euler constant 0.5772156649...



SLEINF.

1)
e = B L

LUay

n.n!

SOLUTION OF EQUATIONS

SLBAIR.

A quadratic factor of the polynomial is determined, then the roots of
this factor are computed. Let f(x) be the polynomial, g,(x)and approx-
imation to a quadratic factor of f(x):

flx) = @, 2" + @p 2"V +... + @y
gr(x) = a®* — pkx — gk

gk+1(xr) is found by

Pk-1 =Pk — Ap gr+1 =qrx + g

with

A= obocs‘—blcs dg= blicl_bl)—boci
c; — ¢y (c; — b)) c; — ¢y (e, — b))

bk = b1 Pk + bk-29r + ax
0=K <=n

Ck = Ck+1PK + Ck+29k + bk

Cant+1 = Cnya = bnv-l. " bn-r'z =0
The algorithm stops when
1. 2 — P 1T —qK+

E : user-defined tolerance

| Jp| and [.Jg¢|<E {s said to be quadratic factor, or

2. more than Z iterations are performed without 1 being satisfied

Z : user-defined maximum number of iterations.

SLRBIS.

The bisection method is also called the interval halving method. Let [a,b]

be an interval containing a root, ¢ = & #b
interval.

T is the midpoint of the




A test is made as to whether [a,c] or [c,b] contains a root. There is a
root on the interval [a,b] if f(a).f(b)<= @#. The process is repeated on
the appropriate half interval. A root has been found if:

f(d) = # for some end-point d of a subinterval
or

|b-a]|< E for some tolerance E.

SLNLIN.

Let F;,...,Fn. be n not-necessarily-linear functions in
the n variables x,,..., X,. The method used is the gen-
eralization to n-dimensions of the familiar Newton-
Raphson method.

Let x{? be the ith approximation to the jth component
of a root

(i+1)

@; =.1'§~“+A.t,~ for ji=1; 2. oaa;m

where the Ax; are the solution of the linear system:
Fo@” o a0 KE=1,..,a

S k(.ll,...,.'ln —j:.l é.l-i IR = 05 ey

k=1,....n

and %— is computed by considerating F as afunction
j

of x only andusing a5 pointcentral difference, i.e.:

where h = .01

A root has been found if for some i

V-‘J(/l -l';”)2 < E for some tolerance E.
)

If YAx")2 > 1/E? the algorithm diverges. Other-
J
wise, the routine halts after a specified number of

iterations.




LINEAR ALGEBRA

SLCRO.

The linear system Ax = b is solved in two steps. The matrix A is first
decomposed into a product of an upper and a lower triangular matrix, U
and L, by Crout's algorithm with row interchanging, such that A = LU.

In a second step, the triangular system Ly = b and Ux = y are solved for
the required vector x.

The inverse matrix A' is evaluated by solving LUx for the N columns of
the identity matrix as right-hand sides. The N solution vectors are the
columns of A' . The determinant of A is given (but for sign) by the
product of the diagonal elements of L.

SLCHO.

The linear system Ax = b is solved in two steps. The matrix A is first
decomposed into a product of an upper and a lower triangular matrix, R
and R', by Cholesky's algorithm such that A = R'R.

In a second step, the triangular systems R'y = b and Rx = y are solved
for the required vector x.

The inverse matrix A' is evaluated by solving R'R x for the N columns of
the identity matrix as right-hand sides. The N solution vectors are the
columns of A' . The determinant of A is given (but for sign) by the
square of the product of the diagonal element of R.

SLJAC.

The matrix equation Ax = Ax is solved by means of the Jacobi method.
Through a series of orthogonal similarity transformations the original
matrix A is transformed into a matrix S in diagonal form. If the product
of these orthogonal transformation matrices is called P, S is given by

S = PTAP

Since the eigenvalues are preserved though an orthogonal transformation,
the elements of the final diagonal matrix S must be the eigenvalues of
the original matrix.

A-18 OLINUM (NUMERICAL ANALYSIS) USER GUIDE
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CALCULATION METHODS

The matrix P has the eigenvectors as its columns. Since the off-diagonal
elements of S will not in practice be zero, the value of the greatest
element is related to a user defined tolerance.

SLHES.

The calculation is accomplished in two steps. First the matrix A is

reduced to upper Hessenberg form H by means of orthogonal similarity
transformations.

H = PTAP

In a second step, H is reduced to an upper triangular matrix U using the
QR-algorithm. Let Q be the product of the transformation matrices, then

U = QTHQ
where the diagonal elements of U are the eigenvalues of A.

