
OLINUM (Numerical Analysis)
User Guide

olivetti L1

OLINUM (Numerical Analysis)

User Guide

olivetti L1

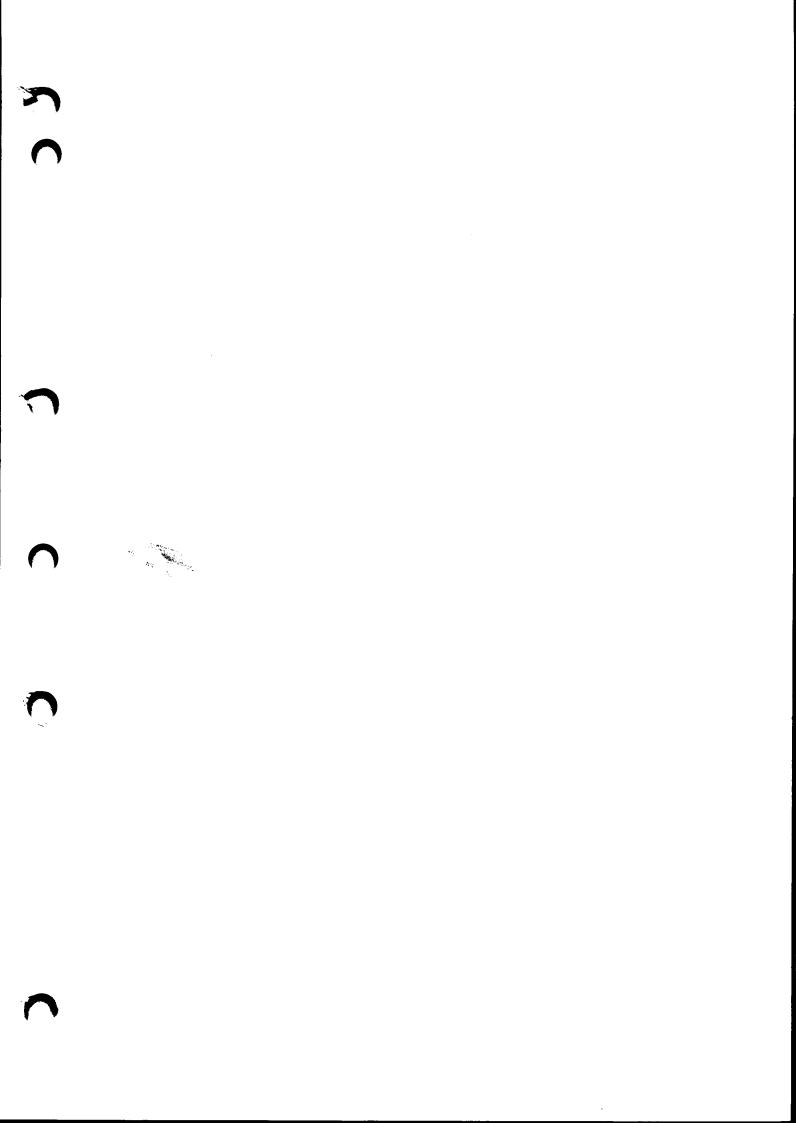
PREFACE

This document contains a set of subroutines that provides solutions for problems in numeric analysis. These subroutines are intended for the applications of Users who provide their own programming. The use of these subroutines permits a more rapid analysis and development of the applications.

RELATED PUBLICATIONS: None

DISTRIBUTION: General (G)

FIRST EDITION: July 1982


MULTIPLAN is a registered trademark of the MICROSOFT INC.

PUBLICATION ISSUED BY:

Ing. C. Olivetti S.p.A
Servizio Centrale Documentazione
77, Via Jervis-10015 IVREA (Italy)

© 1982, by Olivetti

The following are trademarks of Ing. C. Olivetti S.p.A.: OLICOM, OLITERM, OLIWORD, OLINUM, OLISTAT, OLIMASTER, OLITUTOR, OLITEST, OLIENTRY, OLISORT, GTL.

The following are trademarks of Ing. C. Olivetti S.p.A.: OLICOM, OLITERM, OLIWORD, OLINUM, OLISTAT, OLIMASTER, OLITUTOR, OLITEST, OLIENTRY, OLISORT, GTL.

1.	INTRODUC	TION			SLSUCO.	Quadratic Surd Conversion to	3-11
	WHAT IS	<u>DLINUM</u>	1–1			Continued Fraction	
	HOW TO US	SE OLINUM	1–1				
	INPUT TO	OLINUM SUBROU-	1–1		SLCFCO.	Convergents of a Continued Fraction	3–13
	OUTPUT FI	ROM OLINUM SUB-	1–2		SLFACT.	Factorial and Log Factorial	3–16
	HOW THIS NISED	MANUAL IS ORGA-	1-2		SLBINO.	Binomial Coefficients	3–19
2.	HOW TO BE				SLMULT.	Multinomial Coefficients	3-21
	INTRODUC	<u> TION</u>	2–1		Ct DUDI	Dechability of	ວ າວ
	POWER ON		2–1		SLDUPL.	Probability of Duplication in a Given Universe	3-23
	STARTING PACKAGE	THE APPLICATION	2-4	4.	ELEMENTA	RY FUNCTIONS	
	USING THE	TEST PROGRAMS	2-5		SLATN2.	Arctangent of a Ratio	4-1
3.	COMBINATO	ORIAL ANALYSIS	3–1		CI CONV	Dadward 6	4.5
	SLCONN.	Number System Conversion	3–1		SLCONV.	Reduction of an Angle to the First Quadrant	4-3
	SLPRIM.	Factoring and Prime Number Generation	3–4		SLRPCC.	Rectangular to Polar Coordi- nates Conver- sion	4–5
	SLEUCL.	Greatest Common	3–7				
		Denominator and Lowest Common Multiple			SLPRCC.	Polar to Rect- angular Coordi- nates Conver- sion	4–7
	SLRFCO.	Rational Frac-	3-9	_		DV 51110775	
		tion Conversion to Continued Fraction		5.	(COMPLEX	RY FUNCTIONS)	
					SLCSIN.	Sine of a Com- plex Number	5–1

SLCCOS.	Cosine of a Complex Number	5-3	6.	POLYNOM!	ALS	
SLCTAN.	Tangent of a Complex Number	5–5		SLPLRC.	Evaluation of Real Polynomials (Complex Argu- ment)	6-1
SLCASN.	Arcsine of a Complex Number	5–7		SLPLRR.	·	6-3
SLCACS.	Arcosine of a Complex Number	5-9			(Real Argument)	
SLCATN.	Arctangent of a Complex Number	5-11		SLPRRR.	Calculating the Coefficients of a Polynomial from Roots	6-5
SLCLN.	Natural Logarithm of a Complex Number	5–13		SLPLYM.	Multiplication of Two Real Polynomials	6-7
SLCEXP.	Exponential of a Complex Num- ber	5–15		SLPLYD.	Division of Two Real Poly- nomials	6-9
SLCRZ.	Reciprocal of a Complex Number	5–17		SLPTRA.	Translation of Coefficients of	6-12
SLCZMZ.	Multiplication of Two Complex Numbers	5–19			a Real Poly- nomial	
SLCZDZ.	Division of Two Complex Numbers	5-22	7.	HIGHER N	MATHEMATICAL NS	
SLCSQR.	Square Root of a Complex Number	5-25		SLKMF.	Complete Ellip- tic Integral of First Kind	7–1
SLCZN.	Integral Power of a Complex Number (Z Recurrence)	5–27		SLEMF.	Complete Ellip- tic Integral of Second Kind	7-3
SLCZA.	Real Power of a Complex Number	5–29		SLLAGG.	Generalised Laguerre Poly- nomial Ln (x)	7-5
				SLHNF.	Hermite Poly- nomial Hn	7-7

SLHEN.	Hermite Poly nomial He	7-9	8.	SOLUT10N	OF EQUATIONS	
SLFOUR.	n Evaluation of Fourier Series	7–11		SLBAIR.	Roots of a Real Polynomial (Newton-Bairstow)	
SLGAMA.	Gamma Function	7–13		SLRBIS.	Roots of a Real Function	8-4
SLERF.	Error Function erf(x)	7–15			(Bisection)	
SLBJN.	Bessel Function of Integer Order Jn	7–17	•	SLNLIN.	Solution of a Non-linear Sys- tem	8–7
SLIIØX.		7–19	9.	LINEAR	ALGEBRA	
SLIIWA	gral of the Bessel Function Io(x)	7-17		SLCRO.	Solution of a Linear System and Matrix In- version for a	9–1
SLSF.	Fresnel Integral S(x)	7–21			General Matrix	
SLCF.	Fresnel Integral C(x)	7–23		SLCHO.	Solution of a Linear System and Matrix In- version for a	9–5
SLCHYF	Confluent Hyper- geometric Func- tion	7-25			Symmetric Posi- tive-definite Matrix	
SLGHYP	. Gauss Hyper- geometric Func- tion	7-27		SLJAC.	Eigenvalues and Eigenvectors of a Symmetric Ma- trix using the	9–10
SLSIF.	Sine Integral Si(x)	7–29			Jacobi Method	
SLCINF	. Cosine Integral Cin(x)	7–31		SLHES.	Eigenvalues of a General Ma- trix using the Q-R Algorithm	9–13
SLEIF.	Exponential Integral Ei(x)	7–33		SLHEV.	Eigenvectors of a General	9–17
SLEINF	. Exponential Integral Ein(x)	7–35			Matrix	

	SLCHA.	Characteristic Polynomial of a General Ma- trix	9–19		SLPADE.	Rational Func- tion Fitting (Padè Approx- imation)	10-28
	SLJCB.	Evaluation of the Jacobian Matrix	9–23	11.		L INTEGRATION ERENTIATION	
10.	CURVE FI	ITTING AND ATION			SLITEQ.	Integration of a Tabulated Function (Equal Spacing)	11-1
	SLLLSQ.	Least Squares Curve Fitting to User Sup- plied Basis	10-1		SLDTEQ.	Differentiation of a Tabulated Function (Equal Spacing)	11-5
	SLNLLS.	Non-linear Least Squares Curve Fitting to an Arbi- trary Scalar Function	10-4		SLDIFF.	, ,	11-9
	SLFSYT.	Weighted Least Squares Ortho-	10-8		SLROMB.	Romberg Inte- gration	11-13
		<pre>gonal Poly- nomial Curve Fit (Forsythe)</pre>			SLGAUS.	Guass-Legendre Quadrature	11–16
	SLFTRP.	Coefficients of Fourier Series	10-12		SLLAGU.	Guass-Laguerre Quadrature	11-19
		to Represent Discrete Data		12.	ORDINARY EQUATIONS	DIFFERENTIAL S	
	SLFOUI.	Fourier Inter- polation	10-17		SLEROM.	Integration of Differential	12–1
	SLPLYF.	Lagrangian In- terpolation	10-19			Equations (Euler-Romberg Method)	
	SLCSPC.	Cubic Spline	10-23	Α.	CALCULAT	ION METHODS	
	SLCSPI.	Cubic Spline Interpolation	10-24		COMBINATO	DRIAL ANALYSIS	A-1
					SLCONN.		A-1

SLPRIM.	A -2	SLCZDZ.	A-10
SLEUCL.	A-2	SLCSQR.	A-10
SLRFCO.	A-3	SLCZN.	A-10
SLSUCO.	A-3	SLCZA.	A-11
SLCFCO.	A-4	POLYNOMIALS	A-11
SLFACT.	A-4	SLPLRC.	A-11
SLBINO.	A-5	SLPLRR.	A-11
SLMULT.	A-5	SLPRRR.	A-11
SLDUPL.	A-6	SLPLYM.	A-12
ELEMENTARY FUNCTIONS	A-6	HIGHER MATHEMATICAL	A-12
SLRPCC.	A-6	FUNCTIONS	A 12
SLPRCC.	A-6	SLKMF.	A-12
ELEMENTARY FUNCTIONS (COMPLEX)	A-7	SLEMF.	A-12
(COMPLEX)		SLLAGG.	A-12
SLCSIN.	A-7	SLHNF.	A-13
SLCOS.	A-7	SLHEN.	A-13
SLCTAN.	A-8	SLFOUR.	A-13
SLCASN.	A-8	SLGAMA.	A-13
SLCACS.	A-8	SLERF.	A-13
SLCATN.	A-8	SLBJN.	A-14
SLCLN.	A-9	SLIIØX.	A-14
SLCEXP.	A-9	SLSF.	A-14
SLCRZ.	A-9	SLCF.	A-14
SLCZMZ.	A-9	SLCHYF.	A-15

SLGHYP.	A-15		SLPLYF.	A-29
SLSIF.	A-15		SLCSPC.	A-31
SLCINF.	A-15		SLCSPI.	A-32
SLEIF.	A-15		SLPADE.	A-32
SLEINF.	A-16		NUMERICAL INTEGRATION AND DIFFERENTIATION	A-34
SOLUTION OF EQUATIONS	A-16		SLITEQ.	A-34
SLBAIR.	A-16			
SLRBIS	A-16		SLDTEQ.	A-35
SLNLIN.	A-17		SLDIFF.	A-36
LINEAR ALGEBRA	A-18		SLROMB.	A-36
SLCRO.	A-18		SLGAUS.	A-37
SLCHO.	A-18		SLLAGU.	A-38
SLJAC.	A-18		ORDINARY DIFFERENTIAL EQUATIONS	A-38
SLHES.	A-19		SLEROM.	A-38
SLHEV.	A-19	В.	SUBROUTINES AND RE- LATED TEST PROGRAMS	
SLCHA.	A-20		SUBROUTINES AND RE-	B - 1
SLJCB.	A-20		LATED TEST PROGRAMS	D-1
CURVE FITTING AND INTERPOLATION	A-20			
SLLLSQ.	A-20			
SLNLLS.	A-22			
SLFSYT.	A-25			
SLFTRP.	A-26			
SLFOUI.	A-28			

1. INTRODUCTION

ABOUT THIS CHAPTER

This chapter provides general information about OLINUM and a brief explanation of how this manual is organised.

WHAT IS OLINUM	1–1
HOW TO USE OLINUM	1–1
INPUT TO OLINUM SUBROUTINES	1-1
OUTPUT FROM OLINUM SUB- ROUTINES	1–2
HOW THIS MANUAL IS ORGANISED	1-2

WHAT IS OLINUM

The M2Ø Scientific Subroutine Library OLINUM provides users who develop their own application programs with a set of pre-written mathematical routines which can easily be incorporated into their work, forming single program units. The routines described in this volume have been designed to solve the more common computational problems in mathematics. The routines are free of input/output; this enables one or more routines to be used in the sequence appropriate to the computational requirements of the particular application program.

The routines are written in BASIC and take the form of subroutines. They are stored on a user floppy disk; each routine is in a single file with a filename composed of the characters sl followed by a mnemonic related to the computational method and completed with a full stop. The routines do not include input (or output) statements but operate on data already in memory; there is no fixed maximum dimensioning of the data array on which the routines operate.

HOW TO USE OLINUM

In order to build a BASIC program incorporating one or more routines from OLINUM, the user must write the main program taking into account the following points:

- the program must contain input and output statements which use the same global variables as the routines
- the program must contain the necessary DIM and DCL statements for the global arrays
- the OLINUM subroutine is referred in the calling statement GOSUB 'address'; the address being fixed for each specified subroutine
- if several subroutines are incorporated in the same program each of them must be called by it's corresponding GOSUB statement
- the program must not contain any line number which is used for the subroutines

INPUT TO OLINUM SUBROUTINES

Before calling the routine the user must store the data on which the

routine is to operate, taking into account that data may be in the form of single numeric variables or numerical arrays of one or two dimensions.

In the case of single numeric variables, they can be used as function parameters and the user must select the address of the function and provide the parameters for the function to be called before the statement for calling it (GOSUB). In the case of numeric arrays they are global variables for the program and the subroutine and must be dimensioned in the program, declared in single or double precision as required and have the same name in the function.

The name of the parameters is associated with the name of the subroutine as well as the 'local' variables of which it makes use, so that there will be no confusion with those used for calling the program.

OUTPUT FROM OLINUM SUBROUTINES

The results of a routine may be a single numeric variable (which may be given by the return value FUN. of the function) or more than one numeric variable or array; in the latter case the results will be global variables and must be dimensioned and declared in the program.

Care must be exercised in choosing the names of application program variables. If the same names are used both for application program variables and subroutine internal variables, the value assigned to the variables in the application program will be changed after the subroutine calling statement.

HOW THIS MANUAL IS ORGANISED

The second chapter of this manual; How to Begin, describes how to load the System and Application disks on the M2Ø and how to incorporate the OLINUM subroutines. The OLINUM subroutines are then described in 9 separate chapters, each chapter corresponding to a main area of Numerical analysis. Within each chapter each subroutine is described in tabular form as follows:

First Table (see Fig 1-1):

- The subroutine title, i.e. SL....
- A brief description of the purpose of the subroutine.

INTRODUCTION

- The input parameters listed with their meanings plus their values, where known.
- The output parameters listed with their meanings plus their values, where known. This section includes the possible FUN. values returned by the subroutine; in general FUN. = Ø signifies a correct calculation and FUN. = an integer greater than Ø signifies an error.
- The program variables or arrays required for calculation, if any.
- The calling statement GOSUB
- A cross-reference to the Appendix which contains the method used to calculate the subroutine
- The calling statements of any associated subroutines.

This first table is followed by any general notes which are of importance to the correct utilisation of the subroutine.

INPUT					
VARIABLE	DESCRIPTION	VALUE			
Parameter1 Parameter2					
	OUTPUT				
	301101				
Parameter1 Parameter2					
CALLING SEQ	JENCE GOSUB				
METHOD See A	ppendix				
CALLED SUBR	DUTINES				

Figure 1-1 Subroutine Table

INTRODUCTION

The second table describes the Test Program for a subroutine and is laid-out as follows (see Fig 1-2)

- The subroutine title, i.e. SL
- The Test Program name
- Any notes considered relevant to the Test Program
- The subroutine title or titles required for the Merge
- An input and an output section which show the actual data input and output during the Test Program

The Manual is concluded by two Appendices; the first containing a description of the Methods used for each subroutine and the second containing a list of the subroutines with their related Test Programs

TEST PROGRAM FOR SUBROUTINE TITLE

TEST PROGRAM NAME:						
Note: Any relevant notes						
MERGE: Subroutine title(s)						
INPUT	OUTPUT					
Data input by user	Data output by machine					

Figure 1-2 Test Program Table

2. HOW TO BEGIN

ABOUT THIS CHAPTER

This chapter contains an explanation of how to start the Olinum application package on the M2O Computer System.

INTRODUCTION	2–1
POWER ON	2-1
STARTING THE APPLICATION PACKAGE	2-4
USING THE TEST PROGRAMS	2-5

INTRODUCTION

The instructions which follow are given in brief. For a complete discussion of the M2O from an operational point of view refer to the Professional Computer Operating System PCOS User Guide code 3930090 C

POWER ON

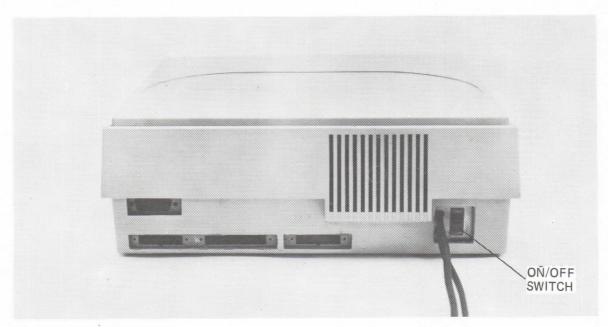
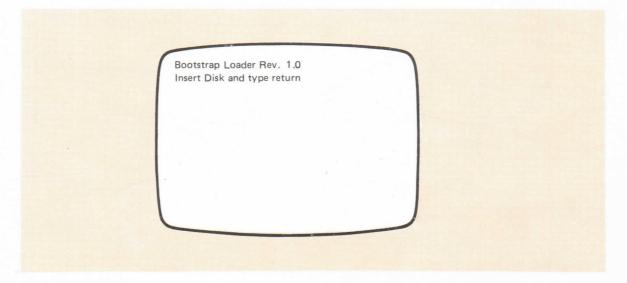



Figure 2-1 ON/OFF SWITCH

1) Press the ON/OFF switch on the rear of the machine to the ON position. The red power-on-light at the top left of the keyboard, comes on and the following appears on the screen.

2. Insert the System Disk (Figure 2-2) into the right hand disk drive as indicated in Figure 2-3. Press the CR key.

Figure 2-2

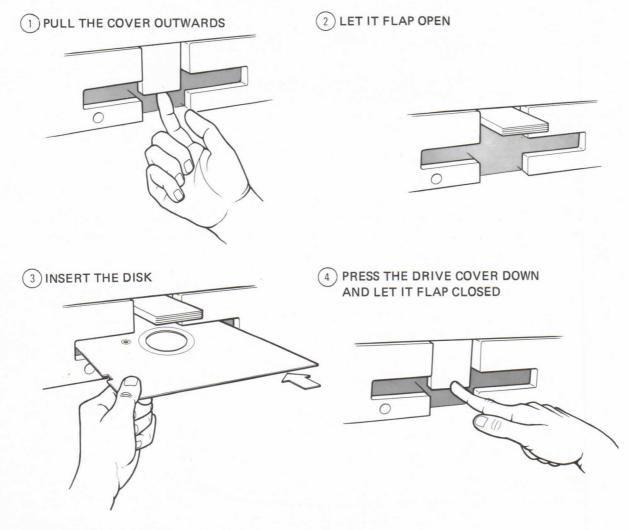


Figure 2-3 Loading a Disk

The screen illustrated in Figure 2-4 appears:

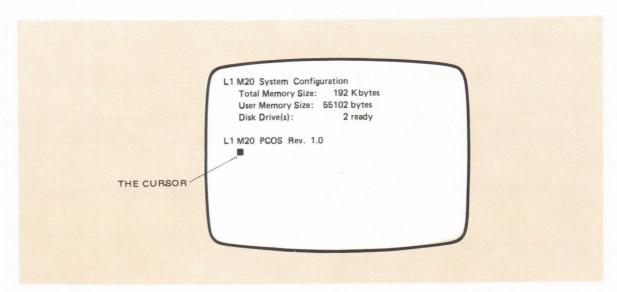


Figure 2-4 Start-up Screen

The numbers which appear on your screen may be slightly different from those shown in Figure 2-4. This depends on the configuration you are using and will not affect the running of your application. If the start-up procedure does not go as planned you should refer to the "PCOS User Guide" code number 3930090 C, Chapter 8 "TROUBLESHOOTING".

STARTING THE APPLICATION PACKAGE

When the System disk has been loaded as described in the previous section the Application can be started as follows:

- Enter the Command New and Load the main program
- Enter the merge command for the first called subroutine with the format; Merge < filename > , where filename is the name of the file in which the subroutine is stored (i.e. SL)
- Enter a Merge Command for each of the other subroutines called, if any
- The program plus the Merged Subroutines are now ready to run and maybe listed or saved as any other program.

Example

0.K.

Load "1: SLCONN

MERGE "1: SLCONN.

For this example the test program for the subroutine SLCONN. will be the application program; and a listing is provided to show the point of merging:

```
0.K.
RUN.
10 OPTION BASE 1 : DEFOBL A-Z : PI=3.14159265359#
20 INPUT "ENTER BASE1, BASE2 ", B1, B2
30 INPUT "ENTER INTEGER PART ",N
40 AX="Base "+STRX(B1)
50 PRINT
                                         60 PRINT USING "\
                        \Integer Part
70 INPUT "ENTER FRACTIONAL PART ",F
                         Fractional Part ##.############**:F
80 PRINT USING *
90 PRINT
100 PCONN1=N:PCONN2=F:PCONN3=B1:PCONN4=B2:PCONN5=C1
110 GOSUB 30401:FUNCONN=FUN.
120 IF ((FUNCONN+1)(.5) OR ((FUNCONN+1)) 6 ) GOTO 140
130 ON FUNCONN+1 GOTO 140,200,220,240,260,280
140 AX="Base "+STRX (B2)
                         \Integer Part
                                          ##,################ ;AX,R
 150 PRINT USING "\
                         Fractional Part ##.##############;R2
 160 PRINT USING "
 170 PRINT
 180 PRINT
 190 GOTO 20
 200 PRINT "INTEGER PART AN INTEGER >=0 ONLY"
 210 GOTO 30
```

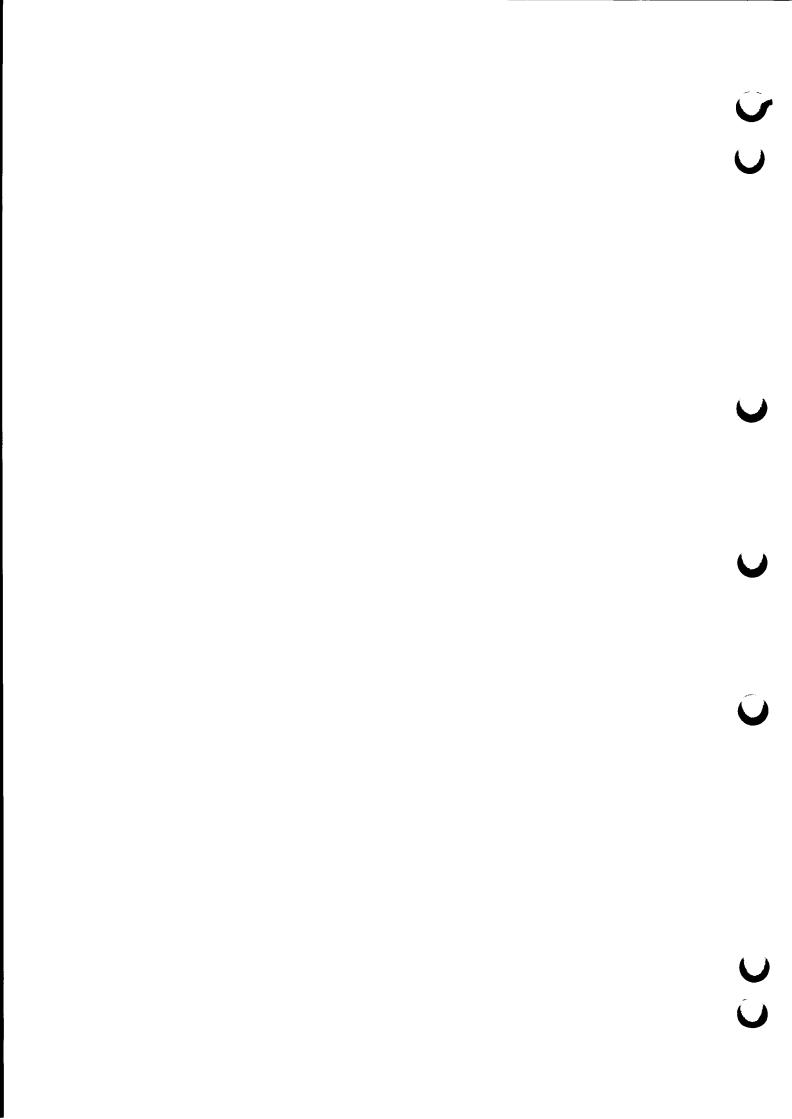
220 PRINT "O(= FRACTIONAL PART(1 ONLY"
230 GOTO 70
240 PRINT "BASE MUST BE AN INTEGER >1"
250 GOTO 20
260 PRINT "ERROR IN INTEGER DIGITS"
270 GOTO 30
280 PRINT "ERROR IN FRACTIONAL DIGITS"
290 GOTO 70
30401 PI=3.14159265359#
30402 REM SUBROUTINE

It is also possible to load the subroutines and then specify the line number for calling a particular subroutine in the application program.