For calculation of eigenvectors, see SLHEV.

SLHEV.

Having calculated the eigenvalues of A according to the method described
in SLHES., the problem is to find the matrix X which has the eigenvectors
of A as its columns. The matrix X must satisfy the relation

XTAX =D (1)

where D is the diagonal matrix of the eignevalues A: of U (and of A). the

eigenvectors of U are the columns y of Y where Y satisfies the
relation

YTUY _ D (2)
The y; are obtained by solving the linear homogeneous system
(U _l,I) Yi = 0

which is simplified due to the block triangular shape of U. Substituting
wTAw for U in (2) gives

YTWTAWY =D

A-19



which, comparing with (1), gives .

X = WY

SLCHA.

The coefficients of the characteristic polynomial
p(3) = det(d — 2 1)

are computed by Leverrier's Method

For 1"'

g =l ge 0 N

B, = ABi_, —pi )
p; = tr(B,)/i

where

Bﬁ =0, Py =

o=
tr(B) = 1.51 bj;

(N is the order of the matrix)

SLJCB.

The program used the five point differencing scheme to evaluate the n x n
matrix (0F, /dx;), where F, is a user supplied function and

S F; O F (@585 s w03 By coroin 130 B

l) ,‘L'j !) J.'f

CURVE FITTING AND INTERPLOTATION

auis. o
Let (xi,yi) i = 1,2...N be a given set of data, which does not exactly .
represent the underlying function f(x). The problem is to minimize



N
i

E = 2 [yi—gxx)]

i=1

where

K >
gk@) = Saf@)  K=6

is the approximating function of f(x) and fj(x) is a user-supplied basis.

The determination of the a:'s is by solution of the normal equations by
Crout's method. There is no limit to the size of the data sample, but at
most 6 basis functions may be used.

A common method to minimize E is to set equal to zero the partial
derivatives of E with respect to parameters a;. In this way one obtains a
linear system of K equations in the K unknowns a,, a;,... ax

K N ¥
'.:.'1 a; ( ‘.:"l filxd) fi(x;) ) = ..—"='l.'/i Sfi(x:)

)

1‘\-‘ N N
= (‘;;fi(l'i) f_'(-l'.)) = ‘-:-1 yi [s(x)

J

o5 u; (‘.‘_—‘fi(-ri)fl\'(xi)) = =5 Yifr(x;)
This system which has a symmetric coefficient matrix is solved by the
Crout algorithm.

When the system is solved, it is necessary to decide if the set of found
coefficients aj, j =1,2,...K gives a good approximation to the function
f. A measure of this is the standard deviation or tolerance 6 defined by

3 N e
=i (f(xn)) — =i [),-:1 aifi('li)]

N




By comparing the values of at each step, it is possible to evaluate the
effect of the addition of each new basis function. The coefficients a,
are computed to the index k, k = 1,2..., b or until ¢ is less than the
specified tolerance. If the defined basis contains two or more

linearly dependent functions, or one or more basis functions equal zero,
then execution is terminated (the normal system is singular). The basis
must in this case be changed.

SLNLLS.

The chosen method is the Powell Algorithm improved by Zangwill. Let
(x;, yj)a i =1,2,...N be a given set of data points. The subroutine
computes a least squares fit of these data to the model

f(a,, @z ..ag X) KL6. That is, let

[yi ——f(al,a‘g_a Cog 7ah'7xi)]2

I l2=

f:z'l

be the function that defines the difference squared of the set of data to
the model f (a,, 25,..., ax, X) , one determines a,, &...2k so that the
function f is minimized. f (a,, 22... ag, X) is defined by the user in the
calling program as FNF (X). Let ¢ , r = 1,2,...n be the coordinate
directions and assume they are normalized to unit length. Initialization
step: let an initial pointpg,and n normalized directions §!,r = 1,2...n be
given. Calculate 4’ to minimize

0 . .0 .1
f(pll T /n ‘;n)
and let
0 0 L0 .1
pn—[ = pn B /‘n Sn

let t = 1 and commence iteration with K = 1

Iteration
, K- K
A:przrl‘¢r~r:1»2 ..... n

and t are given.

Step 1: find a to minimize

K-1
f(pn,.[ _E_ u C‘t)
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Update by

t+1
L if

t«—

K K

Ifa # 0, |let p =p,. +aCi.

Ifa= 0, rnepeat step 1.

Should stdp 1 be repeated n times in succession then

h—1

the point| P, , 1is optimal.
Step 2: Fqr r = 1,...,n calculateA¥, to minimize
. K K K

j(pf—l o /'r ‘;r )

and defins
K K K K

Pr = Proy 7 /r Er

Let

K K K- K R
= (on +oa) 1 pr — oy

— K ox ool K LK K
Determine et to minimize f(p, = 7y, &ur1)
K B, K
and set P = Pn o+ Lz Snsi
s K4 K
Define ¢ 1 = ¢, =y i g U

and continue with next iteration.

Some discuLsion of the procedure may be in order.

Step 1 proceeds cyclically through the coordinate directions. That is,

each time

we return to step 1 we use the next coordinate direction,

repeating C, after using C . Every n + 1 times step 1 is employed the

same coord

inate direction 1s employed. The t indexes the coordinate

direction to be used. 1f step 1 is repeated n times in succession, then
all n coordinate directions have been attempted and no change in the
point has occurred. Such a situation can only occur if at that point the
gradient of the furction f is zero. As f is assumed strictly convex and
continuously differentiable, that point is optimal.

In genera

step 1 is repeated until a new point is generated. In step 2

the procedure continues as in the earlier procedures. It is important

to observ
have been

that after at most n iterations, all coordinate directions
used. Both in step 1 (where we check if the found point is a

minimum) and in step 2; it is necessary to minimize the function along a
line. To find the minimum on a line, the following data must be provided:




1. A point on the line, p.

2. The direction of the line, &.

3. An upper bound to the length of step along the line, m.
4. The length of step along the line, m/10.

5. The accuracy to which the minimum is required, e.

The method of minimization must be such as to find the minimum of a
quadratic form, so it is primarily based on the quadratic defined by
three function values.

Initially f(p) and f(p+q & ) are calculated, and then either f(p-q &)
or f(p+2q § ) is evaluated depending on whether f(p) is less than or
greater than f(p+q§ ).

These three function values are now used in the general formula which
predicts the turning value of the quadratic defined by a, f(p+a § ),
b, f(p+b§), c and f(p+c &) to be at (p+d& ), where

: 1 B2 =) fa + (2 —a®) fo + (as — b)) [.
F =g b—c)fs+ (c—a)fy ~ (@a—0)f.

It is a minimum if:
b—c)fa+ (c—a)f, + (@a—D0)f,

Suesls < 0
(@a—b)(b—c)(c—a)

If the turning value is predicted to be a maximum, or if the value of
d is such that to calculate f(p+d§ ) a step greater than m must be taken,
the maximum allowed step is taken in the direction of decreasing f,
and the function value at the point which is furthest from (p+d § ) is
discarded, so that the prediction may be repeated. Otherwise d is com-

pared with a, b and c, if it is within the required accuracy of one
of them, that point is chosen as the minimum. 1f not, f(p+d§ ) is cal-

culated so that the quadratic prediction may be repeated; the function
value which is discarded out of f(p-a§), f(p+b§) and f(p+c§ ) is norm-
ally the greatest, but only if rejecting a smaller one cannot yield
a definite bracket on a minimum, which would not be otherwise obtained.
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SLFSYT. |

The Forsythe polynomials are a set of orthogonal polynomials over a
discrete set of N weighted data points (Xi,Yi,Wi) 1<i<N. The algorithm
for generating these polynomials is as follows

P_(x)=10

P,x) =1
P,(x) = (v —U,) Py(x)

P,(x) = (x — U,) Py(x) — V, Py(x)

P} = (g — L) Ps (%) = Vs P )

where
2 P ()P ey
e = D,
N
i‘gl T Pm—l(rz) Pm--!(xi) w;
‘\’m—l = 1 Dm—“

N
D = 1‘.“1 [Palx:)]? w,

The aim is to approximate the function f(x) by a linear combination of
the polynomials 1i.e.

M
!/(.l‘) = m:::‘O a,, Pm(‘t)
y(x) is the desired approximation. The coefficients are given by:
B e
i:l "1'._'// m(‘li)

II

mo

D m

It is possible to rewrite the equation in terms of x as follows:

b7 P i‘! P
v = ¥ G s
i) = o X)) = a CR I
J( ) =0 m m( ) K=0
where
M M m
¢k =X a, b




and
0k<O , or k>m
. s l1ik=m
bl; =’
bR_y — up by — vp_ e " 0=k <m

The standard deviation is given by

Ifg becomes less than a specified tolerance or
|a,., - 0,,,|<10‘°then the routine terminates.