USING THE TEST PROGRAMS

To test the subroutines the OLINUM disk should be loaded as described previously and "ba" entered via the keyboard. If a printer is available and a print-out required then "ba + prt" must be entered via the keyboard.

The test program is called by entering;


load "1: test program name

and the subroutine is merged with the test program by entering

merge "1: subroutine name.

If the merge is successful then O.K. will appear on the screen and the test program can be started by entering RUN. The input for the various test programs is described in the tables related to the subroutines.

To cancel a test program the blue SHIFT key and the C key must be depressed simultaneously.

ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of problems in Combinatorial Analysis.

SLCONN.	Number System Conversion	3–1	SLMULT.	Multinomial Coefficients	3–21
SLPRIM.	Factoring and Prime Number Generation	3-4	SLDUPL.	Probability of Duplication in a Given Universe	3-23
SLEUCL.	Greatest Common Denominator and Lowest Common Multiple	3-7		orten diirrenes	
SLRFCO.	Rational Fraction Conversion to Continued Fraction	3-9			
SLSUCO.	Quadratic Surd Con- version to Continued Fraction	3–11			
SLCFCO.	Convergents of a Continued Fraction	3–13			
SLFACT.	Factorial and Log Factorial	3–16			
SLBINO.	Binomial Coefficients	3–19			

SLCONN.

NUMBER SYSTEM CONVERSION

To convert an integer or decimal fraction from one polynomial base to another $\,$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCONN1 PCONN2 PCONN3 PCONN4	Integer part of number decimal fraction part of number conversion from base PCONN3 to base PCONN4	PCONN3, PCONN4 integers
	OUTPUT	
R R2 FUN.	integer part of converted number decimal fraction of converted number Return Status	<pre>Ø = correct calculation 1 = PCONN1 other than an integer ≥ Ø 2 = PCONN2 not in the range Ø ≤ PCONN1 ≤ 1 3 = PCONN3 and/or PCONN4 other than integers > 1 4 = digit of PCONN1 ≥ PCONN3 5 = digit of PCONN2 ≥ PCONN3</pre>

CALLING SEQUENCE GOSUB 3Ø4Ø1

METHOD See Appendix A

CALLED SUBROUTINES

TEST PROGRAM FOR SLCONN.

TEST PROGRAM NAME: SLCONN		
Note:		
MERGE: SLCONN.		
INPUT	OUTPUT	
ENTER BASE1, BASE2 10,2		
ENTER INTEGER PART 123	BASE 10, INTEGER PART 1.2300000 00000D+002	
ENTER FRACTIONAL PART .258	FRACTIONAL PART 2.58ØØØØØØØØØØØ -ØØ1	
	BASE2, INTEGER PART 1.1110110000000-	
	FRACTIONAL PART 1.ØØØØ1ØØØØØ11D -ØØ2	
ENTER BASE1, BASE2 16,10	DASE 4/ INTEGED DADT 4 4/454444	
ENTER INTEGER PART 1Ø6Ø5	BASE 16 , INTEGER PART 1.06050000 00000+004	
ENTER FRACTIONAL PART .208070211	FRACTIONAL PART 2.080702110000D -001	
ENTER FRACTIONAL PART .Ø2Ø8Ø7Ø211	ERROR IN FRACTIONAL DIGITS FRACTIONAL PART 2.080702110000D -002	
	BASE 10, INTEGER PART 3.57000000 00000+002	
	FRACTIONAL PART 1.579996386963D -ØØ1	
ENTER BASE1, BASE2		
LITTER DAJET, DAJEZ		

FACTORING AND PRIME NUMBER GENERATION

To determine whether or not a given integer is prime, or to decompose a given integer into its prime factors

INPUT		
VARIABLE	DESCRIPTION	VALUE
PPRIM1 PPRIM2	positive integer determination or decomposition of PPRIM1	<pre>1 = determine whether or not PPRIM1 is prime 2 = decompose PPRIM1 into its prime factors</pre>
	OUTPUT	
I1 A(I1,2)	number of prime factors if PPRIM2 = 2 two dimensional array containing	
	each prime factor, A(J,1) and its corresponding exponent, A(J,2). None if PPRIM2 = 1	J = 1,2,I1 if PPRIM2 = 2
FUN.	Return Status	<pre>Ø = PPRIM1 is prime 1 = PPRIM1 is not prime 2 = PPRIM1 is not a</pre>
		positive integer 3 = PPRIM2 is other than 1 or 2

COMBINATORIAL ANALYSIS

CALLING SEQUENCE GOSUB 3Ø6Ø1

METHOD See Appendix A

CALLED SUBROUTINES

TEST PROGRAM FOR SLPRIM.

TEST PROGRAM NAME: SLPRIM

Note:

MERGE: SLPRIM.

INPUT	OUTPUT
ENTER1 (PRIMES) OR 2(FACTORS)1 ENTER LIMITS 1,15 ENTER1 (PRIMES) OR 2(FACTORS) 1 ENTER LIMITS 23.5, 26 ENTER1 (PRIMES) OR 2(FACTORS) 2 ENTER INTEGER 18Ø ENTER1 (PRIMES) OR 2(FACTORS) 2 ENTER INTEGER 37 ENTER1 (PRIMES) OR 2(FACTORS)	PRIME NUMBERS BETWEEN 1 AND 15 1 2 3 5 7 11 13 PRIME NUMBERS BETWEEN 23.5 AND 26 POSITIVE INTEGERS ONLY PRIME FACTORS OF 18Ø 180 = 2^2*3^2*5 PRIME FACTORS OF 37 37 IS PRIME

GREATEST COMMON DENOMINATOR AND LOWEST COMMON MULTIPLE

SLEUCL.

To determine the Greatest Common Denominator (G.C.D) and Lowest Common Multiple (L.C.M) of two positive integers N1 and N2.

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PEUCL1 PEUCL2	positive integers whose GCD and LCD are to be found	
	OUTPUT	
G L FUN.	GCD of PEUCL1 and PEUCL2 LCD of PEUCL1 and PEUCL2 Return Status	<pre>Ø = correct calculation 1 = PEUCL1 and/or PEUCL2 not positive integers</pre>
CALLING SE	QUENCE GOSUB 3Ø8Ø1	
METHOD See	e Appendix A	
CALLED SUE	BROUTINES	

TEST PROGRAM FOR SLEUCL.

TEST PROGRAM NAME:	SLEUCL	
Note:		

MERGE: SLEUCL.

INPUT	ОИТРИТ
ENTER A,B 25,27	G.C.D OF 25 AND 27 = 1
ENTER A,B 84,23	L.C.M OF 25 AND 27 = 675 G.C.D OF 84 AND 23 = 1 L.C.M OF 84 AND 23 = 1932
ENTER A,B	2.6.11 01 04 810 23 = 1732

RATIONAL FRACTION CONVERSION TO CONTINUED FRACTION

SLRFCO.

To convert a rational fraction into a "regular" continued fraction i.e. one whose successive numerators are unity.

VARIABLE	DESCRIPTION	VALUE
PRFC01 PRFC02	numerator and denominator of rational fraction (positive integers)	
	OUTPUT	
N	number of terms of continued fraction	
PRFC01(N)	First term and successive denominators of continued fraction	
FUN.	Return Status	<pre>Ø = correct calculation 1 = PRFC01 and/or PRFC02 not positive integer</pre>
CALLING SE	QUENCE GOSUB 31ØØ1	
METHOD	Appendix A	

TEST PROGRAM FOR SLRFCO.

TEST PROGRAM NAME:	SLRFCO
Note:	

MERGE: SLRFCO.

INPUT	OUTPUT
ENTER A,B 151,119	REGULAR CONTINUED FRACTION OF 151/119 bØ=1 b1=3 b2=1 b3=2 b4=1 b5=1 b6=4
ENTER A,B 771928,999999	REGULAR CONTINUED FRACTION OF 771928/999999 bØ=Ø b1=1 b2=3 b3=2 b4=1 b5=1 b6=1 Ø=3 b11=1 b12=1 b13=1 b14=1 b15=1
ENTER A,B	y=3 b11=1 b12=1 b13=1 b14=1 b13=1

QUADRATIC SURD CONVERSION CONTINUED FRACTION

SLSUCO.

To convert a quadratic surd into a "regular" continued fraction i.e. one whose successive numerators are unity

DESCRIPTION	VALUE
positive integer √PSUCO1 or quadratic surd number of terms of continued fraction to be calculated	
OUTPUT	
successive terms of continued fraction Return Status	Ø = correct calculatio 1 = PSUC01 and/or PSUC02 other than positive integers 2 =√PSUC01 not a quadratic surd √PSUC01 is returned in B(1)
JENCE GOSUB 312Ø1	
Appendix A	
	quadratic surd number of terms of continued fraction to be calculated OUTPUT successive terms of continued fraction Return Status JENCE GOSUB 312Ø1

TEST PROGRAM FOR SLSUCO.

TEST PROGRAM NAME: SLSUCO

Note:

MERGE: SLSUCO.

INPUT	ОИТРИТ
ENTER SURD ^2 3	
ENTER NUMBER OF TERMS 5	REGULAR CONTINUED FRACTION OF 3 ^5 bØ=1 b1=1 b2=2 b3=1 b4=2
ENTER SURD ^2 2	
ENTER NUMBER OF TERMS 5	REGULAR CONTINUED FRACTION OF 2 5 bØ=1 b1=2 b2=2 b3=2 b4=2
ENTER SURD ^2 3	
ENTER NUMBER OF TERMS .5	POSITIVE INTEGERS ONLY
ENTER SURD ^2	

SLCFCO.

CONVERGENTS OF A CONTINUED FRACTION

To calculate the successive convergents of a continued fraction

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCFC01 PCFC02 PCFC03	To calculate the first convergent, PCFC01 is the first term of the continued fraction, b. Otherwise PCFC01 = -1 numerator and denominator of successive terms of the continued fraction	
	OUTPUT	
P2,Q2 FUN.	numerator and denominator of the successive convergents Return Status	Ø = correct calculation

CALCULATION PØ, P1, QØ, Q1

CALLING SEQUENCE GOSUB 314Ø1

METHOD See Appendix A

CALLED SUBROUTINES

COMBINATORIAL ANALYSIS

TEST PROGRAM FOR SLCFCO.

Note:	
PUT	
/1=1.45 /-1.55=1.58Ø64 975/-4.2=1.59464	
/1	

FACTORIAL AND LOG FACTORIAL

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PFACT1 PFACT2	non-negative or positive integer depending on PFACT2 switch variable	1 = to calculate PFACT1! 2 = to calculate Ln PFACT1!
andria Sessioni A	OUTPUT	
N1	value of PFACT! or Ln PFACT1! depending upon the value of PFACT2 Return Status	<pre>Ø = correct calculatio 1 = for PFACT2 = 1, PFACT1 other than a non-negative integer less than 171 for PFACT2 = 2, PFACT1 other than a positive integer 2 = PFACT2 other than 1 or 2</pre>

COMBINATORIAL ANALYSIS

CALLING SEQUENCE GOSUB 316Ø1

METHOD See Appendix A

CALLED SUBROUTINES

TEST PROGRAM FOR SLFACT.

TEST PROGRAM NAME:	SLFACT
Note:	

MERGE: SLFACT.

INPUT	ОИТРИТ	
ENTER N? 5 ENTER1(N!) OR 2(1nN!)? 1 ENTER N? 1Ø ENTER1(N!) OR 2(1nN!)? 2	5! = 1.2ØØØØØØØØØØD+ØØ2 1n 1Ø! = 1.51Ø441292822D+ØØ1	
ENTER N?		

SLBINO.

BINOMIAL COEFFICIENTS

To generate the binomial coefficients $\binom{n}{r}$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PBINO1 PBINO2	parameters of $\binom{n}{}$ For $\emptyset \leq \text{PBINO2} \leq \text{PBINO1}$ a single coefficient is calculated For PBINO2 = -1 , $\binom{n}{}$ is calculated for $r = \emptyset$, 1 INT $(\frac{n}{2})^r$, where INT $(\frac{n}{2})^r$ is the integer part of $n/2$. The coefficients from INT $(n/2)+1$ to n are given by the relation $\binom{n}{} = \binom{n}{} n-r$	
	OUTPUT	
B B()	for $\emptyset \le PBINO2 \le PBINO1$, $B=\binom{n}{1}$ for $PBINO2=-1$, $B()$ contains the $INT(\frac{n}{2})+1$ coefficients $\binom{n}{1}$, for $r=\emptyset$, $1\dots INT(\frac{n}{2})$, in ascending order of r Return Status	<pre>Ø = correct calculation 1 = PBIN01 and/or PBIN02 not integers ≥ Ø (PBIN02=-1 excluded) 2 = PBIN02 > PBIN01</pre>
CALLING SE	QUENCE GOSUB 318Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLBINO.

TEST PROGRAM NAME:	SLBINO	
Note:		

MERGE: SLBINO.

INPUT	OUTPUT
enter n,r 5,2	n=5 r=2 BIN.COEFF=1Ø
enter n,r 5,3	n=5 r=3 BIN.COEFF=1Ø
enter n,r 6,2	n=6 r=2 BIN.COEFF=15
enter n,r 15,-1	r BIN.COEFF(n=15)
	ø 1
	1 15
	2 105
	3 455
	4 1365
	5 3ØØ3
	6 5ØØ5
	7 6435
enter n,r	
	and the second s

SLMULT.

MULTINOMIAL COEFFICIENTS

To generate the general multinomial coefficient (n; n_1 , n_2 ... n_s)

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PMULT1 N(PMULT1)	number of factors n ₁ , n ₂ n s vector of factors	
	QUERUE	
	OUTPUT	
M N2 FUN.	Multinomial coefficient Sum of factors Return Status	<pre>Ø = correct calculation 1 = number of factors not a positive integer</pre>
	EQUENCE GOSUB 32ØØ1 Appendix A	
CALLED SUE	RDOUTINES	

TEST PROGRAM FOR SLMULT.

TEST	PROGRAM	NAME:	SLMULT		

Note:

MERGE: SLMULT.

INPUT	OUTPUT	
nter number of factors 6	number of factors 6	
nter factor 1 ? 18	n1 = 18	
nter factor 2 ? 11	n2 = 11	
nter factor 3 ? 6	n3 = 6	
nter factor 4 ? 3	n4 = 3	
nter factor 5 ? 2	n5 = 2	
nter factor 6 ? 2	n6 = 2	
	n = 42	
	multinomial coeff. = 3.18154257 17Ø193D+23	
enter number of factors?	1791735723	

PROBABILITY OF DUPLICATION IN A GIVEN UNIVERSE

SLDUPL.

To evaluate the probability \boldsymbol{p}_{k} , that at least two elements of a set K will be identical with respect to the same criteria, when there are n possible choices for each element

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PDUPL1 PDUPL2	number of possible choices for each element (N) number of elements in the set	
21	OUTPUT	
P(PDUPL1) P FUN.	<pre>probability of duplication for K = 1, 2PDUPL1 probability of duplication for a given PDUPL2 Return Status</pre>	PDUPL2 = -1 PDUPL2 = 1,2,PDUPL1 Ø = correct calculation 1 = PDUPL1,PDUPL2 not positive integers (PDUPL1 = -1 excluded) with PDUPL1 ≥ PDUPL2
CALLING SE	QUENCE GOSUB 322Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM NAME: SLDUPL

Note:

MERGE: SLDUPL.

INPUT	OUTPUT	
ENTER n,k ? 365, 20 ENTER n,k ? 365, 100 ENTER n,k ? 10, -1	n = 365 K = 20 P = .41143838358058 n = 365 k = 100 P = .999999692751072 n = 10 k = -1 k P 1 0 k 2 .1 3 .28 4 .496 5 .6976 6 .8488 7 .93952 8 .981856 9 .9963712 10 .99963712	

4. ELEMENTARY FUNCTIONS

ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of Elementary Functions.

CONTENTS

SLATN2. Arctangent of a
Ratio

SLCONV. Reduction of an
Angle to the First
Quadrant

SLRPCC. Rectangular to
Polar Coordinates
Conversion

SLPRCC. Polar to Rectangular Coordinates
Conversion

SLATN2.

ARCTANGENT OF A RATIO

To compute the arctangent of a ratio, y/x of two real numbers in the range $(-\pi,\pi)$

INPUT			
VARIABLE	DESCRIPTION	VALUE	
PATN 21	Denominator		
PATN 22	Numerator		
	OUTPUT		
54 T			
FUN.	The arctangent of PATN22/PATN21		
CALLING SE	QUENCE GOSUB 324Ø1		
METHOD			
CALLED SUB	ROUTINES		

TEST PROGRAM FOR SLATN2.

TEST PROGRAM NAME:	SLATN2		
Note:			

MERGE: SLATN2.

INPUT	OUTPUT
ENTER x,y Ø, Ø ENTER x,y Ø, 1 ENTER x,y -1, Ø ENTER x,y	arctangent $(\emptyset/\emptyset) = \emptyset$ arctangent $(1/\emptyset) = 1.570796326799$ arctangent $(\emptyset/-1) = 3.14159265359$

REDUCTION OF AN ANGLE TO THE FIRST QUADRANT

SLCONV.

To reduce an angle (measured in radians) to the range (- π , π)

	INPUT		
VARIABLE	DESCRIPTION	VALUE	
PCONV1	angle in radians		
	OUTPUT		
FUN.	The resultant value of the angle		
CALLING SE	QUENCE GOSUB 326Ø1		
METHOD			
CALLED SUB	ROUTINES		

TEST PROGRAM FOR SLCONV.

TEST PROGRAM NAME:	SLCONV
Note:	

MERGE: SLCONV.

INPUT		ОИТРИТ
ENTER ANGLE (radians) 1 ENTER ANGLE (radians) 2 ENTER ANGLE (radians) 3 ENTER ANGLE (radians) 4 ENTER ANGLE (radians) -3.1415927 ENTER ANGLE (radians)?	angle 1 2 3 4 -3.1415927	transformed angle 1 2 3 -2.2831853Ø718 3.1415926Ø718

RECTANGULAR TO POLAR COORDINATES CONVERSION

SLRPCC.

To convert a complex number from rectangular to polar coordinates

	INPUT	
VARIABLE	DESCRIPTION	VALUE
- ;		
PRPCC1 PRPCC2	real part of the complex number imaginary part of the complex number	
	and the second section of the sectio	
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	OUTPUT	
Р	modulus	
Q FUN.	Phase Return Status	$-\pi < Q < \pi$
FUN.	Return Status	Ø = correct calculation
	1.8.	
5-5-1-1-V-1		
CALLING SI	EQUENCE GOSUB 328Ø1	
METHOD See	Appendix A	
CALLED SIII	BROUTINES	

TEST PROGRAM FOR SLRPCC.

TEST	PROGRAM NA	ME:	SLRPCC		

Note:

MERGE: SLRPCC.

INPUT	ОИТРИТ
ENTER x+iy As x,y -1, -1	x = -1 y = -1 modulus = 1.41421353816986 phase = 2.35619446833686
ENTER x+iy As x,y 1, Ø	$x = 1$ $y = \emptyset$ modulus = 1 phase = \emptyset
ENTER x+iy As x,y Ø, -1ØØ	$x = \emptyset \ y = -100$ modulus = 100 phase = -1.570796326795
ENTER x+iy As x,y	

POLAR TO RECTANGULAR COORDINATES CONVERSION

SLPRCC.

To convert a complex number from polar to rectangular coordinates

	INPUT		
VARIABLE	DESCRIPTION	VALUE	
PPRCC1 PPRCC2	modulus of the complex number phase of the complex number		
	OUTPUT		
P1 P2 FUN.	real part of the complex number imaginary part of the complex number Return Status	Ø = correct calculation 1 = negative modulus	
CALLING SE	EQUENCE GOSUB 33ØØ1		
METHOD See	Appendix A		
CALLED SUE	BROUTINES		

TEST PROGRAM FOR SLPRCC.

TEST PROGRAM NAME: SLPRCC

Note:

MERGE: SLPRCC.

INPUT	OUTPUT
ENTER Modulus, Phase -1, -1 ENTER Modulus, Phase 1000, 236 ENTER Modulus, Phase 5, 0 ENTER Modulus, Phase 0, 25 ENTER Modulus, Phase	modulus = -1 phase = -1 modulus >= \emptyset only modulus = $1\emptyset\emptyset\emptyset$ phase = 236 x = -928.4633398 \emptyset 5603 y = -371.42419815 \emptyset 635 modulus = 5 phase = \emptyset x = 5 y = \emptyset modulus = \emptyset phase = 25 x = \emptyset y = \emptyset

5. ELEMENTARY FUNCTIONS (COMPLEX)

ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of Complex Elementary Functions.

CONTENTS

SLCSIN.	Sine of a Complex Number	5–1	SLCZDZ.	Division of Two Complex Numbers	5-22
SLCCOS.	Cosine of a Complex Number	5-3	SLCSQR.	Square Root of a Complex Number	5-25
SLCTAN.	Tangent of a Complex Number	5-5	SLCZN.	Integral Power of a Complex Number (Z ⁿ Recurrence)	5-27
SLCASN.	Arcsine of a	5-7			
	Complex Number		SLCZA.	Real Power of a Complex Number	5–29
SLCACS.	Arcosine of a	5-9		Complex Number	
×	Complex Number				
SLCATN.	Arctangent of a Complex Number	5–11			
SLCLN.	Natural Logarithm of a Complex Number	5–13			
SLCEXP.	Exponential of a Complex Number	5–15			
SLCRZ.	Reciprocal of a Complex Number	5–17			
SLCZMZ.	Multiplication of Two Complex Numbers	5–19			

SLCSIN.

SINE OF A COMPLEX NUMBER

To compute the sine of a complex number, expressed either in rectangular or polar coordinates. The result is a complex number expressed in the same coordinates as the argument

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCSIN1 PCSIN2 PCSIN3	<pre>type of coordinates real part of number if PCSIN1 = Ø modulus if PCSIN1 = 1 imaginary part of number if PCSIN1 = Ø phase if PCSIN1 = 1</pre>	Ø = rectangular 1 = polar
	OUTPUT	/
P Q	real part of sine if PCSIN1 = Ø modulus if PCSIN1 = 1 imaginary part of sine if PCSIN1 = Ø	
FUN.	phase if PCSIN1 = 1 Return Status	<pre>Ø = correct calculation 1 = negative modulus 2 = value of PCSIN1 is other than Ø or 1</pre>
CALLING SE	QUENCE GOSUB 332Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES GOSUB 324Ø1	

TEST PROGRAM FOR SLCSIN.

TEST PROGRAM NAME:	SLCSIN	
Note:		

MERGE: SLCSIN.

INPUT	OUTPUT	
ENTER Ø (rectangular) or 1 (polar) Ø ENTER x+iy As x,y .52359878, Ø ENTER Ø (rectangular) or 1 (polar) 1	real part imag z. 52359878ØØØØ Ø sinz.5ØØØØØ Ø modulus	.øøøøøø
ENTER modulus, phase 1, Ø ENTER Ø (rectangular) or 1 (polar)	z 1.ØØØØØØ sinz .84147Ø9 568Ø24	Ø.ØØØØØØ

SLCCOS.

COSINE OF A COMPLEX NUMBER

To compute the cosine of a complex number; both the argument and the results can be expressed either in rectangular or polar coordinates

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCCOS2 PCCOS3	<pre>type of coordinate real part of number if PCCOS1 = Ø modulus if PCCOS = 1 imaginary part of number if PCCOS1 = Ø phase if PCCOS1 = 1</pre>	Ø = rectangular 1 = polar
1 - 13	OUTPUT	
P Q FUN.	real part of cosine if PCCOS1 = Ø modulus if PCCOS1 = 1 imaginary part of cosine if PCCOS1 = Ø phase if PCCOS1 = 1 Return Status	Ø = correct calculation
		1 = modulus less than 2 = PCCOS1 other than Ø or 1
CALLING SF	QUENCE GOSUB 334Ø1	
	Appendix A	
	BROUTINES GOSUB 324Ø1	

TEST PROGRAM FOR SLCCOS.

TEST PROGRAM NAME:	SLCCOS
Note:	

MERGE: SLCCOS.

INPUT	INPUT OUTPUT		
ENTER Ø (rectangular) or 1			
(polar) Ø		real part	imaginary part
ENTRY x+iy As x,y ØØ	Z	ø.øøøøø	
,,,,,,	cosz		Ø.ØØØØØ
ENTER Ø (rectangular) or 1			P. PPPPP
(polar) 1		modulus	phase
ENTER modulus, phase 1, 1	Z	1.000000000	
	cosz	1.275615572	
		9294	40248203
ENTER Ø (rectangular) or 1 (polar)			
1, 141			

SLCTAN.

TANGENT OF A COMPLEX NUMBER

To compute the tangent of a complex number; both the argument and the results can be expressed in rectangular or polar coordinates

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCTAN2 PCTAN3	<pre>type of coordinates real part of number if PCTAN1 = Ø modulus if PCTAN1 = 1 imaginary part of number if PCTAN1 = Ø phase if PCTAN1 = 1</pre>	Ø = rectangular 1 = polar
	OUTPUT	
P Q	real part of tangent if PCTAN1 = Ø modulus if PCTAN1 = 1 imaginary part of tangent if PCTAN1 = Ø	
FUN.	phase if PCTAN1 = 1 Return Status	<pre>Ø = correct calculation 1 = modulus less than @ 2 = PCTAN1 other than Ø or 1</pre>
CALLING SE	QUENCE GOSUB 336Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES GOSUB 324Ø1	

TEST PROGRAM FOR SLCTAN.

TEST	PROGRAM	NAME:	SLCTAN		

Note:

MERGE: SLCTAN.

INPUT		OUTPL	JT
ENTER Ø (rectangular) or 1 (polar) Ø ENTER x+iy As x,y 1, Ø	z tanz	real part 1.ØØØØØØ 1.5574Ø7 4957895	Ø.ØØØØØØ
ENTER Ø (rectangular) or 1 (polar) 1 ENTER modulus, phase 1, Ø	z tanz	modulus 1.ØØØØØØ 1.5574Ø7 4983597	phase Ø.ØØØØØØ Ø.ØØØØØØ

SLCASN.

ARCSINE OF A COMPLEX NUMBER

To compute the arcsine of a complex number expressed in either polar or rectangular coordinates. The results are expressed in the same coordinates as the argument

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCASN2 PCASN3	<pre>type of coordinates real part of number if PCASN1 = Ø modulus if PCASN1 = 1 imaginary part of number if PCASN1 = Ø phase if PCASN1 = 1</pre>	Ø = rectangular 1 = polar
	OUTPUT	
P Q FUN.	real part of arcsine if PCASN1 = Ø modulus if PCASN1 = 1 imaginary part of arcsine if PCASN1 = Ø phase if PCASN1 = 1 Return Status	<pre>Ø = correct calculation 1 = modulus less than Ø 2 = PCASN1 other than Ø or 1</pre>
CALLING SE	QUENCE GOSUB 338Ø1	
METHOD See	Appendix A	

TEST PROGRAM FOR SLCASN.

TEST	PROGRAM	NAME:	SLCASN			

Note:

MERGE: SLCASN.