The subroutine computes the coefficients Cg.

This polynomial may then be evaluated using SLPLRR.

SLFTRP.

If a function f(x) is defined at a set of 2N equally spaced points:
o, Xy + b,y + 2h, ...

The transformation:

14 " x—xo)
‘= where =
= () =%

gives the unit spacing and an approximation to the function is given by
the sum of the first M harmonics of the Fourier expansion:

a, M n o=
fuly) = —+ % (a,,.cos - my + b, sin = my)

2 m=1 a1 L /

where

O MN-1 for an even number of observations and

O MK N for an odd number of observations

The user enters the maximum number of harmonics to be computed and the
tolerance used to control the least squares error. The a and b coeffi-
cients are calculated using Goertzel's algorithm. It is necessary to
distinguish between two cases:
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1. 0dd number of observations (2N+1)

Let:
By = 1 ¥ =0
2 Dac

C, = cos ('—) S, = sin (—T-)

2N +1 D e |
CK+|=CICK—S|SK Sx+l=ClsK;Sch
(Law of cosines) (Law of sines)

The routine calculates:
Uiy =Uyn =0
L'Ym =f(m) — 2 CI\' Lvm-] ~=s l-'m-g
M=2N 2N =1 .:::1
then:

§ 0 Cr
ag = —m— o <l= s I= — T7
K 2N+l [f( ) 1 K 1 L;r]
b - Sk U K =01 N
A—2A,;1 kU, = 005 050 50

2. Even number of observations (2N)
Let

Cy=1 S, =0
@, el §, = it —
1 = Ly v D, = 51117
CK+1 == CICK —SISK SKH = ClSK — Sl CK
(Law of cosines) (Law of sines)

The routine calculates:
Uy = Uy =0
Up=fm)+2Cx U, ,—UC,_,

m=2N—12N—2...,1




then:

1
ax = —[f(0) + Ox U, — U]

1
< Sk Uy K=01..,N

bk =

The least squares error!Ey is computed for each M, where 0<M<N-1 for
an even number of observations and 0OSKMXN for an odd number of observa-
tions. Using only terms up to M, the least squares error or standard
deviation is given by:

2
a N
g )

— V2 == W l=— &
E.‘l o TJ'f (y) - [ 9 TS |

(an + bi)]
By observing the behaviour of E as M increases it is possible to esti-
mate the necessity of taking additional terms in the Fourier expansion.
The coefficients are computed to order M or until the least squares

error is less than the given tolerance.

SLFOUI. may then be used for interpolation using the found coefficients.

SLFOUI.

Given the coefficients of the Fourier expansion approximating a function
(see SLFTRP.), this expansion 1is evaluated for a given argument. The
argument may be entered in radians, degrees, original units or with unit
spacing. The relationship between the various scales may be seen as
follows:

1. 0dd number (2N+1) of observations over (@,2m)

original scale:

x, x4+ h  x+2h 7z, +3h Zo+ 2Nk a4+ 2N+ 1)h

where h = space between the observations (see
SLFTRP)

unit spacing:

0 1 2 2N 2N + 1
radians:
2 4..1 42\'7.1
0 - 2
2N +1 2N +1 2N +1
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degrees:

360 2(360) 2N - 360
0 S N s el _— 360
2N +1 2N +1 Bl =k 1
2. Even number (2N) of observations over (@,2x)
original scale:
2y Xy — b vy~ 2h vt 2N _1)h 2, +2N-h
unit spacing:
J . . . . .
0 1 2 2N —1 2.V
radians:
7 2.. 2 e
0 ! R T 5ot
2V N N
degrees:
360 2(360) 2N —1)360
2N 2N 2N Bog
SLPLYF.
Let
X)) = @G 2" 4@, 4+ .- —a, L oa, (1)

The Lagrange interpolating polynomial p (x) is the

following:
) (x —ax,) (x —a3) - - (@ —2,) ,
bl ik ;
“ (@, — ) (@ — ) - - (@, — )
(*—x,) (x —ay) - - - (x — )
T Y.
(xy — ) (s — 25) - - - (2 — )
r—a) (r— %) (@ — x,-)
o ( ) ( 2) ( 1 7o (2)

(X —2y) (X — ) ¢ (X — Xey) :



Each term on the right-hand side of equation (2) can be expanded in a
recursive manner into a polynomial of degree (n-1) in the same form as
equation (1). 1If one defines:

4, = ﬁ y (s — 25)
J=i

iEi

the i-th term on the right-hand side of equation (2) becomes:

LT (x— )] -y

i*i

4;
v
ZII (I — 1'1) = bi. n-1 =L + bi, n—3 zn-t i bi'1x + bw

i*i

these bij can be computed in a recursive fashion by successively
multiplying one or more terms. In particular, suppose for simplicity
i >k+1 and 1<K+1<n, then: '

Bay = Baa= ... =B, =%, B ...,B,, B, ‘I'

are the coefficients of

K
B = 11_]1 (x — x;)
i#i
which is the product of the first K-factors of
K
I (¢ —x) 9
JFi

When B is multiplied by the factor (x - xu ), a new polynomial B' with
the following coefficients is obtained:

B, *=10
B2 =0
B;(+1 = BK

BK = BK—[ = xK+1 BK

’
Bk_y = Bk_y — vk Bk,

.‘ l

“B'l = By — vk B,




Bu == XK~ Bu

In this way, each term in equation (2) is expanded and the coefficients
gathered

n b,-,- .
Ly 0=1i=n—1.

This polynomial may then be evaluated using SLPLRR., remembering that
evaluation is strictly valid only in the interval defined by the n base
points, x,, ...,x,.

SLCSPC.

Given the set of data (%, y;) i = 1,2,...,N where the Xs points are, in
general, not evenly spaced, the aim is to find the interpolatory cubics
fi(X)’ defined on (x;, X :

fil®) = ailx — 2, + bi(xr — @) + cile — ) + d;

where the fi's satisfy given ''smoothness'" conditions. Then it is
necessary to calculate 4 (N-1) coefficients A, Bi, Ciy Dy

i=1,2,...,(N-1).

The function f(x) on the entire interval x, XN consists of the functions
fi(X) satisfying the conditions:

- exact-fit condition : fi(x;) =y

- continuity condition : fii(x) = ¥,

- first derivative (slope) of fi(x) and f,,(x) agree at x,,
- 2nd derivative (curvature) of fi(x) andf,(x)are at x, .

At the end points, it is necessary to spécify the 2nd derivative only.

The method used to determine these coefficients is due to Akima.

The cubic spline may be evaluated using SLCSPI.



SLCSPI.

For discussion of how to generate the interpolatory cubics see SLCSPC.

SLPADE.

The degree of both the numerator and denominator are specified by the
calling program and must be less than 1. Given a function f(x), the
routine finds polynomials Pm(x) and O,(x) so that %?88 approximates f(x)
near x = x,, where x, is the center of the interval (m and n denote the
degree of respective polynomials).

The conditions used to determine the coefficients are that the two func-

tions E?%%% and f(x) agree at x, and so do the first (m+n) derivatives.
n

The coefficients of the Taylor series expansion of f(x) centered at %
will be used to find R.(x) and Qa(x). Since the polynomials depend only on
the Taylor Series coefficients and not directly on the value x, , a change
of variable makingx,= gwill have the effect that the a's and the b's may
be computed directly from the coefficients.

0 o
With the necessary assumptions of convergence, let I ¢;(x —x,)

Jj=

=]

be the Taylor series expansion for f(x):

P,(x)=a,+~a,x+ a2+ -+ a,a™ = j.E)a,-;t"

and

Q, (v) =b0-%—blx+b2:c2+ s % o b =,_.:.:‘ob,x"
" so that

P,,, £ o,

%) . approximates _.‘_o c;x' nearx = 0

Q.(r) .

) ; 9 .
—(——0)— will approximate f(v) = ;o cj(x — x,) near x = %,

Qn(x — z,) 4

Since it is hossible to divide both P and Q by a common factor, assume
that they have no common factor and also that b, = 1. To approximate

P"l(x)

€
:o c; ¥/ by nearx = 0,
=

Q. ()

consider




co ) Pa(x)

Yol — 2

1=0 ' Qn(‘r)

and choose the a's and b's so that E(x) and its first several derivatives

are equal to zero at x = @. There are (m+n+1) unknown a's and b's; thus
the first (m#n) derivates of E(x) can be made equal to zero.