INPUT	OUTPUT			
ENTER Ø (rectangular) or 1 (polar) Ø ENTER x+iy As x,y .5, Ø	z	real part .5ØØØØØØ .5235987 9Ø1688		
ENTER Ø (rectangular) or 1 (polar) Ø ENTER x+iy As x,y Ø, 1.1752Ø1193 643Ø	z arcsinz	real part Ø.ØØØØØØ Ø.ØØØØØØ	imaginary part 1.1752Ø119 3643Ø .9999999	
ENTER Ø (rectangular) or 1 (polar) 1 ENTER modulus, phase .5, Ø	z arcsinz	modulus .5ØØØØØØ .52359879 01688	phase	

SLCACS.

ARCCOSINE OF A COMPLEX NUMBER

To compute the arcosine of a complex number expressed in either polar or rectangular coordinates. The results are expressed in the same coordinates as the argument

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCACS1	type of coordinates	Ø = rectangular 1 = polar
PCAC S2	real part of number if PCACS1 = Ø	
PCACS3	modulus if PCACS1 = 1 imaginary part of number if	
r CAC33	PCACS1 = Ø	The magnetic of the
	phase if PCACS1 = 1	
	OUTPUT	
Р	real part of arcosine if PCACS1	
	modulus if PCACS1 = 1	
Q	imaginary part of arcosine if	
	PCACS1 = Ø	
FUN.	phase if PCACS1 = 1	
FUN.	Return Status	\emptyset = correct calculation 1 = modulus less than \emptyset
		2 = PCACS1 other than
		Ø or 1
CALLING SE	QUENCE GOSUB 34ØØ1	
METHOD See	Appendix A	
CALLED SUR	ROUTINES GOSUB 324Ø1	

TEST PROGRAM FOR SLCACS.

TEST PROGRAM NAME:	SLCACS
Note:	

MERGE: SLCACS.

INPUT	ОИТРИТ			
ENTER Ø (rectangular) or 1 (polar) Ø ENTER x+iy As x,y 1, Ø ENTER Ø (rectangular) or 1 (polar) 1 ENTER modulus, phase .7, Ø	real part imaginary part z 1.000000 0.0000000 arccosz 0.000000 0.0000000 modulus phase z .7000000 0.0000000 arccosz .7953988900030 09721 69079539			

SLCATN.

ARCTANGENT OF A COMPLEX NUMBER

To compute the arctangent of a complex number expressed in either polar or rectangular coordinates. The results are expressed in the same coordinates as the argument

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCATN1 PCATN2 PCATN3	<pre>type of coordinate real part of number if PCATN1 = Ø modulus if PCATN1 = 1 imaginary part of purples if</pre>	Ø = rectangular 1 = polar
FCATINS	imaginary part of number if PCATN1 = Ø phase if PCATN1 = 1	
	OUTPUT	
Р	real part of arctangent if PCATN1 = Ø modulus if PCATN1 = 1	
Q	<pre>imaginary part of arctangent if PCATN1 = Ø phase if PCATN1 = 1</pre>	
FUN.	Return Status	Ø = correct calculatio 1 = modulus less than 2 = PCATN1 other than
		1 or \emptyset 3 = $z^2 = -1$
CALLING SE	QUENCE GOSUB 342Ø1	
METHOD See	Appendix	
	ROUTINES GOSUB 324Ø1	

TEST PROGRAM FOR SLCATN.

TEST PROGRAM NAME: SLCATN

Note:

MERGE: SLCATN.

OUTPUT		
		imaginary par
Z	1.5574Ø7 724657Ø	Ø.ØØØØØØ
arctanz	1.ØØØØØ ØØ158934	Ø.ØØØØØØØ
Art Maria		
	modulus	phase
z	1.ØØØØØØØ	ø.øøøøø
arctanz	.7853981	
	modulus	phase
z	1.0000000	1.57Ø79632 6795Ø
z*2 oth	er than -1 o	only
	arctanz z arctanz	z 1.5574Ø7 724657Ø arctanz 1.ØØØØØ ØØ158934 modulus z 1.ØØØØØØØ arctanz .7853981 256485 . modulus

SLCLN.

NATURAL LOGARITHM OF A COMPLEX NUMBER

To compute the natural logarithm of a complex number; both the argument and the results can be expressed either in rectangular or in polar coordinates

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCLN2 PCLN3	type of coordinates real part of number if PCLN1 = Ø modulus if PCLN1 = 1 imaginary part of number if PCLN1 = Ø phase if PCLN1 = 1	Ø = rectangular 1 = polar
	OUTPUT	
P Q FUN.	real part of logarithm if PCLN1 = Ø modulus if PCLN1 = 1 imaginary part of logarithm if PCLN1 = Ø phase if PCLN1 = 1 Return Status	<pre>Ø = correct calculation 1 = modulus less than or equal to zero 2 = PCLN1 other than Ø or 1</pre>
CALLING SE	QUENCE GOSUB 344Ø1	
METHOD See	Appendix A	
CALLED SUR	ROUTINES GOSUB 324Ø1	

TEST PROGRAM FOR SLCLN.

1

Note:

MERGE: SLCLN.

INPUT		0UTPU	Т	
ENTER Ø (rectangular or 1 (polar) Ø ENTER x+iy As x,y 1, Ø	7	real part 1.ØØØØØØ		part
		ø.øøøøøø		
ENTER Ø (rectangular) or 1 (polar) Ø		real part	imaginary	part
ENTER x+iy As x,y Ø, Ø	z moduli	$\emptyset.\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset$ us $>\emptyset$ only	Ø.ØØØØØØ	
ENTER Ø (rectangular) or 1	liiodd 1			
(polar) 1 ENTER modulus, phase Ø, Ø	z	modulus Ø.ØØØØØ	phase Ø.ØØØØØØ	
ENTER Ø (rectangular) or 1	modul	us>∅ only		
(polar) 1		modulus		
ENTER modulus, phase? 1, ∅	z 1nz	1.ØØØØØØØ Ø.ØØØØØØØ		

SLCEXP.

EXPONENTIAL OF A COMPLEX NUMBER

To compute the exponential of a complex number; both the argument and the results can be expressed in rectangular or polar coordinates

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCEXP2 PCEXP3	types of coordinates real part of number if PCEXP1 = Ø modulus if PCEXP1 = 1 imaginary part of number PCEXP1 = Ø phase if PCEXP1 = 1	Ø = rectangular 1 = polar
	OUTPUT	
P Q	real part of exponential if PCEXP1 = Ø modulus if PCEXP1 = 1 imaginary part of exponential if PCEXP1 = Ø phase if PCEXP1 = 1	
FUN.	Return Status	<pre>Ø = correct calculation 1 = modulus less than Ø 2 = PCEXP1 other than Ø or 1</pre>
CALLING SE	QUENCE GOSUB 346Ø1	
METHOD See	Appendix A	

TEST PROGRAM FOR SLCEXP.

TEST PROGRAM NAME:	SLCEXP
Note:	

MERGE: SLCEXP.

INPUT	OUTPUT
ENTER Ø (rectangular) or 1 (polar) Ø ENTER x+iy As x,y 1, Ø	real part imaginary par z 1.0000000 0.0000000 expz 2.71828174 0.0000000 59106
ENTER Ø (rectangular) or 1 (polar) 1 ENTER modulus, phase 1, Ø	modulus phase z 1.ØØØØØØØ Ø.ØØØØØØØØ expz 2.7182174 Ø.ØØØØØØØØ 591Ø6

SLCRZ.

RECIPROCAL OF A COMPLEX NUMBER

To compute the reciprocal of a complex number; both the argument and the results can be expressed either in rectangular or polar coordinates

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCRZ1 PCRZ2 PCRZ3	<pre>type of coordinates real part of number if PCRZ1 = Ø modulus if PCRZ1 = 1 imaginary part of number if PCRZ1 = Ø phase if PCRZ1 = 1</pre>	Ø = rectangular 1 = polar
	OUTPUT	
P Q FUN.	real part of reciprocal if PCRZ1 = Ø modulus if PCRZ1 = 1 imaginary part of reciprocal if PCRZ1 = Ø Return Status	Ø = correct calculation 1 = modulus less than 2 = PCRZ1 other than Ø or 1
CALLING SE	EQUENCE GOSUB 348Ø1	
METHOD See	Appendix A	
CALLED SUE	BROUTINES GOSUB 326Ø1	

TEST PROGRAM FOR SLCRZ.

TEST PROGRAM NAME:	SLCRZ
Note:	

MERGE: SLCRZ.

INPUT	OUTPUT
ENTER Ø (rectangular) or 1 (polar) Ø ENTER x+iy As x,y Ø, 5 ENTER Ø (rectangular) or 1 (polar) 1 ENTER modulus, phase 1, 2	real part imaginary part z Ø.ØØØØØØØ 5.ØØØØØØØØ 1/z Ø.ØØØØØØ2ØØØØØØØ modulus phase z 1.ØØØØØØØ 2.ØØØØØØØ 1/z 1.ØØØØØØØ -2.ØØØØØØØ

SLCZMZ.

MULTIPLICATION OF TWO COMPLEX NUMBERS

To compute the product of two complex numbers, both the argument and the results can be expressed either in rectangular or polar coordinates

INPUT		
VARIABLE	DESCRIPTION	VALUE
PCMZ5	type of coordinates	Ø = rectangular 1 = polar
PCMZ1	real part of first number if PCMZ5 = Ø modulus of first number if PCMZ5 = 1	
PCMZ2	imaginary part of first number if PCMZ5 = Ø phase of first number if PCMZ5 = 1	
PCMZ3	real part of second number if PCMZ5 = Ø modulus of second number if PCMZ5 = 1	
PCMZ4	imaginary part of second number if PCMZ5 = Ø phase of second number if PCMZ5 = 1	

	OUTPUT	
P Q FUN.	real part of the product if PCMZ5 = Ø modulus of the product if PCMZ5 = 1 imaginary part of the product if PCMZ5 = Ø phase of the product if PCMZ5 = 1 Return Status	Ø = correct calculation 1 = modulus less than Ø 2 = PCMZ5 other than Ø or 1
CALLING SE	EQUENCE GOSUB 35ØØ1	
METHOD See	Appendix A	
CALLED SUI	BROUTINES GOSUB 326Ø1	

ELEMENTARY FUNCTIONS (COMPLEX)

TEST PROGRAM FOR SLCZMZ.

TEST PROGRAM NAME: SLCZMZ	
Note:	
MERGE: SLCZMZ.	
INPUT	OUTPUT

INPUT	OUTPUT
ENTER Ø (rectangular) or 1	
(polar) Ø	real part imaginary part
ENTER x+iy As x,y for z1 ? 2, 2	z1 2 2
ENTER x+iy As x,y for z2 ? 1, -4	z2 1 -4
	z1xz2 1.000000 -6.00000000
	ØØØØØØD+ØØ1 ØØØØD+ØØØ
ENTER Ø (rectangular) or 1	
(polar) 1	modulus phase
ENTER modulus, phase for z1 ? 3, 6	z1 3 6
ENTER modulus, phase for z2 ? 2, 3	z2 2 3
	z1*z2 6.ØØØØØØØ 2.716814692
	ØØØØØD+ØØØ 82ØD+ØØØ

DIVISION OF TWO COMPLEX NUMBERS

To compute the ratio of two complex numbers; both the argument and the results can be expressed either in rectangular or polar coordinates

	INPUT			
VARIABLE	DESCRIPTION	VALUE		
PCZDZ5	type of coordinates	Ø = rectangular 1 = polar		
PCZDZ1	real part of Z_1 if PCZDZ5 = \emptyset modulus of Z_1 if PCZDZ5 = 1	Z ₁ = PCZDZ1 + i PCZDZ2		
PCZDZ2	imaginary part of Z_1 if PCZDZ5 = \emptyset phase of Z_1 if PCZDZ5 = 1			
PCZDZ3	real part of Z_2 if PCZDZ5 = \emptyset modulus of Z_2 if PCZDZ5 = 1	Z ₂ = PCZDZ3+ i PCZDZ4		
PCZDZ4	imaginary part of Z_2 if PCZDZ5 = \emptyset phase of Z_2 if PCZDZ5 = 1			
2				

	OUTPUT	
P Q FUN.	real part of ratio if PCZDZ5 = Ø modulus of ratio if PCZDZ5 = 1 imaginary part of ratio if PCZDZ5 = Ø phase of ratio if PCZDZ5 = 1 Return Status	Ø = correct calculation 1 = Z ₁ < Ø or Z ₂ \le Ø 2 = PCZDZ5 other than Ø or 1
CALLING SE	QUENCE GOSUB 352Ø1	
METHOD See	Apppendix A	
CALLED SUE	BROUTINES GOSUB 326Ø1	

TEST PROGRAM FOR SLCZDZ.

TEST PROGRAM NAME: SLCZDZ

Note:

MERGE: SLCZDZ.

INPUT	OUTPUT		
ENTER Ø (rectangular) or 1 (polar) Ø ENTER x+iy As x,y for z1 ? 2, 2 ENTER x+iy As x,y for z2 ? 1, -4 ENTER Ø (rectangular) or 1 (polar) 1 ENTER modulus, phase for z1 ? 1Ø, 3.14 ENTER modulus, phase for z2 ? 2, 3.14	z1 z2 z1/z2 z1 z2 z1/z2	real part 2 1 -3.5294 1176D-ØØ1 modulus 10 2	imaginary part 2 -4 5.8823529 4D-ØØ1 phase 3.14 3.14 Ø.ØØØØØØ

SLCSQR.

SQUARE ROOT OF A COMPLEX NUMBER

To compute the square root of a complex number; both the argument and the results can be expressed either in rectangular or polar coordinates

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCSQR1 PCSQR2 PCSQR3	<pre>type of coordinates real part of number if PCSQR1 = Ø modulus if PCSQR2 = 1 imaginary part of number if PCSQR1 = Ø phase if PCSQR1 = 1</pre>	Ø = rectangular 1 = polar
	ОИТРИТ	
P Q FUN.	real part of \sqrt{Z} if PCSQR1 = \emptyset modulus of \sqrt{Z} if PCSQR1 = 1 imaginary part of \sqrt{Z} if PCSQR1 = \emptyset phase of \sqrt{Z} is PCSQR1 = 1 Return Status	<pre>Z = PCSQR2+iPCSQR3 Ø = correct calculation 1 = modulus less than @ 2 = PCSQR1 other than Ø or 1</pre>
CALLING SE	QUENCE GOSUB 354Ø1	
METHOD See	Appendix A	
CALLED SUE	ROUTINES GOSUB 326Ø1	

TEST PROGRAM FOR SLCSQR.

TEST PROGRAM NAME: SLCSQR

Note:

MERGE: SLCSQR.

INPUT	OUTPUT
ENTER Ø (rectangular) or 1 (polar) Ø ENTER x+iy As x,y -1, Ø ENTER Ø (rectangular) or 1 (polar) 1 ENTER modulus, phase 1,-1.57Ø7964	real part imaginary part z -1 Ø z^.5 Ø.ØØØØØ 1.ØØØØØØ ØØØØE+ØØØ ØØØØD+ØØØ modulus phase z 1 -1.57Ø7964 z^.5 1.ØØØØØ -7.853982 ØØØØØD+ØØØ ØØØØD-ØØ1

INTEGRAL POWER OF A COMPLEX NUMBER (Zⁿ RECURRENCE)

SLCZN.

To compute the power Z n with Z complex and n integer $\geqslant \emptyset$. Both the argument and the results can be expressed either in rectangular or polar coordinates

INPUT				
VARIABLE	DESCRIPTION	VALUE		
PCZN2 PCZN3 PCZN4	<pre>type of coordinates exponent real part of Z if PCZN1 = Ø modulus of Z if PCZN1 = 1 imaginary part of Z if PCZN1 = Ø phase of Z if PCZN1 = 1</pre>	Ø = rectangular 1 = polar Z = PCZN3+iPCZN4		
	OUTPUT			
P Q FUN.	real part of Z ⁿ if PCZN1 = Ø modulus of Z ⁿ if PCZN1 = 1 imaginary part of Z ⁿ if PCZN1 = Ø phase of Z ⁿ if PCZN1 = 1 Return Status	<pre>Ø = correct calculation 1 = modulus less than 2 = exponent other than an integer > Ø 3 = PCZN1 other than Ø or 1</pre>		
CALLING SE	QUENCE GOSUB 356Ø1			
METHOD See	Appendix A			
CALLED SUE	BROUTINES GOSUB 326Ø1			

TEST PROGRAM FOR SLCZN.

TEST PROGRAM NAME: SLCZN

Note: In this test program if the parameter PCZNZ = -1 the base and/or the type of coordinate can be changed

MERGE: SLCZN.

INPUT		OUTPU	T
ENTED ((sections las) on 1			
ENTER Ø (rectangular) or 1 (polar) Ø			
		real part	imaginary par
ENTER x+iy As x,y 1, 1 ENTER EXPONENT Ø	Z -^d	1	1
ENTER EXPONENT 1	z^Ø	1	Ø
	z^1	1	1
ENTER EXPONENT 2	z^2	Ø	2
ENTER EXPONENT 3	z^3	-2	2
ENTER EXPONENT -1			
ENTER Ø (rectangular) or 1			
(polar) 1		modulus	phase
ENTER modulus, phase 1, 1	Z	1	1
ENTER EXPONENT Ø	z^Ø	1	Ø
ENTER EXPONENT 1	z^1	1	1
ENTER Ø (rectangular) or 1 (polar)			
25			

SLCZA.

REAL POWER OF A COMPLEX NUMBER

To compute Z a with Z complex and \underline{a} a real number; both the argument and the results can be expressed in either rectangular or polar coordinates

INPUT					
VARIABLE	DESCRIPTION	VALUE			
PCZA1 PCZA2 PCZA3 PCZA4	<pre>type of coordinates exponent real part of Z if PCZA1 = Ø modulus of Z if PCZA1 = 1 imaginary part of Z if PCZA1 = Ø phase of Z if PCZA1 = 1</pre>	Ø = rectangular 1 = polar Z = PCZA3+iPCZA4			
	ОИТРИТ				
P Q FUN.	real part of Z ^a if PCZA1 = Ø modulus of Z ^a if PCZA1 = 1 imaginary part of Z ^a if PCZA1 = Ø phase of Z ^a if PCZA1 = 1 Return Status	<pre>a(= PCZA2) Ø = correct calculation 1 = modulus less than () 2 = PCZA1 other than Ø or 1</pre>			
CALLING SE	CALLING SEQUENCE GOSUB 358Ø1				
METHOD See	METHOD See Appendix A				
CALLED SUBROUTINES GOSUB 324Ø1, 326Ø1					

TEST PROGRAM FOR SLCZA.

TEST PROGRAM NAME: SLCZA

Note: In this test program if the parameter PCZA2 = 9D99 the base

and/or type of coordinate can be changed

MERGE: SLCZA.

INPUT		OUTPUT		
ENTER Ø (rectangular) or 1 (polar) Ø ENTER x+iy As x,y 2, Ø ENTER EXPONENT .5 ENTER EXPONENT -1 ENTER EXPONENT 9D99 ENTER Ø (rectangular) or 1 (polar) 1 ENTER modulus, phase 1, 1 ENTER EXPONENT .25 ENTER Ø (rectangular) or 1 (polar)	z^-1 z z^.25	0UTPU		part

6. POLYNOMIALS

ABOUT THIS CHAPTER

This chapter contains subroutines for the Solution of Polynomials

CONTENTS

SLPLRC.	Evaluation of Real Polynomials (Complex Argument)	6–1
SLPLRR.	Evaluation of Real Polynomials (Real Argument)	6-3
SLPRRR.	Calculating the Coefficients of a Polynomial from Roots	6–5
SLPLYM.	Multiplication of Two Real Poly- nomials	6-7
SLPLYD.	Division of Two Real Polynomials	6-9
SLPTRA.	Translation of Coefficients of a Real Polynomial	6-12

EVALUATION OF REAL POLYNOMIALS (COMPLEX ARGUMENT)

SLPLRC.

To evaluate a polynomial with real coefficients and complex arguments

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PPLRC1 PPLRC2 PPLRC3 E(PPLRC3+1)	real part of the argument imaginary part of the argument degree of polynomial vector of coefficients (in descending order)	
	ОИТРИТ	
P Q FUN.	real part of the value imaginary part of the value Return Status	<pre>Ø = correct calculation 1 = degree other than a positive integer</pre>
CALLING SEC	QUENCE GOSUB 36ØØ1	
METHOD		
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLPLRC.

TEST PROGRAM NAME: SLPLRC

Note: In this test program if the real part of the argument (PPLRC1) = 9D99 it is possible to change the degree of the polynomial and then the values of the coefficients

MERGE: SLPLRC.

INPUT	оитрит
ENTER DEGREE OF POLYNOMIAL ? 4 COEFFICIENTS (in descending order) ENTER C4 ? 1 ENTER C3 ? 2	DEGREE OF POLYNOMIAL IS 4
ENTER C2 ? 3 ENTER C1 ? 4 ENTER CØ ? 5 ENTER ARGUMENT x+iy As x,y ? 1, 14	p(1+14i) = 35491 - 16184i
ENTER ARGUMENT x+iy As x,y ? Ø, 1 ENTER ARGUMENT x+iy As x,y ? 9D99, Ø ENTER DEGREE OF POLYNOMIAL?	p(Ø+1i) = 3+2i

EVALUATION OF REAL POLYNOMIALS (REAL ARGUMENT)

SLPLRR.

To calculate the value of a polynomial with real coefficients and real $\mbox{\it arguments}$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PPLRR1 PPLRR2 E(PPLRR2+1)	argument degree vector of coefficients (in descending order)	
	OUTPUT	
P FUN.	value of polynomial Return Status	Ø = correct calculation 1 = degree other than a positive integer
CALLING SEC	QUENCE GOSUB 362Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLPLRR.

TEST PROGRAM NAME: SLPLRR

Note: In this test program if the argument (PPLRR1) = 9D99 it is

possible to change the degree of the polynomial and the values

of the coefficients

MERGE: SLPLRR.

INPUT	OUTPUT
ENTER DEGREE ? 3 COEFFICIENTS (in descending order): ENTER COEFFICIENT C3 ? 1 ENTER COEFFICIENT C2 ? -6 ENTER COEFFICIENT C1 ? 11 ENTER COEFFICIENT CØ ? -6	DEGREE OF POLYNOMIAL IS 3
ENTER ARGUMENT ? 1 ENTER ARGUMENT ? 2 ENTER ARGUMENT ? 3 ENTER ARGUMENT ? 4 ENTER ARGUMENT ? 3.1415927 ENTER ARGUMENT ? 9D99 ENTER DEGREE ?	$P(1) = \emptyset$ $P(2) = \emptyset$ $P(3) = \emptyset$ P(4) = 6 P(3.1415927) = .346169598291242

CALCULATING THE COEFFICIENTS OF A POLYNOMIAL FROM ROOTS

SLPRRR.

To compute the coefficients of a real polynomial from its roots

	INPUT	
VARIABLE	DESCRIPTION	VALUE
14269		
PPRRR1 E(PPRRR1+1)	number of roots vector of roots	
1		
	OUTPUT	
A(PPRRR1+1)	vector of coefficients (in descending order)	
FUN.	Return Status	<pre>Ø = correct calculation 1 = number of roots other than a</pre>
		positive integer
CALLING SEC	QUENCE GOSUB 364Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLPRRR.

TEST PROGRAM NAME:	SLPRRR
Note:	

MERGE: SLPRRR.

INPUT	ОИТРИТ
ENTER #ROOTS ? 3 ENTER ROOT 1 ? 1 ENTER ROOT 2 ? 2	ROOTS: 3
ENTER ROOT 3 ? 3	DEGREE OF POLYNOMIAL IS 3 COEFFICIENTS (IN DESCENDING ORDER 1 -6 11 -6
ENTER # ROOTS ? 5 ENTER ROOT 1 ? -1 ENTER ROOT 2 ? 1 ENTER ROOT 3 ? 3 ENTER ROOT 4 ? 5	ROOTS: 5
ENTER ROOT 5 ? 7 ENTER #ROOTS ?	DEGREE OF POLYNOMIAL IS 5 COEFFICIENTS (in descending order 1 -15 7Ø -9Ø -71 1Ø5
ENTER #ROOTS :	

SLPLYM.

MULTIPLICATION OF TWO REAL POLYNOMIALS

To compute the product of two polynomials with real coefficients

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PPLYM1 PPLYM2 E()	degreee of polynomial1 degree of polynomial2 array of coefficients of polynomial1 (one dimension) in increasing order, E(1) = a i-1	
F()	array of coefficients of poly- nomial2	
	OUTPUT	
P() N FUN.	array of coefficients of resultant polynomial degree of resultant polynomial Return Status	Ø = correct calculation 1 = degree other than a positive integer
CALLING SE	QUENCE GOSUB 366Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLPLYM.

TEST PROGRAM NAME:	SLPLYM		
Note:			

MERGE: SLPLYM.

INPUT	OUTPUT
ENTER DEGREE OF POLYNOMIAL 1 ? 3 COEFFICIENTS (in descending order): ENTER a3 ? 1 ENTER a2 ? -6 ENTER a1 ? 11 ENTER a0 ? -6	DEGREE OF POLYNOMIAL1 IS 3
ENTER DEGREE OF POLYNOMIAL 2 ? 5 COEFFICIENTS (in descending order): ENTER a5 ? 1 ENTER a4 ? 1 ENTER a3 ? -8 ENTER a2 ? -16 ENTER a1 ? 7 ENTER a0 ? 15	DEGREE OF POLYNOMIAL2 IS 5 DEGREE OF PRODUCT IS 8 COEFFICIENTS (in descending order) 1 -5 -3 37 9 -155 83 123 -90
ENTER DEGREE OF POLYNOMIAL 1 ?	

SLPLYD.

DIVISION OF TWO REAL POLYNOMIALS

To compute the quotient and remainder of the division of two polynomials with real coefficients

INPUT				
VARIABLE	DESCRIPTION	VALUE		
PPLYD1 PPLYD2 E()	degree of dividend degree of divisor, PPLYD2≤PPLYD1 array of coefficients of dividend in increasing order, E(1) = aE(I) = a i-1 array of coefficients of divisor			
	OUTPUT			
P() N Q() Q1 FUN.	array of coefficients of quotient degree of quotient array of coefficients of remainder degree of remainder, Q1 = -1 if there is no remainder Return Status	Ø = correct calculation 1 = degree of dividend or divisor other than positive integers with PPLYD2 ≤ PPLYD1 2 = leading coefficient of divisor is zero		

CALLING SEQUENCE GOSUB 368Ø1

METHOD See Appendix A

CALLED SUBROUTINES

TEST PROGRAM FOR SLPLYD.

TEST PROGRAM NAME:	SLPLYD
Note:	

MERGE: SLPLYD.

OUTPUT
DEGREE OF DIVIDEND IS 8
DEGREE OF DIVISOR IS 3
DEGREE OF QUOTIENT IS 5 COEFFICIENTS (in descending order) 1 1 -8 -16 7 15

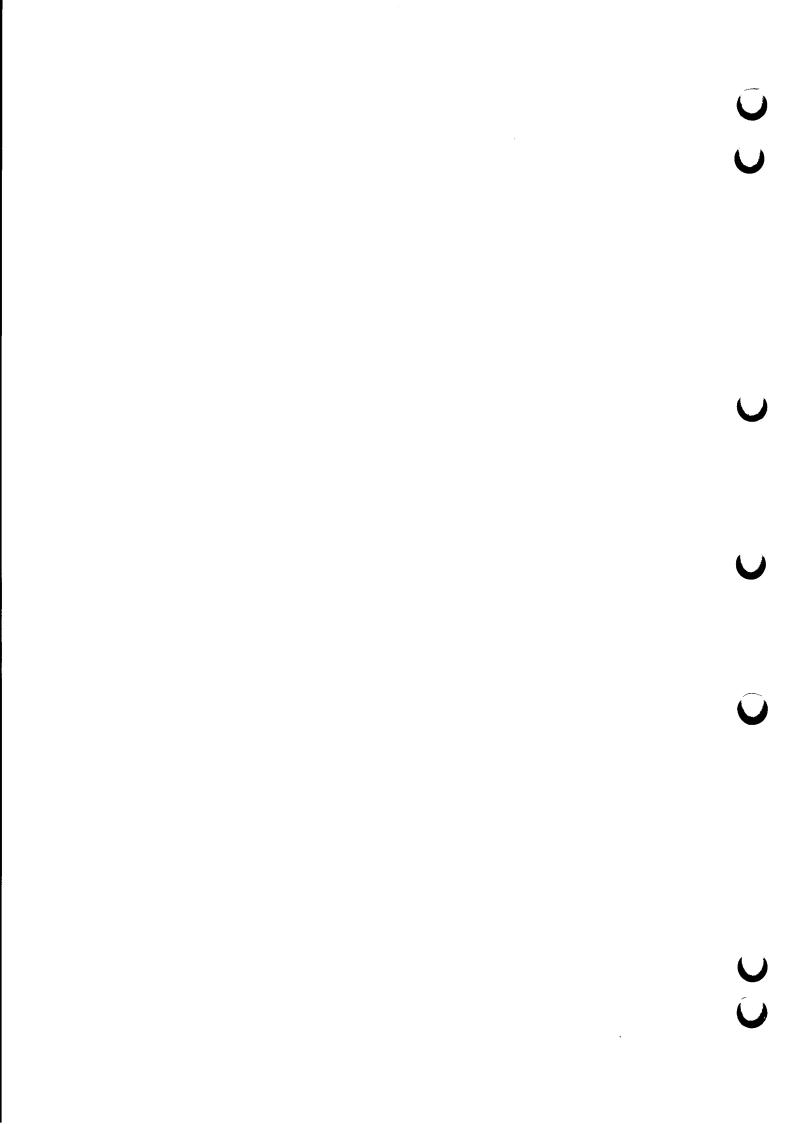
TRANSLATION OF COEFFICIENTS OF A REAL POLYNOMIAL

SLPTRA.

Given the real polynomial p(x), to calculate the coefficients of q(x) = p(x+s) where σ is a real constant. S is a root of p(x) of multiplicity j if the coefficients of x^{j-1} , x^{j-2} ... x° of q(x) are all zero

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PPTRA1 PPTRA2 E(PPTRA1+1)	degree of p(x) shift coefficients of p(x) in increasing order	
	OUTPUT	
E(PPTRA1+1) FUN.	coefficients of q(x) = p(x+s) in increasing order Note: p(x) is destroyed and replaced by p(x+s) Return Status	Ø = correct calculation 1 = degree of p(x) not a positive integer
CALLING SE	QUENCE GOSUB 37ØØ1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLPTRA.


TEST PROGRAM NAME: SLPTRA

Note: In this test program if the shift parameter (PPTRA2) = 9D99 it is possible to change the degree of the polynomial and the values of

the coefficients

MERGE: SLPTRA.

INPUT	OUTPUT		
ENTER DEGREE ? 5 COEFFICIENTS (in descending order) ENTER COEFFICIENT C5 ? 1 ENTER COEFFICIENT C4 ? 1 ENTER COEFFICIENT C3 ? -8 ENTER COEFFICIENT C2 ? -15 ENTER COEFFICIENT C1 ? 7 ENTER COEFFICIENT C0 ? 15	DEGREE OF POLYNOMIAL IS 5		
ENTER SHIFT ? Ø	COEFFICIENTS OF p(x) <p(x+∅) (in descending order) 1 1 -8 -16 7 15</p(x+∅) 		
ENTER SHIFT ? 1	COEFFICIENTS OF p(x) <p(x+1) (in="" -24="" -40="" 0<="" 1="" 6="" descending="" order)="" td=""></p(x+1)>		
ENTER SHIFT ? 2 ENTER SHIFT ? 9D99	COEFFICIENTS OF $p(x) \leftarrow -p(x+2)$ (in descending order) 1 16 94 236 280 0		
ENTER SHIFT ? 9099 ENTER DEGREE ?			

7. HIGHER MATHEMATICAL FUNCTIONS

ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of problems in Higher Mathematical Functions.

CONTENTS

SLKMF.	Complete Elliptic Integral of First Kind	7-1	SLIIØX.	Definite Integral of the Bessel Function Io(x)	7–19
SLEMF.	Complete Elliptic Integral of Second	7-3	SLSF. F	resnel Integral S(x)	7-21
	Kind		SLCF. F	resnel Integral C(x)	7-23
SLLAGG.	Generalised Laguerre Poly- nomial Ln (x)	7-5	SLCHYF.	Confluent Hyper- geometric Function	7–25
SLHNF.	Hermite Polynomial	7–7	SLGHYP.	Gauss Hyper- geometric Function	7–27
CLUEN		7-9	SLSIF.	Sine Integral Si(x)	7-29
SLHEN.	Hermite Polynomial He n	7-9	SLCINF.	Cosine Integral Cin(x)	7–31
SLFOUR.	Evaluation of	7-11			
	Fourier Series		SLEIF.	Exponential Integral Ei(x)	7–33
SLGAMA.	Gamma Function	7–13			
SLERF.	Error Function erf(x)	7–15	SLEINF.	Exponential Integral Ein(x)	7–35
SLBJN.	Bessel Function of Integer Order Jn	7–17			

COMPLETE ELLIPTIC INTEGRAL OF FIRST KIND

SLKMF.

Evaluation of the Complete Elliptic Integral of the First Kind

$$K(x) = \int_0^{\pi/2} \frac{d \, \vartheta}{\sqrt{1 - x \sin^2 \vartheta}}$$

	INPUT			
VARIABLE	DESCRIPTION	VALUE		
PKMF1	argument			
	ОИТРИТ			
F Q FUN.	value of function value of last term calculated Return Status	Ø = correct calculation 1 = no convergence after 1000 terms 2 = x ≥ 1		
CALLING SE	QUENCE GOSUB 372Ø1			
METHOD See	Appendix A			
CALLED SUB	ROUTINES			

TEST PROGRAM FOR SLKMF.

TEST PROGRAM NAME: SLKMF	
Note:	
MERGE: SLKMF.	
INPUT	OUTPUT
ENTER X ?9 ENTER X ?55 ENTER X ? Ø ENTER X ? .3333 ENTER X ? .999999	9 1.329362192885 55 1.4Ø357375Ø272 Ø 1.57Ø796326795 .3333 1.7338963Ø7695 *! last term! * 3.17911319855Ø89D-Ø4 .999999 5.128653257586
ENTER X ?	

COMPLETE ELLIPTIC INTEGRAL OF SECOND KIND

SLEMF.

Evaluation of the Complete Elliptical Integral of the Second Kind

$$E(x) = \int_0^{\pi/2} \sqrt{1 - x \sin^2 \vartheta} \, d \vartheta$$

	INPUT			
VARIABLE	DESCRIPTION	VALUE		
PEMF1	argument			
	ОИТРИТ			
F Q FUN.	value of function value of last term evaluated Return Status	Ø = correct calculation 1 = x ≥1 2 = no convergence after 1000 terms		
CALLING SE	QUENCE GOSUB 374Ø1			
METHOD See	Appendix A			
CALLED SUB	ROUTINES			

TEST PROGRAM FOR SLEMF.

TEST PROGRAM NAME: SLEMF	
Note: MERGE: SLEMF.	
MERGE: SLEMF.	
INPUT	OUTPUT
ENTER X ? Ø ENTER X ? .1 ENTER X ? .9 ENTER X ?9 ENTER X ?9999999	X Complete elliptic Ø 1.57Ø796326795 .1 1.53Ø757636899 .3333 1.43Ø33Ø4371769 1.879834731649 *!last term! * 3.15Ø62939249677D-Ø499999 1.91ØØ9577387Ø

GENERALIZED LAGUEREE POLYNOMIAL Ln (x)

SLLAGG.

Evaluation of the Generalised Laguerre Polynomial $\operatorname{Ln}^{(a)}(x)$

VARIABLE	DESCRIPTION	VALUE
PLAGG1 PLAGG2 PLAGG3	degree (n) parameter, a, of Ln (a) argument	
i i		
	OUTPUT	
L	value of Ln ^(a) (x)	
FUN.	Return Status	<pre>Ø = correct calculation 1 = degree other than a non-negative integer</pre>
CALLING SE	QUENCE GOSUB 376Ø1	
METHOD See	Appendix A	

TEST PROGRAM FOR SLLAGG.

TEST PROGRAM NAME: SLLAGG

Note: In this test program if the argument (PLAGG3) = 9D99 it is

possible to change the degree and the parameter a of the poly-

nomial

MERGE: SLLAGG.

INPUT		OUTPUT		
	×	a	n	generalised Laguerre poly- nomial L(a)n(x)
ENTER a,n? 1.5, 3 ENTER X ? Ø	ø	1.5	3	6.5625ØØØØØØ ØØD+ØØØ
ENTER X ? 1	1	1.5	3	
ENTER X ? 9D99 ENTER a,n ?				

SLHNF.

HERMITE POLYNOMIAL $H_n(x)$

Evaluation of the Hermite Polynomial $H_n(x)$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PHNF1 PHNF2	degree (n) argument (x)	
	OUTPUT	
Н	value of H (x)	
FUN.	Return Status	Ø = correct calculatio 1 = degree not a inte- ger≥Ø
		go. > p
CALLING SE	QUENCE GOSUB 378Ø1	
METHOD Se	e Appendix A	
CALLED SUB	BROUTINES	

TEST PROGRAM FOR SLHNF.

TEST PROGRAM NAME: SLHNF

Note: In this test program if the argument (PHNF2) = 9D99 it is

possible to change the degree of the polynomial

MERGE: SLHNF.

INPUT		OUTPUT	
	х	n	Hermite Polynomial Hn(x)
ENTER n ? 2	1	2	o ddddddddddddd ddd
ENTER X ? 1 ENTER X ? 2.5	2.5		2.ØØØØØØØØØØØØØD+ØØØ2.3ØØØØØØØØØØØØD+ØØ1
ENTER X ?1	1	2	
ENTER X ? 9D99 ENTER n ?			117000000000000000000000000000000000000
		•	
	2 300 0 1 1 1		

SLHEN.

HERMITE POLYNOMIAL $He_n(x)$

Evaluation of the Hermite Polynomial $\operatorname{He}_{\mathbf{n}}(\mathbf{x})$

VARIABLE	DESCRIPTION	VALUE
PHEN1 PHEN2	degree (n) argument (x)	
	OUTPUT	
Н	value of He (x)	
FUN.	Return Status	<pre>Ø = correct calcula- tion 1 = degree not an</pre>
		integer≽∅
CALLING SE	QUENCE GOSUB 38ØØ1	
METHOD See	Appendix A	

TEST PROGRAM FOR SLHEN.

TEST PROGRAM NAME: SLHEN

Note: In this test program if the argument (PHEN2) = 9D99 it is

possible to change the degree of the polynomial

MERGE: SLHEN.

INPUT	ОИТРИТ
	x n Hermite Polynomial Hen(x)
ENTER n ? 2 ENTER X ? Ø	Ø 2 -1.ØØØØØØØØØD+ØØØ
ENTER X ? -2	Ø 2 -1.ØØØØØØØØØD+ØØØ -2 2 3.ØØØØØØØØØD+ØØØ
ENTER X ? 9D99	3.0000000000000000000000000000000000000
ENTER n ?	

SLFOUR.

EVALUATION OF FOURIER SERIES

Evaluation of a Fourier series

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PFOUR1 PFOUR2 A(PFOUR1+1)	maximum harmonic order to be considered value for which the series will be evaluated array of A values	(See Appendix A)
B (N)	array of B values	
	OUTPUT	
F FUN.	value of the function Return Status	Ø = correct calculation 1 = harmonic order not an integer≥Ø
CALLING SEC	QUENCE GOSUB 382Ø1	
METHOD See	Appendix A	
CALLED SUBF	ROUTINES	

TEST PROGRAM FOR SLFOUR.

TEST PROGRAM NAME: SLFOUR

Note: In this test program if the value of the argument (PFOUR2) =

9D99 the Harmonic Order and values of the coefficients can be

changed

MERGE: SLFOUR.

INPUT	ОИТРИТ
ENTER HARMONIC ORDER ? 5 COEFFICIENTS: ENTER A5, B5 ? 1,1 ENTER A4, B4 ? 2,2 ENTER A3, B3 ? 3,3 ENTER A2, B2 ? 4,4 ENTER A1, B1 ? 5,5 ENTER AØ ? 6	
ENTER X ? 1 ENTER X ? 2 ENTER X ? 9 ENTER X ? 9D99 ENTER HARMONIC ORDER ?	F(1) = 5.8386978656Ø535 F(2) = 2.17Ø85722Ø88814 F(9) = 1.27171117Ø67337

SLGAMA.

GAMMA FUNCTION

To evaluate the gamma function $\, \varGamma(x) = \int_{\,\,0}^{\,\infty} t^{x-1}\,e^{-t}\,d\,t \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(x>0)$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PGAMA1	value for which the function will be calculated	
	OUTPUT	
FUN.	the value of $/$ (x). For x = \emptyset , -1 , -2 , $-n$ a value of 9.D99 is returned	
CALLING SE	QUENCE GOSUB 384Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLGAMA.

TEST PROGRAM NAME:	SLGAMA	
Note:		

MERGE: SLGAMA.

INPUT	OUTPUT
ENTER X ? 1 ENTER X ?5 ENTER X ? 2.5 ENTER X ? -2 ENTER X ?	x Gamma Function 1 1.ØØØØØØØØØD+ØØØ5 -3.5449Ø7983672D+ØØØ 2.5 1.32934Ø493877D+ØØØ -2 9.ØØØØØØØØØØØD+Ø99

SLERF.

ERROR FUNCTION erf(x)

To calculate the value of the error function $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$

INPUT		
VARIABLE	DESCRIPTION	VALUE
PERF1	value for which the function is to be calculated	
	OUTPUT	
FUN.	The value of erf(x)	
CALLING SE	QUENCE GOSUB 386Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLERF.

TEST PROGRAM NAME:	SLERF
Note:	

MERGE: SLERF.

INPUT	ОИТРИТ
ENTER X ? Ø ENTER X ? 1 ENTER X ? 4.9 ENTER X ? -100 ENTER X ?	x error function Ø Ø.ØØØØØØØØØE+ØØØ 1 8.427ØØ7477117D-ØØ1 4.9 9.99998981192D-ØØ1 -1ØØ -1.ØØØØØØØØØØØD+ØØØ

SLBJN.

BESSEL FUNCTION OF INTEGER ORDER $J_n(x)$

To evaluate the function y, where Jn(x) is a solution of the differential equation $x^2\frac{d^2}{d\,x^2}\,y\,+\,x\,\frac{d\,y}{d\,x}\,+\,(x^2-n^2)\,y\,=\,\emptyset$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PBJN1 PBJN2	order (n) argument (x)	
	OUTPUT	
J FUN.	value of J _n (x) Return Status	Ø = correct calculation 1 = order not an inte- ger
<u> </u>		
CALLING SE	QUENCE GOSUB 388Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLBJN.

TEST PROGRAM NAME: BJN

Note: In this test program if the argument (PBJN2) = 9D99 it is

possible to change the value of the order (PBJN1)

MERGE: SLBJN.

INPUT			ОИТРИТ
ENTER n ? Ø	х	n	Bessel Function of integer order Jn(x)
ENTER X ? .1 ENTER X ? .5 ENTER X ? 9D99 ENTER n ? 3	.1	Ø Ø	9.975Ø1562Ø66ØD-ØØ1 9.384698Ø724Ø2D-ØØ1
ENTER N ? 2 ENTER X ?	2	3	1.289432494744D-ØØ1

SLIIØX.

DEFINITE INTEGRAL OF THE BESSEL FUNCTION $I_o(x)$

To evaluate the integral $f(x) = \int_0^x \! I_0(t) \; d \; t$

INPUT		
VARIABLE	DESCRIPTION	VALUE
PIIØX1	Superior limit of integration	
	OUTPUT	
FUN.	value of the function	
CALLING SE	QUENCE GOSUB 39ØØ1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLIIØX.

TEST	PROGRAM	NAME:	INT
			TIAL

Note:

MERGE: SLIIØX.

INPUT	ОИТРИТ
	X definite integral of Bessel Function Io(x)
ENTER X ? Ø ENTER X ? .1 ENTER X ? 5Ø ENTER X ?	Ø Ø .1 .1ØØØ83364589534 5Ø 2.96296592994721D+2Ø

SLSF.

FRESNEL INTEGRAL S(x)

To evaluate the integral $S(x) = \int_0^x \sin\left(-\frac{\pi}{2}\,t^2\right) d\,t$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PSF1	upper limit of integration	
	OUTPUT	
S. FUN.	the value of the function Return Status	\emptyset = correct calculation $1 = x \ge 3.5$
	EQUENCE GOSUB 392Ø1 e Appendix A	
CALLED SU		

TEST PROGRAM FOR SLSF.

TEST PROGRAM NAME:	SFR	
Note:		

MERGE: SLSF.

INPUT	ОИТРИТ
	X Fresnel Integral S(x)
ENTER X ? Ø ENTER X ?5 ENTER X ? 3.3 ENTER X ?	Ø Ø 5 -6.473243286ØØØ34D-Ø2 3.3 .519286Ø79733Ø48

SLCF.

FRESNEL INTEGRAL C(x)

To evaluate the integral $C(x) = \int_0^x \cos\left(\frac{\pi}{2} t^2\right) dt$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCF1	superior limit of integration	
	OUTPUT	
С	the value of the function	
FUN.	Return Status	\emptyset = correct calculation $1 = x \ge 3.5$
CALLING SI	EQUENCE GOSUB 394Ø1	
METHOD Se	e Appendix A	
CALLED SU	BROUTINES	

TEST PROGRAM FOR SLCF.

TEST PROGRAM NAME:	CFR
Note:	

MERGE: SLCF.

	Х	Fresnel Integral C(x)
NTER X ? Ø	Ø	Ø
NTER X ? -1	-1	779893387273324
NTER X ? 3.1	3.1	.561593949173428
NTER X ?		

SLCHYF.

CONFLUENT HYPERGEOMETRIC FUNCTION

Evaluation of the confluent hypergeometric function

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCHYF1 PCHYF2 PCHYF3	parameters a,b and argument x of M(a,b,x)	See Appendix A
	OUTPUT	
S	value of M(a,b,x)	
FUN.	Return Status	\emptyset = correct calculatio 1 if b = \emptyset , -1, -2
CALLING SE	QUENCE GOSUB 396Ø1	
METHOD See	Appendix A	
CALLED SUB	DOUTINES	

TEST PROGRAM FOR SLCHYF.

TEST PROGRAM NAME: CHYF

Note: In this program if the argument (PCHYF3) = 9D99 it is possible

to change the values of the other two parameters

MERGE: SLCHYF.

INPUT		OUTPUT				
	×	a	b	Confluent hypergeometric function M(a,b,x)		
ENTER a,b ?5, .2 ENTER X ? .3	.3	5	.2	1.997319258826D -ØØ1		
ENTER X ? .4	.4	5	.2	-9.15428Ø123Ø3 7D-ØØ2		
ENTER X ? 9D99 ENTER a,b ? -1, .6 ENTER X ? -5	-5	-1	. 6	9.333333333D+		
ENTER X ?			.0	ØØØ		

SLGHYP.

GAUSS HYPERGEOMETRIC FUNCTION

Evaluation of the Gauss hypergeometric function

INPUT						
VARIABLE	DESCRIPTION	VALUE				
PGHYP1 PGHYP2 PGHYP3 PGHYP4	parameters a,b,c and argument x of F(a,b,c,x)	See Appendix A				
	OUTPUT					
S	value of function					
FUN.	Return Status	<pre>Ø = correct calculation 1 = incorrect parameter c 2 = invalid x for a,b,c 3 = no convergence after 1000 terms</pre>				
CALLING SE	QUENCE GOSUB 398Ø1					
METHOD See	Appendix A					
CALLED SUE	BROUTINES					

TEST PROGRAM FOR SLGHYP.

TEST PROGRAM NAME: GHYP

Note: In this program if the argument (PGHYP4) = 9D99 it is possible

to change the values of the other parameters

MERGE: SLGHYP.

INPUT		ОИТРИТ				
	×	a	b	С	Gauss Hyper geometric function F(a,b, c,x)	
ENTER a,b,c ? 2,2,4.5 ENTER X ? 5	.5	2	2	4.5	1.75518Ø915381D	
ENTER X ? 9D99 ENTER a,b,c ? -1.5, -2.5, 5					+ØØØ	
ENTER X ? 1	1	-1.5	-2.5	5	1.7963Ø2591496D +ØØØ	
ENTER X ?						

SLSIF.

SINE INTEGRAL Si(x)

To evaluate $\operatorname{Si}(x) = \int_0^x \frac{\sin t}{t} dt$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PSIF1	value for which the function will be calculated	
	OUTPUT	
FUN.	value of function	
CALLING SE	EQUENCE GOSUB 4ØØØ1	
METHOD See	Appendix A	
CALLED SUE	BROUTINES	

TEST PROGRAM FOR SLSIF.

TEST	PROGRAM N	AME:	SIF					
-								

Note:

MERGE: SLSIF.

INPUT	ОИТРИТ
	X sine integral Si(x)
ENTER X ? .5 ENTER X ? 1.5 ENTER X ? 1Ø ENTER X ?	.5 4.931Ø7418Ø431D-ØØ1 1.5 1.324683531172D+ØØØ 1Ø 1.658347594219D+ØØØ

SLCINF.

COSINE INTEGRAL Cin(x)

To calculate $\operatorname{Cin}(x) = \int_0^x \frac{(1-\cos t)}{t} \, dt$

	INPUT			
VARIABLE	DESCRIPTION	VALUE		
PCINF1	upper limit of integration			
	OUTPUT			
EUN				
FUN.	value of function			
CALLING SE	QUENCE GOSUB 4Ø2Ø1			
METHOD See	Appendix A			
CALLED SUB	ROUTINES			

TEST PROGRAM FOR SLCINF.

TEST PROGRAM NAME:	CINF
Note:	

MERGE: SLCINF.

INPUT	OUTPUT
ENTER X ?5	X cosine integral Cin(x)5 6.18525631482ØD-ØØØ
ENTER X ? 1Ø ENTER X ?	1Ø 2.92525719Ø9ØØD+ØØØ

SLEIF.

EXPONENTIAL INTEGRAL Ei(x)

To evaluate
$$\mathrm{E}_i(x) = \int_{-x}^{\infty} rac{e^{-t}}{t} \, d \, t \qquad \left(x > 0 \,
ight)$$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PEIF1	inferior limit of integration (>∅)	
	OUTPUT	
Е	value of function	
FUN.	Return Status	\emptyset = correct calculation 1: $\kappa \leqslant \emptyset$
CALLING SE	QUENCE GOSUB 4Ø4Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

TEST PROGRAM FOR SLEIF.

TEST PROGRAM NAME:	EIF
Note:	

MERGE: SLEIF.

INPUT	OUTPUT
	X exponential integral Ei(x)
ENTER X ? .1 ENTER X ? 1.7 ENTER X ? 5 ENTER X ?	.1 -6.22812845946D+ØØØ 1.7 3.92Ø963214242D+ØØØ 5 4.Ø18527538587D+ØØ1

SLEINF.

EXPONENTIAL INTEGRAL Ein(x)

To calculate the value of

$$E_{in}(x) = \int_{x}^{\infty} \frac{e^{-t}}{t} dt + \ln x + \gamma$$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PEINF1	inferior limit of integration(%)	
	OUTPUT	
FUN.	the value of the function	
CALLING SE	EQUENCE GOSUB 47ØØ1	
METHOD See	Appendix A	
CALLED SU	BROUTINES	

TEST PROGRAM FOR SLEINF.

TEST PROGRAM NAME: EINF	
Note:	
MERGE: SLEINF.	
INPUT	ОИТРИТ
ENTER X ? .1 ENTER X ? 3 ENTER X ? 5 ENTER X ?	X exponential integral Ein(x) .1 .9755453Ø327D-ØØ1 3 .16888763347D+ØØ1 5 .21878Ø18729D+ØØ1

8. SOLUTION OF EQUATIONS

ABOUT THIS CHAPTER

This chapter contains subroutines for the Solution of Equations.

CONTENTS

SLBAIR. Roots of a Real 8-1 Polynomial (Newton-Bairstow)

SLRBIS. Roots of a Real 8-4 Function (Bisection)

SLNLIN. Solution of a Non- 8-7 linear System

ROOTS OF A REAL POLYNOMIAL (NEWTON - BAIRSTOW)

SLBAIR.

The routine calculates real or complex roots of a polynomial with real coefficients

INPUT					
VARIABLE	DESCRIPTION	VALUE			
PBAIR1 PBAIR2 PBAIR3 PBAIR4 PBAIR5	first approximation to Pk first approximation to qk tolerance(E) maximum number of iterations (Z) deflation switch for PBAIR5 = 1 the original polynomial f(x) will be deflated by a found factor g(x). The coeffi-	Ø = no deflation 1 = deflation			
D E(D+1)	cients of $f(x)/g(x)$ will replace those of $f(x)$ in the vector $E(\cdot)$. Repeated application of the routine with PBAIR5 = 1 will find all roots of $f(x)$ degree of polynomial $f(x)$ coefficients of $f(x)$ in ascending order				

	OUTPUT	
R1,R2 or R1 or R1 R2 P1,P2 Q1,Q2 FUN.	two real roots of f(x) one real root of f(x) real part of complex imaginary part conjugates real and imaginary parts of value of polynomial at complex roots, or value at each real root last computed values of Pk,Qk Return Status	<pre>Ø = only one real root R1,R2=Ø 1 = two real roots 2 = two complex roots 3 = no solution after PBAIR4 iterations 4 = degree other than positive integer</pre>
	EQUENCE GOSUB 4Ø6Ø1	
	e Appendix A	
CALLED SUI	BROUTINES GOSUB 36ØØ1	tion of the second

TEST PROGRAM FOR SLBAIR.

TEST PROGRAM NAME: BAIR

Note: In this program if the approximations to Pk (PBAIR1) = 9D99 it is possible to change the value of the tolerance (PBAIR3); and if the tolerance = 9D99 it is possible to change the values of the degree of the polynomial and the coefficients

MERGE: SLBAIR.