E(x) =

0 _ n . m .
(..‘I' ¢; .l") (_l b, ') — ..Loa., X
‘E " P,,,(-l') g ’ "=0 )=
B =S Q)
" b,
=0’
S gt
S Yeabal— X a;
j=om=p Rk =0 '
{‘.. b
X byt
=
J aC
> & (¢ by —a;)ar = % X e byl
j=0 k=0 J=m—=1 k

Since the numerator and denominator are assumed to have no common factor,
the vanishing of the first (m+n) derivatives of E(x) at @ is equivalent
to the vanishing of the first (m+n+1) terms of the numerator:

il

(c;-k bk —a;) =0 for 0=j<=m (1)

K=0

¢;i_k bk =0 for m - l=j=m-+-n (2)

I l‘]u.

K=0

The set (2) of n equations may be solved for the n unknown b's. Then the
set (1) of equations can be used to compute the a's:

]
&
a;= X c¢;_x bk
j =0 i-K

The accuracy of the approximation improves as the sum of the degrees of
the numerator and denominator increases. Also the best approximations
occur when the degrees of the numerator and denominator are nearly equal.

The user may supply either the Taylor coefficients or the derivatives at
the centre of the interval. In the latter case, the routine calculates
the corresponding Taylor coefficients,

The polynomials may be evaluated using SLPLRR. with argument x - x.,




NUMERICAL INTEGRATION AND DIFFERENTIATION

SLITEQ.

A Newton-Cotes interpolatory method for orders 1 to 8 is used. An order p
quadrature fits a polynomial of degree p to p+1 points of the data base.

This polynomial is then integrated. The formulae for each quadrature and
truncation error term are given below.

,. h B
Pt " fwrds = — (i + fio) — 17 r = k=

%=1

AT 3
t

h
P=2J fleydz = — (fi + 4fs + i) —
Ti2

-

= (&) ., < f=ua

- nm 3 b3 f9(£)
P=3 j J@) dx = —=(f, + 3fiey + 3fims + fi-2) oy = & £
%i-3

" v

= 2h
P—4 [ fyde = —— (1f; + 32 fiy + 12fis = 32fis + Tfi)—
.« T, 2

i—4

8

R f©)(&) r =<2 .
945

-3 5h
P — 5[ ' f(x) dx = —.:E (Igf‘ + 75f,~_1 + 50f,'_2 + 50f,»_3 + 75f~__l -J- lgfi_':‘)—‘
Tizs -

275
12096

R f18)(&) r_s=6=1

i h
B 6] fla)yde = m (B1f; —216f,_ + 2T f s + 272f; 3 + 27f;; + 216 f;_; + 41 fi o)~
Ti-e

ho 8 'i_éf_éri
1200 V) =




-

Pooe T j fle) dx =

T

(751 f; + 3577 fi_, + 2989 f;_,+ 2089 f,_, + 1323 f,_; + 35377 f; ¢+

17280

183

e TEL 1) == he fO(&) T, =é=;

k18114 518400 U

55 o -
P=3 [ Cf) de = (980 f, + 3888 f,_, — 928fi_, + 10496 f, , — 4540 f,_,+
14175
< Tyg

10496 f,_; — 928 f, , — 3888f,_; — 989 f, ) — « h' f18)(¢) A P

SLDTEQ.
Let (xi, yi) i = 1,...,N, N >6, be the data table. For each point, 4

other points in the neighbourhood are selected. A 5 point difference
formula is used for both the first and second derivative.

Forward Difference » (For i = 1 and 2)
I @) = l_Zlh_ [—25 f(x;) +~ 48 f(a; + h) — 36 f(x; — 2h) + 16 f(x; — 3h) — 3f(x; + 4h)]

er (truncation error) is proportional to h!f®(§)

xiéffél’if-lh

fra) = l2lh2 [35 f(x;) — 104 f(x; — k) = ll4f(.f',. — 2h)— 36 f(x, — 3h) + 11 f(x; ~ 4h)]
er (truncation error) is proportional to A3 f5) (&)
v, =f=a;,—1h

Central Difference (For 1 = 3,...,N=2)

1
f’(.l',-) - m [f(.l‘,- — 2 h) — Sf(‘l'i — h) - Sf(.l',' - h) -—f(.r,' - 2h)]
ér truncation error) is proportional to Aif®(£)

P = —1— [—f(r; — 2 k) — 16 f(e, — ) — 30 f(x,) = 16 f(r, — hy — f(x; + 2h)]
' 12 h% ) )
ér (truncation error) is proportional to h3 f2(&)

v—2h=$<=a;,+2h



Backward Difference (For i = N-1,N)

1
frlx) = ETT (Bf(x; —4h) — 16 f(x; — 3h) + 36 f(x; — 2 h) — 48 f(x; — k) + 25 f(x;)]
ér (truncation error) is proportional to hif®(&)

2, —4h < & <y

Sf(x) =

o [11 f(x, — 4) — 56 f(x; — 3h) + 114 f(x; — 2 h) — 104 f(x; — k) + 35 f(x,)]
ér (truncation error) is proportional .to 3 f3)(§)

v,—4h = & =2

These formulae are exact for polynomials of degree less than or equal
to 4.