INPUT	OUTPUT
ENTER DEGREE ? 5 COEFFICIENTS (in descending order): ENTER C5 ? 1 ENTER C4 ? 1 ENTER C3 ? -8 ENTER C2 ? -16 ENTER C1 ? 7 ENTER C0 ? 15 ENTER TOLERANCE ? .ØØØØØ1 ENTER MAX # OF ITERATIONS ? 5Ø	DEGREE OF POLYNOMIAL IS 5 C5 = 1 C4 = 1 C3 = -8 C2 = -16 C1 = 7 CØ = 15
ENTER APPROXIMATION p,q ? -Ø, -Ø ENTER APPROXIMATION p,q ? 9D99, Ø ENTER TOLERANCE ? 9D99 ENTER DEGREE ?	TOLERANCE = .ØØØØ1 MAX # OF ITERATIONS = 5Ø DEFLATION REQUESTED APPROXIMATION FACTOR p=Ø q=Ø TWO REAL ZEROS .9999999, -1.ØØØØØØ Ø1 FACTOR p=-ØØØØØØØ2 q=1.ØØØØØØ1 VALUES OF POLYNOMIAL 4.00000001121725D-Ø7 -1.6ØØØØØØØØ8Ø3961D-Ø7

ROOTS OF A REAL FUNCTION (BISECTION)

To locate a root of a real function by bisection of a user-defined interval

	INPUT		
VARIABLE	DESCRIPTION	VALUE	
PRBIS1 Q1,Q2	tolerance start and end of interval to be examined		
	OUTPUT		
U Q1,Q2 FUN.	root of f(x) final extremes of interval Return Status	<pre>Ø = root found 1 = a pole is found in the interval Q1,Q2 2 = no root in interval 3 = tolerance not positive</pre>	
CALLING SE	EQUENCE GOSUB 4Ø8Ø1		
METHOD See	Appendix A		
CALLED SUE	BROUTINES		

SOLUTION OF EQUATIONS

Note

The function f(x) must be included in the calling program as FNB. For example, $f(x) = e^{x} - x$ would be coded as DEF FNB(x) = EXP(-x) - x

TEST PROGRAM FOR SLRBIS.

TEST PROGRAM NAME:	BISEL

MERGE: SLRBIS

Note:

INPUT	ОИТРИТ
ENTER start,end of INTERVAL ? Ø, 1	
ENTER tolerance ? .001	interval [0,1] tolerance = .001 a solution is x = .56689453125 f(x) = 3.8927398147583D-04
ENTER start,end of INTERVAL ? 1, 10	
ENTER tolerance ? .001	interval [1,10] tolerance = .001
	there is no root in the given interval
ENTER start,end of INTERVAL ?	

SLNLIN.

SOLUTION OF A NON-LINEAR SYSTEM

Computation of a solution vector $(\alpha_1,\ldots,\alpha_n)$ of the system $F_1(x_1,x_2,\ldots,x_n),\ldots,F_n(x_1,x_2,\ldots,x_n)$ i.e. an n-tuple $(\alpha_1,\ldots,\alpha_n)$ such that: $F_1(\alpha_1,\ldots,\alpha_n)=F_2(\alpha_1,\ldots,\alpha_n)=\cdots=F_n(\alpha_1,\ldots,\alpha_n)=\emptyset$.

INPUT			
VARIABLE	DESCRIPTION	VALUE	
N X E PNLIN2()	order of the system maximum number of iterations tolerance vector of approximations (x.)		
	OUTPUT		
PNLIN2() F() FUN.	solution vector vector of the values of the functions Return Status	<pre>Ø = correct calculation 1 = no solution after PNLIN2 iterations 2 = Jacobian matrix is singular 3 = algorithm diverges 4 = tolerance not positive 5 = maximum number of iterations or order not a positive integer</pre>	

CALCULATION A(12)

CALLING SEQUENCE GOSUB 41001

METHOD See Appendix A

CALLED SUBROUTINES

Note

The non-linear system of equations must be included in the calling program as a subroutine whose first line is line $2\emptyset$. Each function is defined as F(i) and each variable x_i as PNLIN2(i), i = 1,2,...,N.

For example the system:

$$y_1 = x_1^2 + x_2^2 - 4$$

$$y_2 = x_1 x_2 - 1$$

would be coded as:

$$20 F(1) = PNLIN2(1) * PNLIN2(1) + PNLIN2(2) * PNLIN2(2) - 4$$

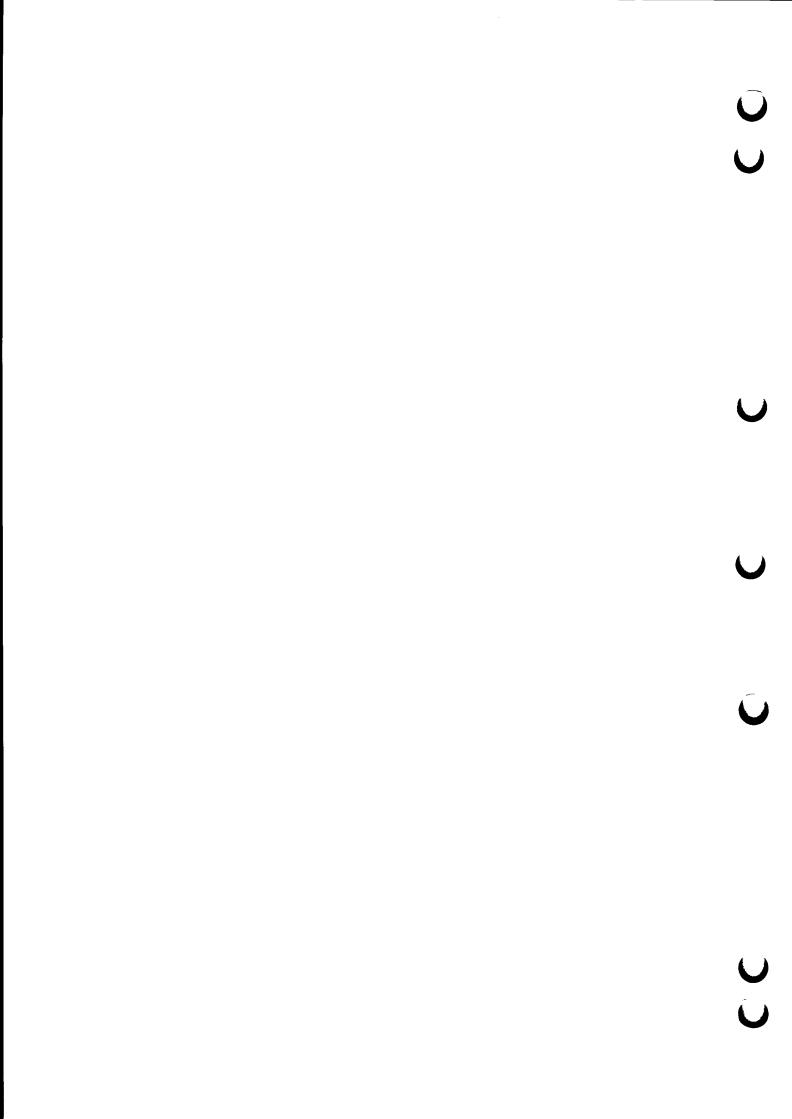
$$3\emptyset F(2) = PNLIN2(1) * PNLIN2(2) - 1$$

4Ø RETURN

TEST PROGRAM FOR SLNLIN.

TEST PROGRAM NAME: NLIN

Note: User defined system:


 $2\emptyset(F1) = PNLIN2(1)*PNLIN2(1)+PNLIN2(2)*PNLIN2 -4$

 $3\emptyset F(2) = PNLIN2(1)*PNLIN2(2) -1$

4Ø RETURN

MERGE: SLNLIN.

ENTER ORDER OF THE SYSTEM ? 2 ENTER TOLERANCE ? .ØØØØØ1 ENTER MAX. NUMBER OF ITERATIONS ? 50 ORDER OF THE SYSTEM 2 MAX. NUMBER OF ITERATIONS 5Ø TOLERANCE .ØØØØ1 i xi Fi 1 .517638Ø68814319 7.3476855 ØØØ365D-Ø7 2 1.93185184848185 6.ØØ8351594Ø 3346D-Ø8 ENTER TOLERANCE ?	INPUT	ОИТРИТ
	ENTER TOLERANCE ? .ØØØØØ1 ENTER MAX. NUMBER OF ITERATIONS ? 5Ø APPROXIMATION VECTOR ENTER X 1 ? Ø ENTER X 2 ? 1	MAX. NUMBER OF ITERATIONS 50 TOLERANCE .000001 i xi Fi 1 .517638068814319 7.3476855 000365D-07 2 1.93185184848185 6.0083515940

9. LINEAR ALGEBRA

ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of problems in Linear Algebra

CONTENTS

SLCRO.	Solution of a Linear System and Matrix Inversion for a General Matrix	9–1	SLJCB.	Evaluation of the Jacobian Matrix	9-23
SLCHO.	Solution of a Linear System and Matrix Inversion for a Symmetric Positive- definite Matrix	9–5			
SLJAC.	Eigenvalues and Eigenvectors of a Symmetric Matrix using the Jacobi Method	9–10			
SLHES.	Eigenvalues of a General Matrix using the Q-R Algorithm	9–13			
SLHEV.	Eigenvectors of a General Matrix	9–17			
SLCHA.	Characteristic Poly- nomial of a General Matrix	9–19			

SOLUTION OF A LINEAR SYSTEM AND MATRIX INVERSION FOR A GENERAL MATRIX

SLCRO.

Solution of a linear system for multiple right-hand sides, matrix inversion and evaluation of the determinant for a general square matrix of order ${\sf N}$

INPUT			
VARIABLE	DESCRIPTION	VALUE	
PCR01 PCR02 PCR03 PCR02(N,N) G(N)	order of matrix (N) tolerance(no test for singularity) switch variable elements of matrix A (overwritten by decomposition matrix) right hand side (linear system only)	1,2 = solution of linear system -1,-2 = matrix inver- sion	
	OUTPUT		
0 G(H(N))	I determinant of A solution vector (linear system only)		
F(N,N)	inverse matrix, A ⁻¹ (inversion only)		
FUN.	Return Status	<pre>Ø = correct calculatio 1 = order other than a positive integer 2 = tolerance ≤ Ø or ≥ 1 3 = matrix is singular 4 = matrix is nearly singular PCR02(H(N),N) <pcr02 5="PCR03" other="" td="" than<=""></pcr02></pre>	

CALCULATION G(N) (inversion only); H(N)

CALLING SEQUENCE GOSUB 412Ø1

METHOD See Appendix A

CALLED SUBROUTINES

Note

PCR03 equals $\stackrel{+}{-}1$ for the first function call such that the matrix A is decomposed.

For a second or subsequent function call PCR03 equals $\stackrel{+}{-}2$ which causes the routine to bypass decomposition.

Failure to follow this procedure will generate erroneous results since the matrix A is overwritten by the decomposition matrix. TEST PROGRAM FOR SLCRO.

TEST PROGRAM NAME: SLCR02

Note: In this program if the switch variable (PCR03) = 9D99 the order

and the elements of the matrix can be changed

MERGE: SLCRO.

INPUT	ОИТРИТ
ENTER order of matrix ? 3 ENTER element 1,1 ? 4 ENTER element 1,2 ? 3 ENTER element 1,3 ? 9 ENTER element 2,1 ? 3 ENTER element 2,2 ? 5 ENTER element 2,3 ? 6 ENTER element 3,1 ? 4 ENTER element 3,2 ? 2 ENTER element 3,3 ? 9	matrix order 3
ENTER tolerance ? 1d-9 ENTER 1 (system) or 2 (inverse) ? 1 ENTER b1 ? 4 ENTER b2 ? 6 ENTER b3 ? 1	tolerance .000000001 right-hand side b1 = 4 b2 = 6 b3 = 1 matrix is nearly singular - last element of decomposition matrix is2727272727273 determinant (in absolute value) = 3.000000000001 solution x1 = -17 x2 = 3 x3 = 6.9999999998

INPUT	OUTPUT
ENTER 1 (system) or 2 (inverse) ? 2 ENTER 1 (system) or 2 (inverse) ? 9D99 ENTER ORDER OF MATRIX ?	inverse matrix -1.100000000000000000000000000000000000

SOLUTION OF A LINEAR SYSTEM AND MATRIX INVERSION FOR A SYMMETRIC POSITIVE DEFINITE MATRIX

SLCHO.

Solution of a linear system for multiple right-hand sides, matrix inversion and evaluation of the determinant for a symmetric positive definite matrix

INPUT			
VARIABLE	DESCRIPTION	VALUE	
PCH01 PCH02 PCH03 PCH02 (N(N+1)/2)	order of matrix (N) tolerance (to test for positive definiteness) switch variable elements of upper triangle of A	1,2 = solution of linear system -1,-2 = matrix inver- sion	
F(N)	right-hand side (linear system)		
	OUTPUT		
F(N) 0 G(N(N+1)/2)	solution vector (linear system) determinant in absolute value elements of upper triangle of inverse A (inversion)		
RØ,Q FUN.	see FUN. values 4 and 5 Return Status	<pre>Ø = correct calculation 1 = order other than a positive integer</pre>	
		2 = tolerance ≤ Ø or ≥ 1 3 = matrix not positive definite 4 = matrix not positive definite or rounding errors. The diagonal element in row RØ of the	

OUTPUT	
OUTPUT	matrix is not positive 5 = matrix may not be positive definite The diagonal element in row RØ = Q(<pcho2) -1="" -2<="" 6="PCHO3" or="" other="" th="" than=""></pcho2)>
CALCULATION F(N) (inversion only): A, R1,	R
CALLING SEQUENCE GOSUB 414Ø1	
METHOD See Appendix A	
CALLED SUBROUTINES	

LINEAR ALGEBRA

Note

PCH03 equals $\stackrel{+}{\text{-}}\text{1}$ for the first function call such that the matrix A is decomposed.

For a second or subsequent function call, PCH03 equals -2 which causes the routine to by-pass decomposition.

Failure to follow this procedure will generate erroneous results since the matrix A is overwritten by the decomposition matrix

TEST PROGRAM FOR SLCHO.

TEST PROGRAM NAME: SLCH02

Note: In this program if the switch variable PCH03 = 9D99 it is

possible to change the order of the matrix and the values of the

elements

MERGE: SLCHO.

INPUT	ОИТРИТ
ENTER order of matrix ? 4	symmetric matrix order 4
ENTER element 1,1 ? 2 ENTER element 1,2 ? -1	
ENTER element 1,3 ? Ø ENTER element 1,4 ? Ø	symmetric elements –1
ENTER element 2,2 ? 2 ENTER element 2,3 ? -1	
ENTER element 2,4 ? Ø	symmetric elements ∅ −1
ENTER element 3,3 ? 2 ENTER element 3,4 ? -1	symmetric elements ∅ ∅ −1
ENTER element 4,4 ? 2 ENTER tolerance ?.ØØØØØØØ1	tolerance for positive definite test ØØØØØØØ1
ENTER 1 (system) or 2 (inverse) ? 1	right-hand side
ENTER b1 ? 1	b1 = 1
ENTER b2 ? 4 ENTER b3 ? 6	b2 = 4 b3 = 6
ENTER b3 : 0	$\begin{array}{c} b3 = 6 \\ b4 = 9 \end{array}$
	determinant (in absolute value) = 5.000001601147 solution

INPUT	OUTPUT
	X1 = 7.3999998238164 X2 = 13.799999141Ø5Ø4 X3 = 16.2ØØØØØ2Ø1Ø8Ø4 X4 = 12.5999996996847
ENTER 1 (system) or 2 (inverse) ? 2	Inverse matrix .80000011224664 .59999996768366 .3999999991637 .19999993595412
	5999996768366 1.199999894293Ø7 .7999997244996 .3999999734994Ø8
	.39999999916397 .79999997244996 1.20000004601518 .600000003919231
	.399999734994Ø8 .199999993595412
ENTER 1 (system) or 2 (inverse) ? 9D99 ENTER ORDER OF MATRIX ?	.600000003919231 .799999976508471

EIGEN VALUES AND EIGEN VECTORS OF A SYMMETRIC MATRIX USING THE JACOBI METHOD

SLJAC.

Calculation of the eigen values and, optionally, the eigen vectors of a symmetric matrix A, i.e. solution of the matrix equation $Ax = \lambda x$

INPUT	
DESCRIPTION	VALUE
order of the matrix (N) tolerance switch variable diagonal elements of the matrix upper off-diagonal elements of the matrix	<pre>Ø = without eigen vectors 1 = with eigen vectors</pre>
OUTPUT	
eigen values eigen vectors (columns of VJAC7() Return Status Note: The routine uses the function FNF	<pre>Ø = correct calculatio 1 = PJAC3 not equal to Ø or 1 2 = PJAC2 tolerance not positive 3 = Order N other than a positive integer</pre>
	order of the matrix (N) tolerance switch variable diagonal elements of the matrix upper off-diagonal elements of the matrix OUTPUT eigen values eigen vectors (columns of VJAC7() Return Status

CALCULATION F, B, J, T₁, T₂, U, CØ, SØ, D, Q, R

CALLING SEQUENCE GOSUB 416Ø1

METHOD See Appendix A

CALLED SUBROUTINES

TEST PROGRAM FOR SLJAC.

TEST PROGRAM NAME:	SLJAC2	

Note:

MERGE: SLJAC.

INPUT	OUTPUT
ENTER order of matrix ? 3 ENTER element 1,1 ? 8	symmetric matrix order 3
ENTER element 1,2 ? 4 ENTER element 1,3 ? 2 ENTER element 2,2 ? 6	symmetric elements 4
ENTER element 2,3 ? 3 ENTER element 3,3 ? 9	symmetric elements 2 3
ENTER tolerance ? 1d-1Ø	tolerance .ØØØØØØØØØ
eigen vectors ? 1(yes), Ø(no) ? 1	eigen vectors requested eigen values 13.687339256 2.619921695 6.692739Ø49 eigen vectors (row-wise) .59Ø94Ø671 .541Ø16969 .5984Ø6Ø26527975155 .82Ø22327322Ø1727696Ø9943755 185834468 .77Ø346785
ENTER order of matrix ?	

EIGEN VALUES OF A GENERAL MATRIX USING THE Q-R ALGORITHM

SLHES.

Calculation of the eigen values of a general matrix A, i.e. solution of the matrix equation $Ax\,=\,\lambda\,x$

INPUT		
VARIABLE	DESCRIPTION	VALUE
PHES1 PHES2 E(N,N)	order of the matrix (N) * tolerance elements of the matrix	
	OUTPUT	
F(N),G(N) E(N,N) P(N,N) FUN.	real and imaginary parts of the eigen values matrix U matrix W=PQ see method Return Status	<pre>Ø = eigen values calculated 1 = PHES1 is a non positive integer 2 = PHES2 is not positive 3 = no convergence after 3Ø iterations</pre>

CALCULATION O(N), L!, K!, B, Q, R, S, X, Y, W, Z

CALLING SEQUENCE GOSUB 418Ø1

METHOD See Appendix A

CALLED SUBROUTINES GOSUB 46001

Note

The progress of the calculation may be followed on the display by removing REM from line 41893. The display then shows the iteration being performed in each of the N-2 steps of the Q-R algorithm

TEST PROGRAM FOR SLHES. and SLHEV.

TEST PROGRAM NAME: SLHES2

Note: The calculation of the eigen values is followed by the calculation of the corresponding eigen vectors using SLHEV. (GOSUB 46001)

MERGE: SLHES. SLHEV.

INPUT	ОИТРИТ
ENTER order ? 4	
ENTER elements row-wise	
ENTER element row 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a1 1 = ? 1	
a1 2 = ? 5	
a1 3 = ? 8	
a1 4 = .? 4	
ENTER element row 2	
a2 1 = ? 6	
a2 2 = ? 3	
a2 3 = ? 7	
a2 4 = ? 8	
ENTER element row 3	
a3 1 = ? 1.5	
a3 2 = ? 11	
a3 3 = ? 9	
a3 4 = ? 6	
ENTER element row 4	
a4 1 = ? 5	
a4 2 = ? 8	
a4 3 = ? 3.7	
a4 4 = ? 4	MATRIX (row-wise)
	1 5 8 4
	6 3 7 8
	1.5 11 9 6
	5 8 3.7 4

INPUT	OUTPUT
tolerance ? 1d -1Ø	j eigen value j 1 -5.1261Ø6Ø7584948 2579869218693827+2.42693 11428Ø7Ø1i 35798621893827+242 69311428Ø7Ø1 4 23.285843846ØØ84 j eigen vector j 123122Ø28672823769322Ø6133 52799 .304962295655581 .61Ø721181895829
	2 and 35457944652Ø8Ø18+221Ø- 85637759322.1 Ø37Ø383Ø56315 +-1.48Ø41 119486146i 327278951Ø8Ø694+35815 5113472947i .61Ø288157833865+112785 796835Ø97i 43Ø585Ø574192517 56Ø817326238133 595621533278672 487ØØ55174998Ø8
ENTER order ?	

SLHEV.

EIGEN VECTORS OF A GENERAL MATRIX

Calculation of the eigen vectors of a general matrix A, i.e. solution of the matrix equation $Ax = \lambda x$, given the eigen values λ_i , and the matrices U and W, where $U = Q^t P^t APQ$ and W = PQ (see SLHES.)

INPUT		
VARIABLE	DESCRIPTION	VALUE
PHLEV1 PHLEV2 E(N,N) P(N,N) F(N),G(N)	order of matrix A (N) tolerance matrix U matrix W real and imaginary parts of eigen values of A	
	OUTPUT	
P(N,N) FUN.	eigen vectors of A (see note) Return Status	<pre>Ø = correct calculation 1 = tolerance not positive 2 = order other than a positive integer</pre>

CALCULATION O(N), B, H, M, P, Q, R1, S1, T1, T2, Z, Z1, Z2, Y2

CALLING SEQUENCE GOSUB 46001

METHOD See Appendix A

CALLED SUBROUTINES

Notes

- 1. If λ_i is i^{th} eigen value and x_i , the j^{th} element of the i^{th} eigen vector then for λ_i real, $P(i,j)^{j} = x_i$. If λ_i is complex $(G(i) \neq \emptyset)$ then λ_i is its conjugate; P(i,j) is then the real part of x_i and $x_{i+1,j}$ and P(i+1,j) and P(i+1,j) are the imaginary parts of $x_{i+1,j}$ respectively
- 2. For the test program see SLHES.

CHARACTERISTIC POLYNOMIAL OF A GENERAL MATRIX

SLCHA.

Calculation of the coefficients of the characteristic polynomial of a general matrix A. Evaluation of the determinant (in absolute value)

INPUT		
VARIABLE	DESCRIPTION	VALUE
PCHA1 E(N,N)	order of the matrix (N) elements of the matrix	
	OUTPUT	
H(N+1) FUN.	Coefficients of the characteristic polynomial in descending order. (The absolute value of the determinant of A is the absolute value of H (N+1)). Return Status	Ø = correct calculation 1 = order N is not a positive integer

CALCULATION G(N), F(N,N)

CALLING SEQUENCE GOSUB 422Ø1

CALLED SUBROUTINES

METHOD See Appendix A

TEST PROGRAM FOR SLCHA.

TEST PROGRAM NAME: SLCHA2	
Note:	
MERGE: SLCHA.	
INPUT	ОИТРИТ
ENTED ODDED OF MATRIX O	
ENTER ORDER OF MATRIX ? 4	
ENTER elements row 1	
E(1,1) ? 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E(1,2) ? 6 E(1,3) ? 5	
E(1,4) ? 3	
ENTER elements row 2	
E(2,1) ? 2	5
E(2,2) ? 8	
E(2,3) ? 9	
E(2,4) ? 11	
ENTER elements row 3	
E(3,1) ? 5	
E(3,2) ? 4	
E(3,3) ? 8	
E(3,4) ? 6	
ENTER elements row 4	
E(4,1) ? 3	
E(4,2) ? 5	
E(4,3) ? 7	
E(4,4) ? 2	MATRIX (row-wise)
	7 6 5 3
	7 6 5 3 2 8 9 11
	5 4 8 6
	3 4 0 0

INPUT	OUTPUT
	COEFFICIENTS OF THE POLYNOMIAL (in descending order)
ENTER ORDER OF MATRIX?	1 -25 43 182 -1040

SLJCB.

EVALUATION OF THE JACOBIAN MATRIX

To evaluate the Jacobian matrix of a user defined system of functions

INPUT		
VARIABLE	DESCRIPTION	VALUE
PJCB1 PJCB2 F(N) G(N)	order of the system (N) increment for the five point differencing scheme functions variables	
N .		
	OUTPUT	
E(N,N) FUN.	Jacobian matrix Return Status	<pre>Ø = correct calculation 1 = order of system is not a positive integer 2 = increment is not positive</pre>

CALCULATION

B()

CALLING SEQUENCE

GOSUB 424Ø1

METHOD See Appendix A

CALLED SUBROUTINES

Note

The system of equations must be included in the calling program as a subroutine whose first line must be line 20.

For example, the system

$$y_1 = x_1 - x_2$$

 $y_2 = x_1 x_2$

would be coded in the calling program as follows:

$$2\emptyset F(1) = G(1) - G(2)$$

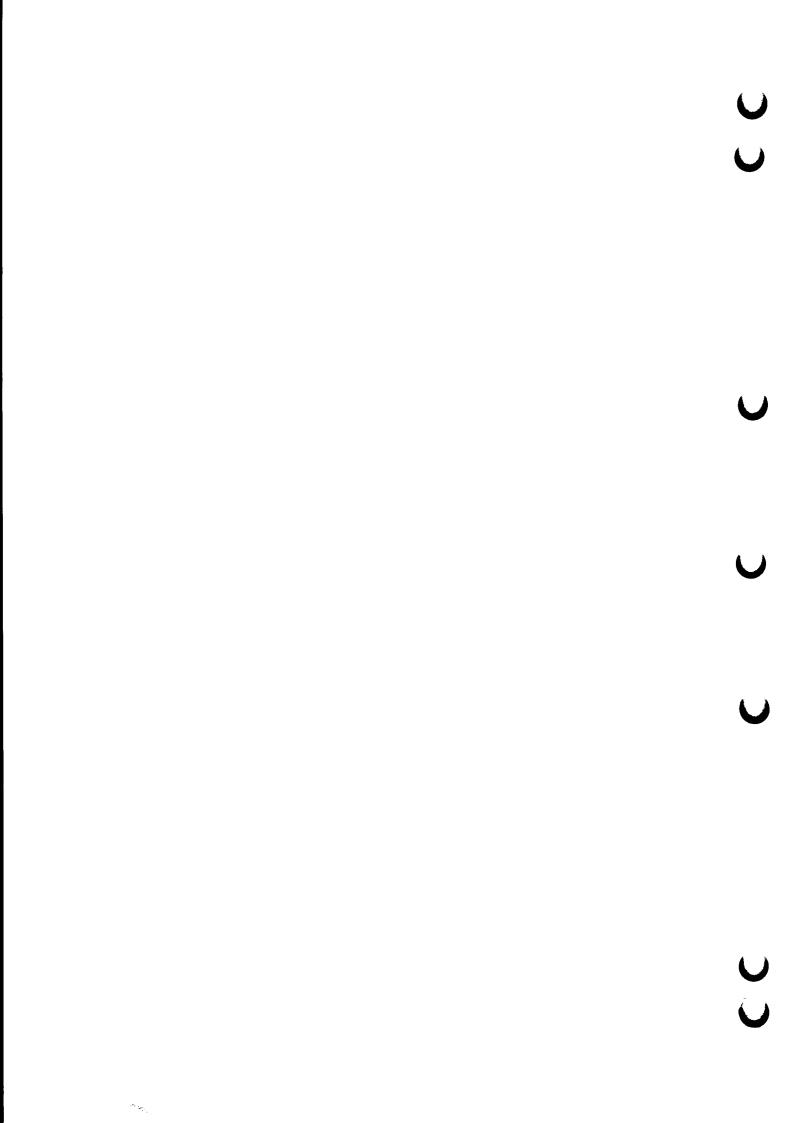
$$3\emptyset F(2) = G(1) * G(2)$$

4Ø RETURN

TEST PROGRAM FOR SLJCB.

TEST PROGRAM NAME: SLJCB2

Note: user defined functions:


 $2\emptyset F(1) = G(1) - G(2)$

 $3\emptyset F(2) = G(1) * G(3)$

4Ø RETURN

MERGE: SLJCB.

INPUT	ОИТРИТ
ENTER order of system ? 2 ENTER increment ? .Ø1 ENTER X 1 ? 6 ENTER X 2 ? 3 ENTER increment ? Ø ENTER X 1 ? 1 ENTER X 2 ? 1 ENTER increment ?	increment .Ø1 X1 = 6 X2 = 3 Jacobian matrix .999999999999999999999999999999999999

10. CURVE FITTING AND INTERPOLATION

ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of problems in Curve Fitting and Interpolation.

CONTENTS

SLLLSQ. Least Squares Curve 10-1 SLCSPI. Cubic Spline Inter- 10-24 Fitting to User polation Supplied Basis SLPADE. Rational Function 10-28 SLNLLS. Non-linear Least 10-4 Fitting (Padè Squares Curve Fit-Approximation) ting to an Arbitrary Scalar Function SLFSYT. Weighted Least 10-8 Squares Orthogonal Polynomial Curve Fit (Forsythe) SLFTRP. Coefficients of 10-12 Fourier Series to Represent Discrete Data SLFOUI. Fourier Inter-10-17 polation SLPLYF. Lagrangian Inter-10-19 polation SLCSPC. Cubic Spline 10-23

LEAST SQUARES CURVE FITTING TO USER SUPPLIED BASIS

SLLLSQ.

To determine the coefficients of an approximating function, which is a linear combination of user-supplied basis functions

INPUT		
VARIABLE	DESCRIPTION	VALUE
PLLSQ1 PLLSQ2 PLLSQ3 E(N1),F(N1)	number of data points (N1) number of basis functions (M1) tolerance x i, y i	i = 1,2,N1
	OUTPUT	
G(M1) D N! FUN.	basis coefficients standard deviation number of basis functions used Return Status	<pre>Ø = tolerance reached 1 = tolerance not reached 2 = number of data points less than the number of functions 3 = normal system is singular 4 = tolerance negative</pre>

OUTPUT	
	<pre>5 = number of data points other than a positive integer 6 = number of basis functions other than 1,26</pre>
CALCULATION Q(,), R(,), H(), O(), P, U, F	
CALLING SEQUENCE GOSUB 426Ø1	
METHOD See Appendix A	
CALLED SUBROUTINES	

Note

The basis functions must be included in the calling program as a sub-routine whose first line must be line $2\emptyset$. For example, the basis

$$f_1 = x$$

$$f_2 = x^2$$

would be coded in the calling program as:

$$2\emptyset G(1) = x$$

 $3\emptyset G(2) = x^{\uparrow}2$
 $4\emptyset RETURN$

TEST PROGRAM FOR SLLLSQ.

TEST PROGRAM NAME: RRLLSQ

Note: user-defined basis functions:

 $2\emptyset \ G(1) = X$ $3\emptyset \ G(2) = X^2$ $4\emptyset \ RETURN$

MERGE: SLLLSQ.

INPUT	OUTPUT
ENTER number of points ? 7 ENTER interval limits ? 1.1, 9 ENTER E(1) F(1) ? 1.1, 3 ENTER E(2) F(2) ? 2.3, Ø ENTER E(3) F(3) ? 3, 4 ENTER E(4) F(4) ? 4.5, -3 ENTER E(5) F(5) ? 6, -12 ENTER E(6) F(6) ? 9, 456 ENTER E(7) F(7) ? 12, 4	number of points = 7 interval [1.1, 9]
ENTER number of basis functions ? 6 ENTER tolerance ? Ø	6 basis functions tolerance = Ø ***results***
	6 basis functions used basis fn coefficient 1 207.413547964336 2 -362.077179199238 3 213.013346355761 4 -53.9416220909832 5 5.94626574262395 6227555306780735 standard deviation = 2.21041178703 308 (tolerance not reached)

To calculate a least squares approximation to a given model with \sin or less parameters

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PNLLS1 PNLLS2 PNLLS3 PNLLS4 PNLLS5 PNLLS6 P(PNLLS2) x(PNLLS1), y(PNLLS1)	number of data points (N) number of parameters in model tolerance to determine presence of maximum tolerance for line minimisation bound for line minimisation maximum number of iterations initial approximation to a set of parameters x and y data values	≤ 6
	OUTPUT	
P(PNLLS2) F K1 FUN.	final set of parameters residual value number of iterations Return Status	<pre>Ø = correct calculation 1 = no solution after PNLLS6 iterations 2 = max. no. of iter- ations not a posit- ive integer 3 = tolerances and bound not positive 4 = no. of data points not a positive integer 5 = no. of parameters other than 1.26</pre>

CALCULATION $S(,),D(),Q(),Z(),B\emptyset,H,I!,J!,F9,M1,M2,S,Q,Z,T1$

CALLING SEQUENCE GOSUB 464Ø1

METHOD See Appendix A

CALLED SUBROUTINES

Notes

- 1. The model f (a₁, a₂,...a_k, x) must be defined in the calling program as FNF(X), with argument X and parameters P(1), P(2),...P(6). For example, the modified exponential curve a₁ + a₂. $\overset{X}{a}$ would be coded as DEF FNF(X) = P(1) + P(2) * P(3) $\overset{A}{\uparrow}$ X
- 2. The progress of calculation may be followed on the display by removing REM from statements 46472 and 46655. The last line minimisation and value of the residual are given

TEST PROGRAM FOR SLNLLS.

TEST PROGRAM NAME: RRNLLS

Note: user-defined model

 $3\emptyset$ DEF FNF(x) = P(1) + P(2) * P(3) $^{\circ}_{X}$

MERGE: SLNLLS.

INPUT	OUTPUT
ENTER number of points ? 24 ENTER interval limits ? .2, 7.3	number of points 24 interval [.2, 7.3]
X(1) Y(1) ? .2, 24.3 X(2) Y(2) ? .5, 23.5 X(3) Y(3) ? .7, 22.8 X(4) Y(4) ? .8, 22.5 X(5) Y(5) ? 1.2, 21.5	
X(6) Y(6) ? 1.4, 21.1 X(7) Y(7) ? 1.7, 20.5 X(8) Y(8) ? 1.9, 20.1 X(9) Y(9) ? 2.3, 19.4 X(10) Y(10) ? 2.5, 19.1 X(11) Y(11) ? 2.7, 18.8	
X(12) Y(12) ? 3, 18.4 X(13) Y(13) ? 3.3, 18.1 X(14) Y(14) ? 3.6, 17.8 X(15) Y(15) ? 3.9, 17.5 X(16) Y(16) ? 4.1, 17.3	
X(17) Y(17) ? 4.4, 17.1 X(18) Y(18) ? 4.7, 16.9 X(19) Y(19) ? 3, 16.7 X(20) Y(20) ? 5.3, 16.3 X(21) Y(21) ? 5.7, 16.3 X(22) Y(22) ? 6.2, 16.1 X(23) Y(23) ? 6.7, 15.9	

INPUT	OUTPUT
X(24) Y(24) ? 7.3, 15.7 ENTER number of parameters ? 3 ENTER tolerance ? .ØØ1 ENTER line min. tolerance ? .ØØ1 ENTER bound for line min. ? 5 ENTER maximum # of iterations? 5Ø	number of parameters 3 bound for line min. 5
initial parameters: ENTER parameter1 ? 10 ENTER parameter2 ? 10 ENTER parameter3 ? 1 ENTER tolerance ?	solution after 34 iterations i parameter i 1 15.153912Ø999214 2 9.94726Ø76961454 3 .6837992526Ø72Ø5 residual value = .932332519366355

WEIGHTED LEAST SQUARED ORTHOGNAL POLYNOMIALS CURVE FIT (FORSYTHE)

SLFSYT.

To compute the coefficients of the Forsythe polynomials approximating a set of observed data

INPUT		
VARIABLE	DESCRIPTION	VALUE
PFSYT1 PFSYT2 PFSYT3 E(N) F(N) G(N)	tolerance maximum degree of resultant poly- nomial (M) number of points (N) array of data points abscissae array of data points ordinates array of data points weights	
	OUTPUT	
P1 R(P1+1) SØ FUN.	degree of resultant polynomial coefficients of polynomial in ascending order standard deviation Return Status	<pre>Ø = correct calculatio 1 = tolerance not reached 2 = no. of data points other than a posi- tive integer 3 = maximum degree of polynomial other than Ø,1N-1 4 = tolerance negative</pre>

CURVE FITTING AND INTERPOLATION

CALCULATION H (7, M+2), D1

CALLING SEQUENCE GOSUB 43ØØ1

METHOD See Appendix A

CALLED SUBROUTINES

TEST PROGRAM FOR SLFSYT.

TEST PROGRAM NAME: RRFSYT

Note:

MERGE: SLFSYT.

INPUT	OUTPUT
ENTER number of points ? 24 ENTER interval limits ? .2, 7.3	number of points = 24
E(1) F(1) G(1) ? .2,24.3,1	interval [.2, 7.3]
E(2) F(2) G(2) ? .5,23.4,1	
E(3) F(3) G(3) ? .7,22.8,1	
E(4) F(4) G(4) ? .8,22.5,1	
E(5) F(5) G(5) ? 1.2,21.5,1	
E(6) F(6) G(6) ? 1.4,21.1,1	
E(7) F(7) G(7) ? 1.7,2Ø.5,1	
E(8) F(8) G(8) ? 1.9,2Ø.1,1	
E(9) F(9) G(9) ? 2.3,19.4,1	
E(10) F(10) G(10) ? 2.5,19.1,1	
E(11) F(11) G(11) ? 2.7,18.8,1	
E(12) F(12) G(12) ? 3,18.4,1 E(13) F(13) G(13) ? 3.3,18.1,1	
E(14) F(14) G(14) ? 3.6,17.8,1	
E(15) F(15) G(15) ? 3.9,17.5,1	
E(16) F(16) G(16) ? 4.1,17.3,1	
E(17) F(17) G(17) ? 4.4,17.1,1	
E(18) F(18) G(18) ? 4.7,6.9,1	- 1
E(19) F(19) G(19) ? 5 ,16.7,1	
E(2Ø) F(2Ø) G(2Ø) ? 5.3,16.5,1	
E(21) F(21) G(21) ? 5.7,16.3,1	
E(22) F(22) G(22) ? 6.2,16.1,1	

OUTPUT
scale factor x = 1 y = 1 tolerance = Ø maximum degree = 1Ø degree of polynomial is 5 coefficients (in descending order) - 5.4ØØ699Ø7256268D-Ø6 1.724348Ø4771512D-Ø3 -47389369ØØ9 4188D-Ø2 .558221Ø644Ø3478 -3.475- 681582797Ø5 24.976952Ø5Ø8887 standard deviation = 1.91369Ø75328 112D-Ø2

COEFFICIENTS OF FOURIER SERIES TO REPRESENT DISCRETE DATA

SLFTRP.

To compute the coefficients of a Fourier Series to represent discrete data equally spaced over the interval (0,2 π)

INPUT		
VARIABLE	DESCRIPTION	VALUE
PFTRP1 PFTRP2 PFTRP3 X(N),F(N)	maximum harmonic order to be considered tolerance number of base points (N) N base points and function values	≥ Ø
	ОИТРИТ	
P1! G(P1!), H(P1!) E(P1!) P FUN.	number of harmonics computed coefficients a and b k least squares error at step k; if N is even and P1! = M+2 then a dummy value of 9D99 is returned for E(M+1) see FUN. value 1 Return Status	<pre>Ø = correct calculation 1 = maximum harmonic order other than Ø,1P where P = for N even, P = N- for N odd 3 = tolerance negative</pre>

OUTPUT			
		4 = number of base points other th	
		positive intege	r
CALLING S	EQUENCE GOSUB 432Ø1		
METHOD Se	ee Appendix A		
CALLED SI	BROUTINES		

TEST PROGRAM FOR SLFTRP. and SLFOUI.

TEST PROGRAM NAME: RRFTRP

Note: In this program after the calculation of the coefficients the program stops; to continue press CR. If the a "scale code" of 9D99 is entered it is possible to change the value of the tolerance and if an argument x=9D99 it is possible to change

the "scale code"

MERGE: SLFTRP. SLFOUI.

INPUT	ОИТРИТ
ENTER number of points ? 20	
ENTER interval limits ? Ø, 38	number of points = 20 interval [0, 38]
X(1) F(1) ? Ø,Ø	
X(2) F(2) ? 2,1	
X(3) F(3) ? 4,2	
X(4) F(4) ? 6,3	
X(5) F(5) ? 8,4	
X(6) X(6) ? 1Ø,5	
X(7) F(7) ? 12,4	
X(8) F(8) ? 14,3	
X(9) F(9) ? 16,2	
X(1Ø) F(1Ø) ? 18,1	
X(11) F(11) ? 2Ø,Ø	
X(12) F(12) ? 22,-1	
X(13) F(13) ? 24,-2	
X(14) F(14) ? 26,-3	
X(15) F(15) ? 28,-4	
X(16) F(16) ? 3Ø,-5	
X(17) F(17) ? 32,-4	
X(18) F(18) ? 34,-3	
X(19) F(19) ? 36,-2	
X(2Ø) F(2Ø) ? 38,-1	
ENTER tolerance ? Ø	
	tolerance Ø

INPUT	OUTPUT
ENTER max harmonic order ? 10	maximum harmonic order 10 k Ø ak=Ø bk=Ø error at order Ø 170 1 ak=3.0000002084744D-D7 bk=4.086343 error at order 1 3.018 2 ak=-5.57295000386778D-07 bk=.00000764120805 error at order 2 3.018 3 ak=-6.000000000000000000000000000000000000
SELECT CODE ? 1	interpolation scale codes 1 original 2 unit spacing 3 radians 4 degrees

INPUT	ОИТРИТ
ENTER X ? 2 ENTER X ? 3 ENTER X ? 4 ENTER X ? 9D99	x=2 y(x)=.999999070212393 Code1 x=3 y(x)=1.44573944215214 Code1 x=4 y(x)=1.99999698837309 Code1
SELECT CODE ? 2 ENTER X ? 2 ENTER X ? 9D99	x=2 y(x)=1.999996988373Ø9 Code2
SELECT CODE ? 3 ENTER X ? 1.57Ø7963 ENTER X ? 9D99 SELECT CODE ?	x=1.57Ø7963 y(x)=4.999997796555Ø6 Code

SLFOUI.

FOURIER INTERPOLATION

Evaluation of the Fourier approximating expansion

INPUT		
VARIABLE	DESCRIPTION	VALUE
PFOUI1 PFOUI2 PFOUI3 PFOUI4 PFOUI5 PFOUI6 G(M+1), H(M+1)	scale code abscissa of first observation increment between two successive abscissae (H) abscissa to be interpolated number of observations (N) maximum harmonic order of Fourier expansion (M) Fourier Coefficients for cosines and sines respectively	<pre>{ 1 = original</pre>
	OUTPUT	
C FUN.	value of Fourier expansion Return Status	<pre>Ø = correct calculation 1 = scale code other than 1,2,3 or 4 2 = no. of observation other than a positive integer 3 = maximum harmonic order other than Ø,1P, where P = norm for N even, P = norm for N ode</pre>

CALLING SEQUENCE GOSUB 434Ø1

METHOD See Appendix A

CALLED SUBROUTINES

Note

For the test program for this subroutine see SLFTRP.

SLPLYF.

LAGRANGIAN INTERPOLATION

To calculate, for a given set of n, arbitrarily spaced data points (x_i, y_i) , $i = 1, 2, \ldots n$, the coefficients of the polynomial of degree $(n-1)^i$ that passes through the given points

INPUT		
VARIABLE	DESCRIPTION	VALUE
PPLYF1 X(N),Y(N)	number of points (N) given x,y values	
	ОИТРИТ	
E(N)	coefficients of interpolating polynomial in ascending order	
FUN.	Return Status	<pre>Ø = correct calculation 1 = two x values equal Denominator A. equals zero (see Method)</pre>
		2 = number of points other than a posi- tive integer

CALCULATION H(N)

CALLING SEQUENCE GOSUB 436Ø1

METHOD See Appendix A

CALLED SUBROUTINES

CURVE FITTING AND INTERPOLATION

TEST PROGRAM FOR SLPLYF.

TEST PROGRAM NAME: RRPLYF	
Note:	
MERGE: SLPLYF. SLPLRR. INPUT	OUTPUT
ENTER number of points ? 11 ENTER interval limits ? -5,5 X(1) Y(1) ? -5,199ØØ X(2) Y(2) ? -4,-525 X(3) Y(3) ? -3,-96	number of points = 11 interval [-5, 5]

ENTER number of points ? 11		
ENTER interval limits ? -5,5	number of points = 11	
	interval [-5, 5]	
X(1) Y(1) ? -5,19900	[3, 3]	
X(2) Y(2) ? -4,-525		
X(3) Y(3) ? -3,-96		
X(4) Y(4) ? -2,-15		
X(5) Y(5) ? -1,Ø		
X(6) Y(6) ? Ø,15		
X(7) Y(7) ? 1,Ø		
X(8) Y(8) ? 2,-51		
X(9) Y(9) ? 3,Ø	5.10.0	
X(10) Y(10) ? 4,555		
X(11) Y(11) ? 5,24ØØ		
	coefficients of polynomial	
	<pre>coefficients of polynomial order coefficient</pre>	
	order coefficient	
	order coefficient 10 -1.0000000000000000000000000000000000	
	order coefficient 10 -1.0842021724855D-19 9 4.33680868994202D-19	
	order coefficient 10 -1.0000000000000000000000000000000000	
	order coefficient 10 -1.0000000000000000000000000000000000	

INPUT	ОИТРИТ
	3 -8 2 -16 1 7 Ø 15
ENTER X (-5<=X<=5) ? 2,5 ENTER X (-5<=X<=5) ? 3.1 ENTER X (-5<=X<=5) ? -1.5 ENTER X (-5<=X<=5) ? 4.7 ENTER X (-5<=X<=5) ?	interpolation X=2.5 Y(X)=55.78125 X=3.1 Y(X)=23.25561Ø X=1.5 Y(X)=7.Ø3125 X=4.7 Y(X)=1645.2942

SLCSPC.

CUBIC SPLINE

To determine the interpolating cubic spline for the given data set

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCSPC1 PCSPC2 PCSPC3 F(N),G(N)	number of data points (N) 2nd derivative at the first point 2nd derivative at the last point x,y data values	
	OUTPUT	
E(N-1,4) FUN.	matrix of coefficients of cubic spline (i.e. E(I,1) = a ₃ E(I,4) = a _q) Return Status	See Method Ø = correct calculation 1 = data not increasing order of x 2 = number of data points other than a positive integer
CALLING SE	QUENCE GOSUB 438Ø1	
METHOD See	Appendix A	
CALLED SUB	ROUTINES	

CUBIC SPLINE INTERPOLATION

Given a data set x_i, y_i, i = 1,2...N and a set of interpolatry cubics f_i(x), i = 1,2...N-1, to evaluate the cubic spline for $x_1 \leqslant x \leqslant x_n$

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PCSPI1 PCSPI2 F(N),G(N) E(N-1,4)	number of data points (N) value to be interpolated x _i ,y _i data values coefficients of interpolatory cubics in descending order (i.e. E(I,1) = a ₃ E(I,4) = a _g)	i = 1,,N
	OUTPUT	
P FUN.	value of cubic spline at x Return Status	<pre>Ø = correct calculation 1 = data not in in- creasing order of x 2 = number of data points other than a positive integer 3 = x outside the range of given x values</pre>
CALLING SE	EQUENCE GOSUB 44ØØ1	
METHOD See	Appendix A	
CALLED SUE	BROUTINES	

CURVE FITTING AND INTERPOLATION

For the test program for this routine see SLCSPC

TEST PROGRAM FOR SLCSPC. and SLCSPI.

TEST PROGRAM NAME: RRSPC

Note: The test program uses SLCSPI. to evaluate the cubic spline.

In this program if the i value to be interpolated (PCSPI2) is

equal to 9D99 the data values (xi,yi) can be changed

MERGE: SLCSPC. SLCSPI.

INPUT	ОИТРИТ
ENTER number of points ? 8 ENTER interval limits ? Ø, 7	
F(1) G(1) ? Ø,Ø F(2) G(2) ? 1,1 F(3) G(3) ? 2,4 F(4) G(4) ? 3,9 F(5) G(5) ? 4,16 F(6) G(6) ? 5,25 F(7) G(7) ? 6,36 F(8) G(8) ? 7,49	
ENTER y"(x ₁),y"(x _n) ? 2,2	$y''(x_1) = 2$ $y''(x_n) = 2$ spline coefficients
	Ø Ø 1 Ø Ø 1 Ø 1 2 1 2 Ø 1 4 4 3 Ø 1
	6 19 4 Ø 1 8 16

CURVE FITTING AND INTERPOLATION

INPUT	OUTPUT	
	5 Ø 1 1Ø 25 6 Ø 1 12 36	
ENTER X ? 1 ENTER X ? 2.5 ENTER X ? 3.35 ENTER X ? 6.15 ENTER X ? 9D99 ENTER number of points	interpolation X=1 Y=1 X=2.5 Y=6.25 X=3.35 Y=11.2225 X=6.15 Y=37.8225	

RATIONAL FUNCTION FITTING (PADE' APPROXIMATION)

SLPADE.

To calculation the coefficients of the rational function (a quotient of two polynomials of specified degree) which best approximates a given function on an interval

INPUT		
VARIABLE	DESCRIPTION	VALUE
PPADE1 PPADE2 PPADE3	degree of the numerator (M) degree of the denominator (N) to enter Taylor coefficients set PPADE3 = 1 to enter derivatives set PPADE3 = 2	<1Ø <1Ø
E(M,N+1)	coefficients of Taylor series or derivatives	
	OUTPUT	
F(M+1) G(N+1) FUN.	coefficients of numerator coefficients of denominator Return Status	<pre>Ø = correct calculation 1 = impossible to solve the system 2 = degree of numerator or denominator other than a positive integer <1Ø 3 = PPADE3 other than 1 or 2</pre>

CURVE FITTING AND INTERPOLATION

CALCULATION H(N), O(N+1), P(N,M+1)

CALLING SEQUENCE GOSUB 442Ø1

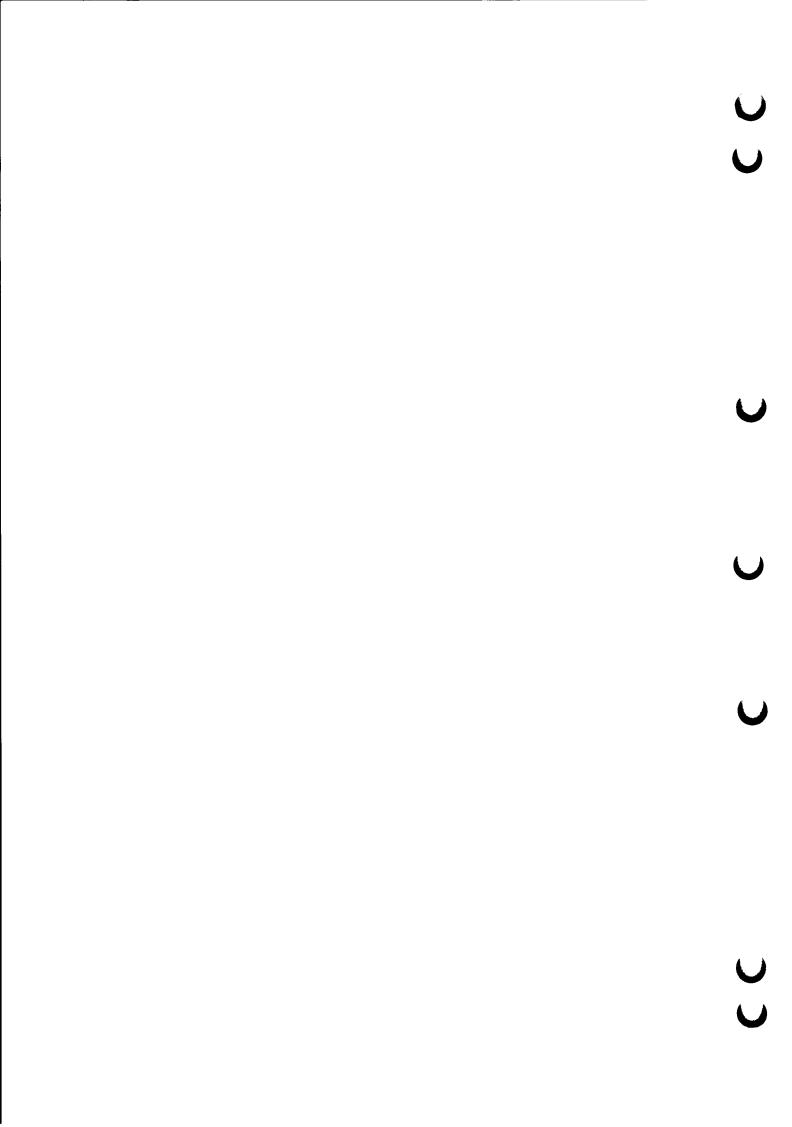
METHOD See Appendix A

CALLED SUBROUTINES

TEST PROGRAM FOR SLPADE.

TEST PROGRAM NAME: RRPADE

Note: In this program if the argument x or the centre point = 9D99 it is possible to delete the f(x) function and the sum of the


degrees of the numerator and the denominator must be < 100

MERGE: SLPADE. SLPLRR.

INPUT	OUTPUT
ENTER 1 (coeffs) or 2 (derivs) ? 2 ENTER degree numerator ? 2 ENTER degree denominator ? 3 ENTER derivative of order Ø ? 1 ENTER derivative of order 1 ? 1 ENTER derivative of order 2 ? 1 ENTER derivative of order 3 ? 1 ENTER derivative of order 4 ? 1 ENTER derivative of order 5 ? 1	<pre>degree numerator = 2 degree denominator = 3 order derivative Ø 1 1 1 2 1</pre>
	3 1 4 1 5 1 degree of the numerator is 2 coefficients in descending order
ENTER centre point ? Ø	.Ø5 .4 1 degree of the denominator is 3 coefficients in descending order -1.666666666666660-Ø2 .156 1 evaluation

CURVE FITTING AND INTERPOLATION

INPUT	ОИТРИТ
ENTER X ? 2.1 ENTER X ? Ø	X=2.1 f(x)=8.337Ø42282Ø1497 X=Ø f(x)=1

11. NUMERICAL INTEGRATION AND DIFFERENTATION

ABOUT THIS CHAPTER

This chapter contains subroutines for the solution of problems in Numerical Integration and Differentiation.

CONTENTS

SLITEQ.	Integration of a Tabulated Function (Equal Spacing)	11-1
SLDTEQ.	Differentiation of a Tabulated Func- tion (Equal Spa- cing)	11-5
SLDIFF.	Differentiation of a Non-tabulated Function	11-9
SLROMB.	Romberg Integration	11–13
SLGAUS.	Guass – Legendre Quadrature	11–16

SLLAGU. Guass - Laguerre 11-19

Quadrature

INTEGRATION OF A TABULATED FUNCTION (EQUAL SPACING)

SLITEQ.