SLDIFF.

The first and second derivatives are computed using a 5 point central
difference formula.

1
File,) = — [f(xg —2h) — 8f(x, —h) ~ 8f(x, — h)— flx, = 2h))]
er ' truncation error) is proportional to hk!f3(£)
xg—2h<=&=x,+2h
and

1

fr(xy) = 1252

[—f(xy — 2 k) + 16 (flz, — h) + flx, + h)] — 30 fla,) — flxy + 2 h)]

ep (truncation error) is proportional to 3 f3(¢)

2y —2h=é=ay+2h

The increment h is set by the user and the following will give accurate
results:

h>@.0@5 to evaluate the 1st derivative only
h>@.86 (minumum) to evaluate both derivatives.

SLROMB.

Romberg quadrature is a combination of the composite trapezoidal rule for
successively smaller mesh size and a Richardson type extrapolation.




A triangular scheme is generated

The first row is the result of the composite trapezoidal rule for
successively finer meshes (i.e. more subdivisions). The other elements of
the scheme are the result of extrapolating the two entries directly
above. In particular,
TOR VR o I—23 .

-1 k=12, .

T =
The scheme is computed from the left hand corner downwards. The process
stops if, for some k

s 7¢+1——1¢ < E

for some tolerance E, or

~IL | S o P

Otherwise, the program halts after a specified number of lines have been
calculated.

SLGAUS.

Let

~B
Izjfqu
A

be the integral to be evaluated by an order n quadrature. A transfor-
mation of variables is performed
B—d_ Basd

X = £+
2 2

Then

~1 B
fl&yde = X W, f(&)
-1

i=1

that is, a weighted sum of function values at the zero §, of the ngendre




polynomials Pn(x) of order n, with weights

2

W, =
(I — &) [Palé)]?

The zeros and weights are stored on the external sequential data file
WEIGHT.

SLLAGU.

For an order n quadrature

f‘ﬁe_xf(x) dx = i‘:‘:;. u',f(E.) |

and

o©

[ foyde = X Wif(E)
v 0

where

o o
W, =e %,

i.e., a weighted sum of function values at the zeros §1 of the Laguerre
polynomials L (x) of degreee n and with weights,

—ln— 1)

L(&:) Ly (&)

The zeros &, and weights w. and w'. are stored on the external data file .
WEIGH2. ' b

i

ORDINARY DIFFERENTIAL EQUATIONS

SLEROM.

An N-th order equation can be rewritten as a system of N first order
ordinary differential equations by using the substitution:

dy dy-2y dvN-1

Y=Y Y= dz 0 o dey-2 bE= dxN-1

o0

This transformation is automatically performed by the routine. The




following algorithm can then be used for either a system of first order
equations or a single, higher order equation. The case of one equation
on [xj, %] is described, i.e.

y=fxy) oy, =y,

The modified Euler or improved polygon method is used as a quickly
computed first approximation using step size h = X;,— X;

Yoo = Yi — hfle, + k., .‘;iﬂ/-.»)

_ h
Yicdin = Yi + Tf(lz y.)

The step from X to x, 1s taken using successively smaller step sizes
i.e. n, hh, h,, hf,... An extrapolation to zero step size is performed
~at each stage yielding the triangular array:

=
‘41.0 ‘-llxl
.0 4,, Ay,
where
: h
:lm.n =Y (-r:-[‘ -)m) m = 0.1, ...
2”‘" ‘_1 , _‘_l .
Ay yey = = i W= 0,1..0.m—1

2e+n ]

where p = order of the method used to compute Am,o- In this case p = 2.
The doubling and halving of the step size is decided by the measure of
convergence of this extrapolation to a solution.

| A;HI.H-I _ A,-',- | / IAJ'J' l

is the measure. If this term is larger than a pre-assigned tolerance, the
step size is halved and the step is repeated. If this term is smaller
than the tolerance by a factor of .@#1 sufficiently often, the step size
is doubled. At most six lines of the triangular array are generated. The
tolerance and the maximum number of halvings are function parameters.
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@ B. SUBROUTINES AND RELATED TEST
PROGRAMS




ABOUT THIS CHAPTER

This chapter contains a table of the Subroutines and their related Test
Programs.