Integration of a tabulated function for equally spaced abscissae (x_i, y_i) i = 1, ..., N

INPUT		
VARIABLE	DESCRIPTION	VALUE
PITEQ1 PITEQ2 X(N+1), Y(N+1)	number (N) of equally spaced abscissae minus 1; i.e. the number of subdivisions in the interval. N must be a positive integer ≥ P (order of quadrature) order of quadrature P = 1,28 but if N < 8 then P ≤ N the N+1 abscissae and ordinates of the tabulated function (in ascending order of X)	
	ОИТРИТ	
I1 R FUN.	value of the integral order of quadrature on remainder Return Status	<pre>Ø = correct calculation 1 = order of quadrature other than 1,2, 8 2 = invalid number of subdivisions 3 = data not equally spaced 4 = start interval>= end</pre>

CALCULATION PITEQ2(P+1); stores the coefficients of the quadrature of the formula

CALLING SEQUENCE GOSUB 444Ø1

METHOD See Appendix A

CALLED SUBROUTINES

NUMERICAL INTEGRATION AND DIFFERENTIATION

TEST PROGRAM FOR SLITEQ.

TEST PROGRAM NAME: SLITEQ	
Note:	
MERGE: SLITEQ.	
INPUT	ОИТРИТ
INTERVAL LIMITS AND No. OF SUBDIVISIONS ? Ø,5; 1Ø	INTERVAL [Ø 5] 1Ø SUBDIVISIONS
X(1) Y(1) ? Ø,Ø X(2) Y(2) ? .5,.25 X(3) Y(3) ? 1,1 X(4) Y(4) ? 1.5,2.25 X(5) Y(5) ? 2,4 X(6) Y(6) ? 2.5,6.25 X(7) Y(7) ? 3,9	
X(8) Y(8) ? 3.5,12.25 X(9) Y(9) ? 4,16 X(1Ø) Y(1Ø) ? 4.5,2Ø.25 X(11) Y(11) ? 5,25	
ENTER ORDER OF QUADRATURE ? 1 ENTER ORDER OF QUADRATURE ? 2	ORDER1 QUADRATURE 1Ø SUBDIVISIONS VALUE OF INTEGRAL=41.875 ORDER2 QUADRATURE 1Ø SUBDIVISIONS
ENTER ORDER OF QUADRATURE ? 3	VALUE OF INTEGRAL=41.6666679Ø843Ø ORDER3 QUADRATURE 9 SUBDIVISIONS ORDER1 QUADRATURE REMAINDER 1 SUBDIVISIONS
ENTER ORDER OF QUADRATURE ? 7	VALUE OF INTEGRAL=41.6875 ORDER7 QUADRATURE 7 SUBDIVISIONS ORDER 3 QUADRATURE REMAINDER

INPUT	OUTPUT	
ENTER ORDER OF QUADRATURE ?	3 SUBDIVISIONS VALUE OF INTEGRAL=41.066667	

NUMERICAL INTEGRATION AND DIFFERENTIATION

DIFFERENTIATION OF A TABULATED FUNCTION (FOUAL SPACING)

SLDTEQ.

Differentiation of a tabulated function for equally spaced abscissae (x $_i$ y $_i$) i = 1,..., N

INPUT		
VARIABLE	DESCRIPTION	VALUE
PDTEQ1	number (N) of equally spaced abscissae minus 1 i.e. the number of subdivisions in the interval. N must be an integer	
PDTEQ2	>= 5 derivative evaluations	1 = first derivative only 2 = first and second derivatives
X(N+1), Y(N+1)	the N+1 abscissae and ordinates of the tabulated function	
	OUTPUT	
S(N+1), Q(N+1) FUN.	first and second derivative at each of the N+1 base points Q() is returned only for PDTEQ2 = 2 Return Status	<pre>Ø = correct calculation 1 = PDTEQ2 other than 1 or 2 2 = no. of subdivisions not an integer ≥ 5 3 = data not equally spaced 4 = start interval > = end</pre>

CALCULATION A(), B() store the coefficients of the difference formula

CALLING SEQUENCE GOSUB 446Ø1

METHOD See Appendix A

CALLED SUBROUTINES

NUMERICAL INTEGRATION AND DIFFERENTIATION

TEST PROGRAM FOR SLDTEQ.

V	
TEST PROGRAM NAME: SLDTEQ	
Note:	
MERGE: SLDTEQ.	
INPUT	OUTPUT
ENTER INTERVAL LIMITS and NUMBER OF SUBDIVISIONS? Ø, 5, 1Ø X(1) Y(1) ? ØØ X(2) Y(2) ? .5,.25 X(3) Y(3) ? 1,1 X(4) Y(4) ? 1.5,2.25 X(5) Y(5) ? 2,4 X(6) Y(6) ? 2.5,6.25 X(7) Y(7) ? 3,9 X(8) Y(8) ? 3.5,12.25 X(9) Y(9) ? 4,16 X(10) Y(10) ? 4.5,20.25 X(11) Y(11) ? 5,25	INTERVAL [Ø 5] 1Ø SUBDIVISIONS
ENTER1 (Y') OR 2 (Y'&Y'') ? 1	i Xi Yi Yi' 1 Ø Ø Ø 2 .5 .25 1 3 1 1 2 4 1.5 2.25 3 5 2 4 4 6 2.5 6.25 5 7 3 9 6 8 3.5 12.25 7

INPUT			0U1	TPUT	
	1ø 11		2Ø.25 25		
ENTER1 (Y') OR 2 (Y'&Y'') ? 2					
	i 1 2 3 4 5 6 7 8 9 10	Ø .5 1 1.5 2 2.5 3 3.5 4	.25 1 2.25 4 6.25 9 12.25 16 20.25	Ø 1 2 3 4 5 6 7 8	Yi" 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ENTER1 (Y') OR 2 (Y'&Y'') ?					

DIFFERENTIATION OF A NON-TABULATED FUNCTION

SLDIFF.

Evaluation of the first and second derivatives of a user-defined function given in non-tabular form

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PDIFF1 PDIFF2 PDIFF3	point at which derivatives are to be evaluated increment (H) used in 5-point central difference formula H must be positive derivative switch	<pre>1 = evaluate first derivative only 2 = evaluate first and second deriva- tives</pre>
	OUTPUT	
D1,D2	first and second derivatives of the function at PDIFF1. D2 is returned only for PDIFF3 = 2 Return Status	<pre>Ø = correct calculatio 1 = increment non-pos- itive 2 = PDIFF3 other than 1 or 2</pre>

CALLING SEQUENCE GOSUB 448Ø1

METHOD See Appendix A

CALLED SUBROUTINES

Notes

 The function to be differentiated must be included in the calling program as FNF.

For example:

 $2\emptyset$ DEF FNF(X) = X * X

would describe the function $f(x) = x^2$

2. The increment H is set by the user and the following rules will give accurate results:

 $h \geqslant \emptyset.\emptyset05$ to evaluate the first derivative only $h \geqslant \emptyset.\emptyset6$ (minimum) to evaluate both derivatives

NUMERICAL INTEGRATION AND DIFFERENTIATION

TEST PROGRAM FOR SLDIFF.

TEST PROGRAM NAME: SLDIFF

Note: User defined function:

 $2\emptyset$ DEF FNF(x) = x*x

MERGE: SLDIFF.

INPUT			OUTPUT			
ENTER INCREMENT ? ØØ5 ENTER 1(f') or 2 (f'&f") ? 1 ENTER START, END, STEP ? 1, 2.Ø5, .1	INCRE	INCREMENT = .ØØ5				
1, 2.95, .1	l x	f(x)	f'(x)			
		2.00				
		2.43				
		2.93				
		3.50				
		4.14				
		4.88				
		5.7Ø				
		6.61				
		7.63				
	.90	8.76	11.83			
	.øø	1Ø.ØØ	13.ØØ			
ENTER INCREMENT ? .Ø6	INCRE	MENT = .	Ø6			
ENTER 1 (f') or 2 (f'&f") ? 2						
ENTER START, END, STEP ?						
1, 10, 1	×	f(x)	f'(x)	f"(x		
		1.00				
			4.00			
			6.00			
			8.00			
	5.00	25.00	1Ø.ØØ	2.0		

INPUT		(OUTPUT	
		36.ØØ		2.0
	7.00	49.00	14.ØØ	2.0
	9.00	64.ØØ 81.ØØ	16.ØØ 18.ØØ	2.Ø 2.Ø
ENTER INCREMENT ?	10.00	100.00	20.00	2.0
	= 1			
	-			

SLROMB.

ROMBERG INTEGRATION

Integration of a user-defined function in non-tabular form i.e. evaluation of $\int_A^B f(x) \, dx$

where f(x) is defined on the interval [A,B]

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PROMB1, PROMB2 PROMB3 PROMB4	start and end of interval of integration PROMB2 > PROMB1 maximum number of lines of triangular scheme to be calculated tolerance	
	ОИТРИТ	
I1 K! FUN.	value of the integral number of lines of triangular scheme calculated Return Status	<pre>Ø = correct calculation 1 = tolerance not reached after PROMB3 iterations 2 = PROMB3 not a positive integer 3 = tolerance not positive 4 = start of interval ≥ end</pre>

CALCULATION W(PROMB3+1, PROMB3+1), S

CALLING SEQUENCE GOSUB 45001

METHOD See Appendix A

CALLED SUBROUTINES

Note

The function to be integrated must be included in the calling program as FNF. For example $f(x) = e^{X}$ would be coded as

DEF FNF(X) = EXP(X)

TEST PROGRAM FOR SLROMB.

TEST PROGRAM NAME: SLROMB

Note: User-defined function $2\emptyset$ DEF FNF(x) = EXP(x)

MERGE: SLROMB.

INPUT	OUTPUT	
ENTER START, END INTERVAL ? Ø,1 ENTER MAXIMUM # OF ITERATIONS ? 2 ENTER TOLERANCE ? .ØØØØØ1 ENTER START, END INTERVAL ? Ø, 1 ENTER MAXIMUM # OF ITERATIONS ? 15 ENTER TOLERANCE ? .ØØØØØ1 ENTER START, END INTERVAL ?	INTERVAL [Ø 1] MAXIMUM# OF ITERATIONS = 2 TOLERANCE = .ØØØØØ1 2 STEPS - NO SOLUTION YET LAST VALUE = 1.7188611Ø3Ø5786 INTERVAL [Ø 1] MAXIMUM# OF ITERATIONS = 15 TOLERANCE = .ØØØØØ1 4 STEPS - VALUE OF INTEGRAL = 1.71828818221Ø367	

GAUSS - LEGENDRE QUADRATURE

Integration of a user-defined function given in a non-tabular form i.e. evaluation of $\int_{-1}^{1} f(x) \; dx$

where f(x) is a function defined on the interval [A,B]

	INPUT	
VARIABLE	DESCRIPTION	VALUE
PGAUS1 PGAUS2	order (N) of quadrature start and end of interval of integration B > A	N = 2,316,24,48
X(I),W(I)	zeros of the LEGENDRE, polynomials and corresponding weights $I=1,\ldots,107$. $I=\sum\limits_{i=1}^{N-1}i' \text{to} \left(\sum\limits_{i=1}^{N}i'\right)-1, \text{ where i'}$	
	is the integer part of (i+1)/2 is data relevant to an order N quad-rature. Data is read from WEIGH1 (as shown in the test program)	
	OUTPUT	
I9 FUN.	value of Integral Return Status	<pre>Ø = correct calculation 1 = invalid order of quadrature 2 = start of interval ≥ end</pre>

NUMERICAL INTEGRATION AND DIFFERENTIATION

CALLING SEQUENCE GOSUB 452Ø1

METHOD See Appendix A

CALLED SUBROUTINES

Notes

1. The user-defined function f(x) must be included in the calling program as FNF. For example, $f(x) = x^2$ would be coded as

DEF FNF(X) = X * X

 The abscissae and weight factors for Gaussian integration are taken from: M. Abramowitz and I. Segun - Handbook of Mathematical functions (page 916 - 917)

TEST PROGRAM FOR SLGAUS.

TEST PROGRAM NAME: SLGAUS

Note: In this program if the order of quadrature (PGAUS1) = 9D99 it is

possible to change the start and end of the interval (PGAUS2).

User-defined function: $2\emptyset$ DEF FNF(x) = SIN(x)

MERGE: SLGAUS.

INPUT	ОИТРИТ
ENTER START, END OF INTERVAL ? Ø, 3.14159265 ENTER ORDER OF QUADRATURE ? 3 ENTER ORDER OF QUADRATURE ? 5 ENTER ORDER OF QUADRATURE ? 9D99 ENTER START, END OF INTERVAL ?	ORDER3 QUADRATURE INTERVAL [Ø 3.14159267] VALUE OF INTEGRAL = 2ØØ138897538472 ORDER5 QUADRATURE INTERVAL [Ø 3.14159265] VALUE OF INTEGRAL = 2ØØØØØØ18615244

SLLAGU.

GAUSS - LAGUERRE QUADRATURE

To evaluate $\int_0^\infty e^{-x} f(x) \, dx$ or $\int_0^\infty f(x) \, dx$

where f(x) is a user-defined function in non-tabular form

	INPUT	
VARIABLE DESCRIPTION PLAGU1 order of quadrature (N) type of integrand X(I), zeros of the Laguerre polynomial and corresponding weights W and Wil,1), W(I,2) $I = \sum_{i=1}^{N-1} i \text{to} \left(\sum_{i=1}^{N} i\right) - 1$ is data relevant to an order N quadrature. Data is read from WEIGH2 (as shown in the test program)		VALUE
		N = 2,3,10 only $1 = e^{-x} f(x)$ 2 = f(x) I = 1,54 see Method
	ОИТРИТ	
I9 FUN.	value of integral Return Status	<pre>Ø = correct calculatio 1 = invalid order of quadrature 2 = type of integrand other than 1 or 2</pre>

CALLING SEQUENCE GOSUB 454Ø1

METHOD See Appendix A

CALLED SUBROUTINES

Notes

1. The user-defined function f(x) must be included in the calling program as FNF. For example, $f(x) = e^{X}$ would be coded as

DEF FNF(X) = EXP(X)

 The abscissae and weight factors for Laguerre Interpretation are taken from: M. Abramowitz and I. Segun - Handbook of Mathematical Functions (page 923)

NUMERICAL INTEGRATION AND DIFFERENTIATION

TEST PROGRAM FOR SLLAGU.

TEST PROGRAM NAME: SLLAGU

Note: In this program if the order of quadrature (PLAGU1) = 9D99 it is

possible to change the type of integrand.

User-defined Function 20 DEF FNF(X) = EXP(X)

MERGE: SLLAGU.

INPUT			OUTPUT
ENTER TYPE OF INTEGRAND ? ENTER ORDER OF QUADRATURE ENTER ORDER OF QUADRATURE ENTER ORDER OF QUADRATURE ENTER TYPE OF INTEGRAND ?	?	4	ORDER3 QUADRATURE TYPE 1 VALUE OF INTEGRAL = 1.9999998738314 ORDER4 QUADRATURE TYPE 1 VALUE OF INTEGRAL = 2.0000000672526
ENTER ORDER OF QUADRATURE			ORDER5 QUADRATURE TYPE 2 VALUE OF INTEGRAL = 1409.3774
ENTER ORDER OF QUADRATURE			ORDER1Ø QUADRATURE TYPE 2 VALUE OF INTEGRAL = 14133.2Ø4
ENTER ORDER OF QUADRATURE ENTER ORDER OF QUADRATURE		"	ORDER11 QUADRATURE TYPE 2 ORDER OF QUADRATURE 2, 310 ONLY
ENTER ORDER OF GOADRATORE	•		

		O O
		U
		U
		J
		Ú

12. ORDINARY DIFFERENTIAL EQUATIONS

ABOUT THIS CHAPTER

This chapter contains a subroutine for the solution of Ordinary Differential Equations.

CONTENTS

SLEROM. Integration of Dif- 12-1

ferential Equations

(Euler-Romberg

Method)

INTEGRATION OF DIFFERENTIAL EQUATIONS (EULER - ROMBERG METHOD)

SLEROM.

To integrate over an interval [x, x] a system of first order ordinary differential equations with initial conditions

$$y'_{i}(x) = f_{i}[x, y_{1}(x), \dots, y_{N}(x)]$$

$$y_i(x_0) = y_0 \qquad i = 1, \dots, N$$

or an Nth order ordinary differential equation with initial conditions

$$\begin{split} y^{(N)}(x) &= g[x,y(x),y'(x),\ldots,y^{(N-1)}(x)] \\ y(x_0) &= y_0 \quad , \quad \frac{d^i\,y(x_0)}{dx^c} = y_i \qquad i=1,\ldots,N-1 \end{split}$$

INPUT		
VARIABLE	DESCRIPTION	VALUE
PEROM1, PEROM2 PEROM3	start and end of interval of integration, PEROM1 < PEROM2 number of points at which the solution is to be calculated i.e. the step size h = (PEROM2 - PEROM1)/PEROM3 and the solution is given at XØ+h, XØ+2h,, PEROM2	PEROM1 = XØ
PEROM4 PEROM5	order of system/equation (N) maximum number of step-size halvings	
PEROM6 PEROM7	tolerance, PEROM6 ≥ 10 ⁻⁹ system/equation switch	1 = first order system 2 = single, higher
Y(N)	The N initial conditions i.e. Yi $(X\emptyset)$, i = 1,,N or Y $(X\emptyset)$, i = \emptyset ,1,,N-1 Y() is destroyed during calculation	order equation

	OUTPUT	
K7 FUN.	solution at each of the PEROM3 points requested. S(I,J), J=1,,N; I = 1,PEROM3 is either Y _j (XI) or Y (XI) depending on PEROM7.S(I,N+1), I = 1, PEROM3 equals zero if the required tolerance has been reached for the solution at XI, and equals unity if not. total number of system evaluations Return Status	Ø = correct calculation 1 = start of interval
CALCULATIO	VEROM3(N,22), VEROM2(N), H9, K2!, K4 PB3, PB4	,K8,J1!,J4!,X,X2,PB1,PB2
CALLING SI	EQUENCE GOSUB 456Ø1	
METHOD Se	e Appendix A	
CALLED SUI	BROUTINES	

ORDINARY DIFFERENTIAL EQUATIONS

Note

The user must include the system of first order equations or the single, higher order equation in the calling program as a subroutine whose first line is the line $2\emptyset$. For example, the system:

$$y'_1 = y_1^2 y_2$$

$$y'_{2} = \frac{-1}{y_{1}}$$

would be coded as:

$$2\emptyset F(1) = Y(1) * Y(1) * Y(2)$$

$$3\emptyset F(2) = -1/Y(1)$$

4Ø RETURN

The second order equation

$$Y'' = \frac{-Y'}{X} - Y$$

would be coded as:

$$2\emptyset F(2) = -F(1)/X - Y(1)$$

3Ø RETURN

TEST PROGRAM FOR SLEROM.

TEST PROGRAM NAME: SLEROM

User-defined system

Note: $2\emptyset$ (F1) = Y(1)^2*Y(2)

 $3\emptyset$ (F2) = -1/Y(1)

4Ø RETURN

And for equation (second example)

 $2\emptyset F(2) = -F(1)/X - Y(1)$

4Ø RETURN

MERGE: SLEROM.

INPUT	OUTPUT
ENTER1 (SYSTEM) or 2 (EQUATION)	
ENTER ORDER ? 2	ORDER 2 SYSTEM
ENTER INITIAL, FINAL X ? Ø, 3 ENTER Y1 (Ø) ? 1	INTERVAL [Ø 3]
ENTER Y2 (Ø) ? 1	INITIAL CONDITION
	$\begin{array}{c} x = \emptyset \\ Y1(x) = 1 \end{array}$
ENTER # OF POINTS ? 3Ø ENTER TOLERANCE .ØØØØØ1 ENTER MAX # OF HALVINGS ? 5	Y2(x) = 1
	INTERMEDIATE POINTS 3Ø MAX # OF HALVINGS 5 TOLERANCE .ØØØØØ1
	SOLUTION (see next page)

INPUT	ОИТРИТ	
ENTER INITIAL, FINAL X ? .1, 3,1		
ENTER Y [Ø] [.1] ? .9975Ø156	INTERVAL [.1, 3, 1]	
ENTER Y [1][.1] ? -4.9937526d -2	INITIAL CONDITION X = .1 Y [-1][X] = .9975Ø156 Y [-1][X] =Ø49937526	
ENTER # OF POINTS ? 3Ø ENTER TOLERANCE ? .ØØØØØ1 ENTER MAX# OF HALVINGS ? 5	INTERMEDIATE POINTS 3Ø MAX#0F HALVINGS 5 TOLERANCE .ØØØØØ1	

INPUT	OUTPUT
	SOLUTION
ENTER INITIAL, FINAL X ?	

A. CALCULATION METHODS

ABOUT THIS CHAPTER

This chapter contains the calculation methods used by the <code>OLINUM</code> subroutines.

CONTENTS

COMBINATORIAL ANALYSIS	A-1	ELEMENTARY FUNCTIONS (COMPLEX)	A-7
SLCONN.	A-1	SLCSIN.	A-7
SLPRIM.	A-2		
SLEUCL.	A-2	SLCOS.	A-7
SLRFCO.	A-3	SLCTAN.	A-8
SLSUCO.	A-3	SLCASN.	A-8
SLCFCO.	A-4	SLCACS.	A-8
		SLCATN.	A-8
SLFACT.	A-4	SLCLN.	A-9
SLBINO.	A-5	SLCEXP.	A-9
SLMULT.	A-5	SLCRZ.	A-9
SLDUPL.	A-6	SLCZMZ.	A-9
ELEMENTARY FUNCTIONS	A-6		
SLRPCC.	A-6	SLCZDZ.	A-10
SLPRCC.	A-6	SLCSQR.	A-10
		SLCZN.	A-10

SLCZA.	A-11	SLEIF.	A-15
POLYNOMIALS	<u>A-11</u>	SLEINF.	A-16
SLPLRC.	A-11	SOLUTION OF EQUATIONS	A-16
SLPLRR.	A-11	SLBAIR.	A-16
SLPRRR.	A-11	SLRBIS	A-16
SLPLYM.	A-12	SLNLIN.	A-17
HIGHER MATHEMATICAL FUNCTIONS	A-12	LINEAR ALGEBRA	A-18
SLKMF.	A-12	SLCRO.	A-18
		SLCHO.	A-18
SLEMF.	A-12	SLJAC.	A-18
SLLAGG.	A-12	SLHES.	A-19
SLHNF.	A-13	SLHEV.	A-19
SLHEN.	A-13	SLCHA.	A-20
SLFOUR.	A-13	SLJCB.	A-20
SLGAMA.	A-13		
SLERF.	A-13	INTERPOLATION	A-20
SLBJN.	A-14	SLLLSQ.	A-20
SLIIØX.	A-14	SLNLLS.	A-22
SLSF.	A-14	SLFSYT.	A-25
SLCF.	Â-14	SLFTRP.	A-26
SLCHYF.	A-15	SLFOUI.	A-28
SLGHYP.	A-15	SLPLYF.	A-29
SLSIF.	A-15	SLCSPC.	A-31
SLCINF.	A-15	SLCSPI.	A-32

SLPADE.	A-32
NUMERICAL INTEGRATION AND DIFFERENTIATION	A-34
SLITEQ.	A-34
SLDTEQ.	A-35
SLDIFF.	A-36
SLROMB.	A-36
SLGAUS.	A-37
SLLAGU.	A-38
ORDINARY DIFFERENTIAL EQUATIONS	A-38
SLEROM.	A-38

COMBINATORIAL ANALYSIS

SLCONN.

Since the integer and fractional parts are converted separately they are supplied to the function as separate parameters so as to allow a maximum of 13 significant digits for each. The digits of the converted number will each be represented by two decimal digits for bases greater than 10, three for bases greater than 10, and so on. Input of numbers to bases greater than 10 must also follow this convention.

Consider conversion from base 10 to base b, and let N be the decimal number and B the corresponding number to base b.

Let

$$I_N$$
 , I_B , D_N , D_B

be the whole and decimal fraction part of N and B respectively.

Step 1: Calculate the modulus, m, of base b, i.e. the smallest power of 100 greater than or equal to 100. For example, the moduli of 2, 8 and 16 are 100, 100 and 1000 respectively.

Step 2: The following integral divisions are carried out:

$$I_N/b = Q_0$$
, remainder R_0

$$Q_0/b = Q_1$$
, remainder R_1

.

Division terminates when $Q = \emptyset$.

Then

$$I_B = R_0 + mR_1 + m^2 R_2 + \dots m^n R_n$$

Step 3:

$$D_N \times b = i_1$$
 (whole part) and d_1 (decimal part); $\frac{i_1}{m}$ $d_1 \times b = i_2$ (whole part) and d_2 (decimal part); $\frac{i_2}{m^2}$

The operation is completed when $d_n=\varnothing$ or when 13 significant digits have been generated for $D_{\!_{\! B}}$, where

$$D_{B} = \frac{1}{m} + \frac{i_{2}}{m^{2}} + \frac{i_{3}}{m^{3}} + \dots + \frac{i_{n}}{m^{n}}$$

To convert from base 10, the above procedure is used with b and m interchanged. The conversion of the fractional parts is completed when all the significant lines have been evaluated. To convert from base b1 to base b2 (b1,b2,#10).

When converting to a base 6 through 9 the last digit may appear to be incorrect i.e. equal to the base, due to rounding up. This situation can also occur when converting to a base >10.

SLPRIM.

The prime factors of any positive integer may be determined by dividing by 2, 3 and then all odd numbers between 5 and the square root of the number, or the last quotient found. The number is prime if no remainder less divisors are found. If a prime number occurs more than once as a factor, the appropriate exponent is returned.

SLEUCL.

Euclid's algorithm is used to evaluate the G.C.D of N1 and N2. The L.C.M is then given by N1.N2/G.C.D. Euclid's algorithm is the following recurrence:

$$\frac{P_{k}}{q_{k}} = I_{k} + \frac{R_{k}}{q_{k}}$$
 , I_{k} is the integral part of the quotient

R_k is the integral remainder

$$P_{q+1} = R_k$$

$$q_{k+1} = P_k$$

$$P_0 = N1$$

$$q_0 = N2$$

When $R_n = \emptyset$, the G.C.D. is given by q_n .

SLRFCO.

The rational fraction $\frac{\mathsf{A}}{\mathsf{B}}$ may be represented by the continued fraction

$$\frac{A}{B} = b_0 + \frac{1}{b_{1+}} \frac{1}{b_{2+}} \dots \frac{1}{b_n}$$

where

This representation terminates after a finite number of terms.

SLSUCO.

The quadratic surd, $\sqrt{\scriptscriptstyle D}$, may be represented by the continued fraction

$$\sqrt{D} = b_0 + rac{1}{b_{1+}} rac{1}{b_{2+}} \cdot \cdot \cdot rac{1}{b_{n+}} \cdot \cdot \cdot$$

where

$$b_i = \left(rac{b_o + p_i}{q_i}
ight)_{I}$$
, () $_{I}$ denotes the integer part of the expression in brackets.

$$P_i = b_{i-1} \ q_i - p_{i-1}$$

$$q_i = (D - p_i 2)/q_{i-1}$$

$$b_0 = (\sqrt{\overline{D}})_I$$

$$p_0 = \emptyset$$

$$q_0 = 1$$

This representation is non-terminating, but repeats after a finite number of terms.

SLCFCO.

Given the continued fraction

$$b_0 + rac{a_1}{b_{1+}} rac{a_2}{b_{2+}} rac{a_3}{b_{3+}} \cdot \cdot \cdot$$

the first convergent is given by

$$b_0 + \frac{a_1}{b_1}$$

the second by

$$b_0 + rac{a_1}{b_{1+}} - rac{a_2}{b_2},$$

and so on.

The successive convergents are calculated using the following recurrence:

$$p_i = b_i \quad p_{i-1} + a_i \quad p_{i-2}$$

$$q_i = b_i \ q_{i-1} + a_i \ q_{i-2}$$

$$p_0 = b_0$$
 , $p_{-1} = 1$

SLFACT.