CONTENTS

SUBROUTINES AND RELATED B-1
TEST PROGRAMS
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NAME ADDRESS TEST PROGRAM
SLCONN. 3gagn SLCONN
SLPRIM. 3691 SLPRIM
SLEUCL. 30801 SLEUCL
SLRECO. 31001 SLRFCO
SLSUCO. 31201 SLSUCO
SLCFCO. 31491 SLCFCO
SLFACT. 31601 SLFACT
SLBINO. 3181 SLBINO
SLMULT. 3201 SLMULT
SLDUPL. 32201 SLDUPL
- SLATNZ. 32491 SLATN2
| SLCONV. 32691 SLCONV
SLRPCC. 32801 SLRPCC
SLPRCC. 3301 SLPRCC
SLCSIN. 33291 SLCSIN
SLCCOS. 33491 SLCCOS
SLCTAN. 33691 SLCATN
SLCASN. 3381 SLCASN
. SLCACS. 34991 SLCACS
SLCATN. 34201 SLCATN
SLCLN. 34401 SLCLN
SLCEXP. 3461 SLCEXP
SLCRZ. 34801 SLCRZ
sLCZMZ. 35001 SLCZMZ
SLCZDZ. 35201 5LCZDZ
| SLCSQR. 35401 SLCSQR
' SLCZN. 35601 SLCZN
SLCZA. 35801 SLCZA
SLPLRC. 36001 SLPLRC
SLPLRR. 3621 SLPLRR
SLPRRR. 36401 SLPRRR
SLPLYM. 36601 SLPLYM
SLPLYD. 36801 SLPLYD
SLPTRA. 370g1 SLPTRA
SLKMF. 37291 SLKMF
SLEMF. 37491 SLEMF
SLLAGG. 37601 SLLAGG
SLHNF. 3781 SLHNF
SLHEN. 38001 SLHEN
SLFOUR. 3821 SLFOUR
‘ SLGAMA. 38401 SLGAMA
SLERF. 3861 SLERF
(&) SLBIN. 38801 BIN



NAME ADDRESS TEST PROGRAM
SLII@X. 390¢1 INT
SLEF . 39201 SFR
SLCF. 39401 CFR
SLCHYF. 396@1 CHYF
SLGHYP. 39801 GHYP
SLSIF . 49001 SIF
SLCINF. 49201 CINF
SLEIF. 4¢4¢91 EIF
SLEINF. 47991 EINF
SLBAIR. 49601 BAIR
SLRBIS. 40801 BISEL
SLNLIN. 41991 NLIN
SLCRO. 41201 SLCRO2
SLCHO. 41441 SLCHO2
SLJAC. 416¢1 SLJAC2
SLHES: 418@1 SLHES?2
SLHEV. 46001 SLHES2
SLCHA. 42201 SLCHA2
SLJICB. 42401 SLJCB2
SLLLSAQ. 42601 RRLLSQ
SLNLLS. 46401 RRNLLA
OLFSYT . 43091 RRFSYT
SLFTRP. 43201 RRFTRP
SLFOUI. 43401 RRFTRP
SLPLYF. 43601 RRPLYF
SLESPE.. 438¢1 RRSPC
SLCSPI. 44¢¢1 RRSPC
SLPADE. 44201 RRPADE
SLITEQ. 44401 SLITEQ
SLDTEQ. 44601 SLDTEQ
SLDIFF. 44801 SLDIFF
SLROMB. 45081 SLROMB
SLGAUS. 45201 SLGAUS
SLLAGU. 45401 SLLAGU
SLEROM 45601 SLEROM
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NOTICE

Ing. C. Olivetti & C. S.p.A. reserves the right to make improvements in
the product described in this manual at any time and without notice.

This material was prepared for the benefit of Olivetti customers. It is
recommended that the package be test run before actual use.

Anything in the standard form of the Olivetti Sales Contract to the
contrary not withstanding, all software being licensed to Customer 1is
licensed "as is'. THERE ARE NO WARRANTIES EXPRESS OR IMPLIED INCLUDING
WITHOUT LIMITATION THE 1IMPLIED WARRANTY OF FITNESS FOR PURPOSE AND
OLIVETTI SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES IN CONNECTION WITH SUCH SOFTWARE.

The enclosed programs are protected by Copyright and may be used only by
the Customer. Copying for use by third parties without the express
written consent of Olivetti is prohibited.
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