N! is evaluated in accordance with N(N-1) (N-2)...2.1.

N! may only be evaluated for N \leqslant 170 since larger values would cause numeric overflow, i.e. N! 1.797693134862D 308

Stirling's Formula for LnN! is the following:

$$ln N! = ln 2 + ln(N+.5) - N + ln k,$$

where

$$k = 1 - \frac{1}{12 N} + \frac{1}{288 N^2} - \frac{139}{51840 N^3} - \frac{571}{2488320 Z^4}$$

$$= 1 + \frac{1}{12 N} \left(1 + \frac{1}{12 N} \left(\frac{1}{2} + \frac{1}{12 N} \left(\frac{-139}{30} + \frac{1}{12 N} \left(\frac{-571}{120} \right) \right) \right) \right)$$

This approximation of lnN! is useful for large values of N.

SLBINO.

$$\binom{n}{r}$$
 $\frac{n!}{r!(n-r)!}$

is evaluated using the recurrence:

$$\binom{n}{r} = \binom{n}{r-1} \qquad \left(\frac{n-r+1}{r}\right)$$

$$\binom{n}{\emptyset} = 1$$

$$\underline{\text{Note}}: \binom{n}{r} = \binom{n}{n-r}$$

SLMULT.

$$(n\,;\,n_1,\,n_2,\,\ldots,\,n_s)=rac{n\,!}{n_1\,!\,n_2\,!\,\ldots\,n_s\,!}\;rac{(n_1\,+\,1)\;(n_1\,+\,2)\;\ldots\,n}{n_2\,!\,n_3\,!\,\ldots\,n_s\,!}$$

where

$$n = \sum_{i=1}^{s} n_i$$

is evaluated using the following recurrence:

$$p_{\scriptscriptstyle 0}=1$$
 , $q_{\scriptscriptstyle 1}=n_{\scriptscriptstyle 2}$

for
$$i = 1, 2, \ldots, s$$

$$p_j = p_{j-1} (q_i + j)/j$$
 $j = 1, 2, ..., n_i$

$$p_0 = p_{n_i}$$

$$q_{i+1} = q_i + n_{i+1}$$

$$(n; n_1, n_2, \ldots, n_s) = p_{n_s}$$

SLDUPL.

$$p_{k} = 1 - \frac{p_{n-k-1}}{n^{k}}$$

$$= 1 - \frac{(n-1)(n-2)\dots(n-k-1)}{n^{k-1}}$$

$$k = 1, 2, \ldots, n$$

is evaluated using the recurrence:

$$b_0 = 1$$

$$b_i = \frac{n-i}{n} \cdot b_{i-1}$$
 $i = 1, 2, ..., k-1$

$$p_k = 1 - b_{k-1}$$

ELEMENTARY FUNCTIONS

SLRPCC.

Given z = x + iy, then:

$$-\varrho = \sqrt{x^2 + y^2}$$
 (modulus)

$$-\vartheta = atn \left(\frac{y}{x}\right) \text{ (phase)}$$

SLPRCC.

Given
$$z = \varrho e^{i\vartheta}$$
 , then:

$$x = \varrho \cos \vartheta$$
 (real part)

$$y = \varrho \sin \vartheta$$
 (imaginary part)

ELEMENTARY FUNCTIONS (COMPLEX)

SLCSIN.

- rectangular coordinates:

$$\sin z = \sin(x - iy)$$

$$= \sin x \cosh y + i \sinh y \cos x$$

$$= \sin x \left(\frac{e^{y} - e^{-y}}{2}\right) + i \cos x \left(\frac{e^{y} - e^{-y}}{2}\right)$$

- polar coordinates:

$$z = \varrho e^{i\vartheta}$$

$$= \varrho \cos \vartheta + i \varrho \sin \vartheta$$

$$= x + i y$$

$$|\sin z| = \sqrt{\frac{1}{2}(\cosh 2 y - \cos 2 x)}$$

$$\operatorname{ph}(\sin z) = \arctan\left(\frac{\cos x}{\sin x} \cdot \frac{\sin h y}{\cos h y}\right)$$

SLCOS.

- rectangular coordinates:

$$\begin{aligned} \cos z &= \cos(x - i y) \\ &= \cos x \cosh y - i \sin x \sinh y \\ &= \cos x \left(\frac{e^y + e^{-y}}{2}\right) - i \sin x \left(\frac{e^{-y} - e^y}{2}\right) \end{aligned}$$

- polar coordinates:

$$z = p e^{i\theta}$$

$$= \varrho \cos \vartheta + i \varrho \sin \vartheta$$

$$= x + i y$$

$$|\cos z| = \sqrt{\frac{1}{2}(\cosh 2 y + \cos 2 x)}$$

$$\text{ph } (\cos z) = \arctan\left(\frac{\sin x}{\cos x} \cdot \frac{\sinh y}{\cosh y}\right)$$

SLCTAN.

- rectangular coordinates

$$\tan(z) = \tan(x + iy)$$

$$= \frac{\sin(2x)}{\cos(2x) + \cosh(2y)} + i \frac{\sinh(2y)}{\cos(2x) + \cosh(2y)}$$

- polar coordinates

$$z = \varrho e^{i\theta}$$

$$= \varrho \cos \vartheta + i \varrho \sin \vartheta$$

$$= x + i y$$

$$\tan z = \int \frac{\cosh 2y - \cos 2x}{\cosh 2y - \cos 2x}$$

$$\operatorname{ph}(\tan z) = \arctan\left(\frac{\sinh 2y}{\sin 2x}\right)$$

SLCASN.

$$\begin{split} z &= x + i \; y \\ & \arcsin z = \arcsin \beta + i \ln (\alpha + (\alpha^2 - 1)^{1/2}) \\ & \text{where} \\ & \alpha = \frac{1}{2}((x+1)^2 + y^2)^{1/2} + \frac{1}{2}((x-1)^2 + y^2)^{1/2} \\ & \text{and} \\ & \beta = \frac{1}{2}((x+1)^2 + y^2)^{1/2} - \frac{1}{2}((x-1)^2 + y^2)^{1/2} \end{split}$$

SLCACS.

$$\begin{split} z &= x + i \, y \\ \text{arcsin} \, z &= \arccos \beta - i \ln (\alpha + (\alpha^2 - 1)^{1/2}) \\ \text{where} \\ \alpha &= \frac{1}{2} ((x - 1)^2 - y^2)^{1/2} - \frac{1}{2} ((x - 1)^2 + y^2)^{1/2} \\ \text{and} \\ \beta &= \frac{1}{2} ((x - 1)^2 - y^2)^{1/2} - \frac{1}{2} ((x - 1)^2 + y^2)^{1/2} \end{split}$$

SLCATN.

$$z = x + i y$$

$$\arctan z = \frac{1}{2} \arctan \left(\frac{2 x}{1 - x^2 - y^2} \right) + \frac{i}{4} \ln \left(\frac{x^2 + (y + 1)^2}{x^2 + (y - 1)^2} \right), z^2 \neq -1$$

SLCLN.

$$\begin{split} \log(z) &= \log(x+i|y) = \log(\sqrt{x^2+y^2}) + i \arctan\left(\frac{y}{|x|}\right), |z| > 0, \\ z &= \varrho \, e^{i\vartheta} \\ |\log z| &= \sqrt{(\log \varrho)^2 + \vartheta^2} \\ \mathrm{ph}(\log z) &= \arctan\left(\frac{\vartheta}{\log \varrho}\right) \end{split}$$

SLCEXP.

$$z = x + i y$$

$$e^{z} = e^{x} e^{iy}$$

$$= e^{x} \cos y + i e^{x} \sin y$$

$$z = \varrho e^{i\vartheta}$$

$$e^{z} = e^{2ei\vartheta}$$

$$|e^{z}| = e^{\varrho \cos\vartheta}$$

$$\operatorname{ph}(e^{z}) = \varrho \sin \vartheta$$

SLCRZ.

$$\begin{split} \frac{1}{z} &= \frac{1}{x+iy} \\ &= \frac{x-iy}{x^2+y^2} \\ &= \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2}, |z| > 0 \end{split}$$

$$\left| \frac{1}{z} \right| = \left| \frac{1}{\varrho \, e^{i\vartheta}} \right|$$
$$= \frac{1}{\varrho}$$

$$\operatorname{ph}\left(\frac{1}{z}\right) = \operatorname{ph}\left(\frac{1}{\varrho e^{i\vartheta}}\right), |z| > 0$$

$$= -\vartheta$$

SLCZMZ.

$$\begin{split} z_1 \ z_2 &= (\ x_1 + i \ \ y_1) \ (\ x_2 + i \ y_2)) \ = \ x_1 \ x_2 - \ y_1 \ y_2 + i (\ y_1 \ x_2 + \ y_2 \ x_1) \\ &= \ x_1 \ x_2 - \ y_1 \ y_2 + i (\ y_1 \ x_2 + \ y_2 \ x_1) \end{split}$$

$$|z_1 z_2| = |\varrho_1 e^{i\theta_1} \cdot \varrho_2 e^{i\theta_2}|$$

= $\varrho_1 \varrho_2$

$$\mathrm{ph}(z_1\,z_2)\,=\,\vartheta_1\,+\,\vartheta_2$$

SLCZDZ.

Let

$$\begin{split} z_1 &= a + i \, b = \varrho_1 \, e^{i\vartheta_1} \\ z_2 &= c + i \, d = \varrho_2 \, e^{\vartheta_2} \\ &\frac{z_1}{z_2} = \frac{a + i \, b}{c + i \, d} \cdot \frac{c - i \, d}{c - i \, d} = \frac{(a \, c + b \, d) + i (b \, c - a \, d)}{c^2 + d^2} \\ &\left| \frac{z_1}{z_2} \right| = \frac{\varrho_1}{\varrho_2} \\ &\operatorname{ph}\left(\frac{z_1}{z_2}\right) = \vartheta_1 - \vartheta_2. \end{split}$$

SLCSQR.

Let

$$\begin{split} z &= x + i \, y \\ &= \varrho \, e^{i\vartheta} \\ \sqrt{z} &= \sqrt[]{\frac{\sqrt{x^2 + y^2} + x}}{2} + i \, \frac{y}{\mid y \mid} \sqrt{\frac{\sqrt{x^2 + y^2} - x}}{2} \\ |\sqrt{z}| &= \sqrt[]{\varrho} \\ \mathrm{ph}(\sqrt{z}) &= \frac{\vartheta}{2} \end{split}$$

SLCZN.

Let

$$z = x + i y = \varrho e^{i\vartheta}$$

 $z^n = z z^{n-1}$;

CALCULATION METHODS

$$z^n = x_n + i y_n$$

$$x_n = x x_{n-1} - y y_{n-1}$$

$$x_0 = 1$$

$$y_n = x \, y_{n-1} + y \, x_{n-1}$$

$$y_0 = 0$$

$$|z^n| = \varrho^n$$

$$ph(z^n) = n^{\vartheta}$$

SLCZA.

Let

$$z = x + i y$$

$$=\varrho\,e^{i\vartheta}$$

$$z^a = |z|^a e^{iaph(z)}$$

$$= |z|^a \cos(a \operatorname{ph}(z)) + i |z|^a \sin(a \operatorname{ph}(z)).$$

$$|z^a| = \varrho^a$$

$$\mathrm{ph}(z^a) = a \ \vartheta$$

POLYNOMIALS

SLPLRC.

Horner Scheme

SLPLRR.

Horner Scheme

SLPRRR.

The coefficients are computed by multiplying the roots and summing up the terms of the same degree.

SLPLYM.

$$\begin{array}{l} \sum\limits_{i=0}^{N}a_{i}\,x^{i}*\sum\limits_{i=0}^{M}b_{i}\,x^{i}=\sum\limits_{i=0}^{M+N}c_{i}\,x^{i}\\ \text{where}\\ c_{i}=\sum a_{h}\,b_{k}\quad\text{with}\quad h+k=i \end{array}$$

HIGHER MATHEMATICAL FUNCTIONS

SLKMF.

The value is computed by means of the representation

$$K(x) = \frac{1}{2} \pi \left[1 + \left(\frac{1}{2} \right)^2 x + \left(\frac{1 \cdot 3}{2 \cdot 4} \right)^2 x^2 + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \right)^2 x^3 + \cdots \right]$$

This series is valid for |x| < 1, but speed of convergence decreases as $|x| \rightarrow 1$.

SLEMF.

The value is computed by means of the representation

$$E(x) = \frac{1}{2} \pi \cdot \left\{ 1 - \left(\frac{1}{2}\right)^2 \frac{x}{1} - \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \frac{x^2}{3} - \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 \frac{x^3}{5} - \cdots \right\}$$

This series is valid for |x| < 1, but speed of convergence decreases as $|x| \rightarrow 1$.

SLLAGG.

The value $\mathbb{L}_n^{(a)}(x)$ is computed by means of the recurrence relation

$$L_0^{(a)}(x) = 1$$
 , $L_1^{(a)}(x) = a + 1 - x$.

$$n L_n^{(a)}(x) = (2 n + a - 1 - x) L_{n-1}^{(a)}(x) - (a + n - 1) \cdot L_{n-2}^{(a)}(x).$$

SLHNF.

The value is computed by means of the recurrence relation

$$H_0(x) = 1$$
 , $H_1(x) = 2 x$

$$H_n(x) = 2 x H_{n-1}(x) - 2(n-1) H_{n-2}(x)$$

SLHEN.

The value is computed by means of the recurrence relation

$$H e_0(x) = 1$$
 , $H e_1(x) = x$

$$H e_n(x) = x H e_{n-1}(x) - (n-1) H e_{n-2}(x)$$

SLFOUR.

The following expression is used for calculation

$$F(x) = \frac{A_0}{2} - \sum_{K=1}^{N} (A_K \cos K x + B_K \sin K x)$$

SLGAMA.

For x in the range of $\emptyset \leqslant x \leqslant 1$ an approximating polynomial is used to calculate γ (1+x). The associated error is less than 3 x 10^{-7} in absolute value. Outside this interval the following recurrence formulae are used.

$$\Gamma(x-1) = x \Gamma(x)$$

$$\Gamma(n-x) = (n-1-x) (n-2-x) \dots (1-x) \Gamma(1-x)$$

$$\Gamma(x-n) = \frac{\Gamma(1-x)}{x (x-1) \dots (x-n)}$$

SLERF.

An approximation series is used

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}$$

As

$$|x| \to \infty$$
, $|\operatorname{erf}| \to 1$.

A value of 1 is returned for |erf(x)| for $|x| \ge 5$.

SLBJN.

The value is computed by means of the series representation:

$$J_n(x) = \left(\frac{1}{2} x\right)^n \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4} x^2\right)^k}{k! \, \Gamma(n+k+1)} \qquad , \quad \text{ in t } >> n.$$

$$J_{-n}(x) = (-1)^n \, J_n(x)$$

SLIIØX.

The following approximation is used:

$$f(x) = x \left(1 + \sum_{n=1}^{\infty} \frac{\left(\frac{x^2}{4}\right)^n}{(n!)^2 (2 n + 1)} \right)$$

SLSF.

An approximation series is used:

$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{\pi}{2}\right)^{2n+1}}{(2n+1)! (4n+3)} x^{4n+3} \qquad \text{for } |x| < 3.5$$

SLCF.

A series approximation is used:

$$C(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{\pi}{2}\right)^{2n}}{(2n)! (4n+1)} x^{4n+1} \qquad \text{for } |x| < 3.5$$

The value is computed by means of the representation:

$$M(a,b,x) = \frac{5}{5} \frac{(a) n}{(b) n} \cdot \frac{x^n}{n!} \qquad b \neq 0, -1, -2, \dots,$$

$$(y)_n = \frac{\Gamma(y-n)}{\Gamma(y)} \qquad y = a, b$$

SLGHYP.

The value is computed by means of the representation:

$$F(a,b;c;x) = \frac{\sum \frac{(a)_n (b)_n}{(c)_n} \cdot \frac{x^n}{n!}}{\Gamma(y)}$$

$$(y)_n = \frac{\Gamma(y-n)}{\Gamma(y)} , \quad y = a, b, c$$

For a or b a negative integer or zero, this series reduces to a polynomial in x. The series is not defined for c a negative integer or zero if a or b is not a negative integer or zero greater than c. For a or b negative integer or zero, |x| must be <1 or $\leqslant 1$ if c -a $-b>\emptyset$

SLSIF.

Si(x) is evaluated using the series expansion:

$$Si(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n-1)(2n-1)!}$$

SLCINF.

Cin(x) is evaluated using the series expansion:

$$Cin(x) = -\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2 n (2 n)!}$$

SLEIF.

$$E_i(x) = \gamma + \ln x + \sum_{n=1}^{\infty} \frac{x^n}{n \, n!}$$

where γ is the Euler constant 0.5772156649...

SLEINF.

$$E_{in}(x) = -\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n \cdot n!}$$

SOLUTION OF EQUATIONS

SLBAIR.

A quadratic factor of the polynomial is determined, then the roots of this factor are computed. Let f(x) be the polynomial, $g_k(x)$ and approximation to a quadratic factor of f(x):

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

$$g_K(x) = x^2 - p_K x - q_K$$

 $g_{K+1}(x)$ is found by

$$p_{K+1} = p_K + \perp p \qquad q_{K+1} = q_K + \perp q$$

with

$$\label{eq:definition} \exists \; p = \frac{b_0 \, c_3 - b_1 \, c_3}{c_2^2 - c_3 \, (c_1 - b_1)} \qquad \quad \exists \; q = \frac{b_1 (c_1 - b_1) - b_0 \, c_2}{c_2^2 - c_3 \, (c_1 - b_1)}$$

$$\begin{cases}
b_K = b_{K+1} p_K + b_{K+2} q_K + a_K \\
c_K = c_{K+1} p_K + c_{K+2} q_K + b_K
\end{cases}$$

$$0 \le K \le n$$

$$c_{n+1} = c_{n+2} = b_{n+1} = b_{n+2} = 0$$

The algorithm stops when

1.
$$x^2 - p_{K+1}x - q_{K+1}$$

E : user-defined tolerance

$$|\mathrel{\lrcorner} p \,| \quad ext{and} \quad |\mathrel{\lrcorner} q \,| < E \quad ext{is said to be quadratic factor, or}$$

2. more than Z iterations are performed without 1 being satisfied

Z : user-defined maximum number of iterations.

SLRBIS.

The bisection method is also called the interval halving method. Let [a,b] be an interval containing a root, $c = \frac{a+b}{2}$ is the midpoint of the interval.

A test is made as to whether [a,c] or [c,b] contains a root. There is a root on the interval [a,b] if $f(a).f(b) <= \emptyset$. The process is repeated on the appropriate half interval. A root has been found if:

 $f(d) = \emptyset$ for some end-point d of a subinterval

or

|b-a| < E for some tolerance E.

SLNLIN.

Let F_1, \ldots, F_n be n not-necessarily-linear functions in the n variables x_1, \ldots, x_n . The method used is the generalization to n-dimensions of the familiar Newton-Raphson method.

Let $x_{j}^{(i)}$ be the $i\underline{th}$ approximation to the $j\underline{th}$ component of a root

$$x_i^{(i+1)} = x_i^{(i)} + \Delta x_i$$
 for $j = 1, 2, ..., n$

where the Δx_i are the solution of the linear system:

$$-F_k(x_1^{(i)},\ldots,x_n^{(i)}) = \sum_{j=1}^n \frac{\delta F_k}{\delta x_j} \cdot \Delta x_j; \qquad K = 1,\ldots,n$$

$$k = 1, \ldots, n$$

and $\frac{\delta \ F_k}{\delta \ x_i}$ is computed by considerating F as a function of x only and using a 5 point central difference, i.e.:

$$\frac{\delta F_k}{\delta x_j} = \{F_k(x_1, \ldots, x_j + 2h, \ldots, x_n) - 8(F_k(x_1, \ldots, x_j + h, \ldots, x_n) + A_k(x_1, \ldots, x_n) + A_k(x_1, \ldots, x_n) \}$$

$$-F_k(x_1,\ldots,x_j-h,\ldots,x_n)) - F_k(x_1,\ldots,x_j-2h,\ldots,x_n)$$

where h = .01

A root has been found if for some i

$$\sqrt{\sum\limits_{j}{(ec{\Lambda}\,x_{j}^{(i)})^{2}}} < E$$
 for some tolerance E.

If $\sqrt{\frac{\Gamma}{j}}\,(A\,x_j^{(i)})^2>1/E^2$ the algorithm diverges. Otherwise, the routine halts after a specified number of iterations.

LINEAR ALGEBRA

SLCRO.

The linear system Ax = b is solved in two steps. The matrix A is first decomposed into a product of an upper and a lower triangular matrix, U and L, by Crout's algorithm with row interchanging, such that A = LU.

In a second step, the triangular system Ly = b and Ux = y are solved for the required vector x.

The inverse matrix A^{-1} is evaluated by solving LUx for the N columns of the identity matrix as right-hand sides. The N solution vectors are the columns of A^{-1} . The determinant of A is given (but for sign) by the product of the diagonal elements of L.

SLCHO.

The linear system Ax = b is solved in two steps. The matrix A is first decomposed into a product of an upper and a lower triangular matrix, R and R', by Cholesky's algorithm such that A = R'R.

In a second step, the triangular systems R'y = b and Rx = y are solved for the required vector x.

The inverse matrix A^1 is evaluated by solving R'R x for the N columns of the identity matrix as right-hand sides. The N solution vectors are the columns of A^1 . The determinant of A is given (but for sign) by the square of the product of the diagonal element of R.

SLJAC.

The matrix equation $Ax = \lambda x$ is solved by means of the Jacobi method. Through a series of orthogonal similarity transformations the original matrix A is transformed into a matrix S in diagonal form. If the product of these orthogonal transformation matrices is called P, S is given by

$$S = P^{\mathsf{T}}AP$$

Since the eigenvalues are preserved though an orthogonal transformation, the elements of the final diagonal matrix S must be the eigenvalues of the original matrix.

The matrix P has the eigenvectors as its columns. Since the off-diagonal elements of S will not in practice be zero, the value of the greatest element is related to a user defined tolerance.

SLHES.

The calculation is accomplished in two steps. First the matrix A is reduced to upper Hessenberg form H by means of orthogonal similarity transformations.

$$H = P^{\mathsf{T}}AP$$

In a second step, H is reduced to an upper triangular matrix U using the QR-algorithm. Let Q be the product of the transformation matrices, then

$$U = Q^T HQ$$

where the diagonal elements of U are the eigenvalues of A.

For calculation of eigenvectors, see SLHEV.

SLHEV.

Having calculated the eigenvalues of A according to the method described in SLHES., the problem is to find the matrix X which has the eigenvectors of A as its columns. The matrix X must satisfy the relation

$$X^{\mathsf{T}}AX = D \tag{1}$$

where D is the diagonal matrix of the eignevalues λ_i of U (and of A). the eigenvectors of U are the columns y of Y where Y satisfies the relation

$$Y^{\mathsf{T}}UY = D \tag{2}$$

The y_i are obtained by solving the linear homogeneous system

$$(U - \lambda_i I) y_i = 0$$

which is simplified due to the block triangular shape of U. Substituting $\mathbf{W}^{\mathsf{T}}\mathbf{A}\mathbf{W}$ for U in (2) gives

$$Y^TW^TAWY = D$$

which, comparing with (1), gives

X = WY

SLCHA.

The coefficients of the characteristic polynomial

$$p(\lambda) = \det(A - \lambda I)$$

are computed by Leverrier's Method

For

$$i = 1, \ldots, N$$

$$B_i = A(B_{i-1} - p_{i-1}I)$$

$$p_i = \operatorname{tr}(B_i)/i$$

where

$$B_0 = 0, p_0 = 1$$

and

$$tr(B) = \sum_{j=1}^{N} b_{jj}$$

(N is the order of the matrix)

SLJCB.

The program used the five point differencing scheme to evaluate the n x n matrix $(\delta F_i/\delta x_j)$, where F, is a user supplied function and

$$\frac{\delta F_i}{\delta x_i} = \frac{\delta F_i(x_1, x_2, \dots, x_j, \dots, x_n)}{\delta x_i}$$

CURVE FITTING AND INTERPLOTATION

SLLLSQ.

Let (xi,yi) i = 1,2...N be a given set of data, which does not exactly represent the underlying function f(x). The problem is to minimize

$$E = \sum_{i=1}^{N} [y_i - g_K(x_i)]^2$$

where

$$g_K(x) = \sum_{i=1}^K a_i f_i(x) \qquad K \le 6$$

is the approximating function of f(x) and $f_{j}(x)$ is a user-supplied basis.

The determination of the a_j 's is by solution of the normal equations by Crout's method. There is no limit to the size of the data sample, but at most 6 basis functions may be used.

A common method to minimize E is to set equal to zero the partial derivatives of E with respect to parameters a_j . In this way one obtains a linear system of K equations in the K unknowns $a_1, a_2, \ldots a_K$

$$\sum_{j=1}^{K} a_{j} \left(\sum_{i=1}^{N} f_{j}(x_{i}) \ f_{1}(x_{i}) \right) = \sum_{i=1}^{N} y_{i} \ f_{1}(x_{i})$$

$$\frac{\sum\limits_{j=1}^K a_j \left(\sum\limits_{i=1}^N f_j(x_i) \ f_2(x_i)\right)}{\sum\limits_{i=1}^N y_i \ f_2(x_i)} = \sum\limits_{i=1}^N y_i \ f_2(x_i)$$

$$\frac{\sum\limits_{j=1}^{K} a_j \left(\sum\limits_{i=1}^{N} f_j(x_i) f_K(x_i) \right) = \sum\limits_{i=1}^{N} y_i f_K(x_i)$$

This system which has a symmetric coefficient matrix is solved by the Crout algorithm.

When the system is solved, it is necessary to decide if the set of found coefficients a_j , j=1,2,...K gives a good approximation to the function f. A measure of this is the standard deviation or tolerance σ defined by

$$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{N}{(f(x_i))^2 - \sum\limits_{i=1}^{N}{\left[\sum\limits_{j=1}^{K}{a_j f_j(x_i)}\right]^2}}{N}}$$

By comparing the values of at each step, it is possible to evaluate the effect of the addition of each new basis function. The coefficients a are computed to the index k, k = 1,2..., b or until σ is less than the specified tolerance. If the defined basis contains two or more linearly dependent functions, or one or more basis functions equal zero, then execution is terminated (the normal system is singular). The basis must in this case be changed.

SLNLLS.

The chosen method is the Powell Algorithm improved by Zangwill. Let (x_i, y_i) a $i=1,2,\ldots N$ be a given set of data points. The subroutine computes a least squares fit of these data to the model $f(a_1, a_2, \ldots a_K, X)$ $K \leqslant 6$. That is, let

$$f = \sum_{i=1}^{N} [y_i - f(a_1, a_2, \dots, a_K, x_i)]^2$$

be the function that defines the difference squared of the set of data to the model f $(a_1, a_2, \ldots, a_K, X)$, one determines $a_1, a_2 \ldots a_K$ so that the function f is minimized. f $(a_1, a_2 \ldots a_K, X)$ is defined by the user in the calling program as FNF (X). Let C_r , $r=1,2,\ldots$ n be the coordinate directions and assume they are normalized to unit length. Initialization step: let an initial point p_n° , and n normalized directions ξ_r° , $r=1,2\ldots$ n be given. Calculate λ_n° to minimize

$$f(p_n^0 + \lambda_n^0 \xi_n^1)$$

and let

$$p_{n+1}^0 = p_n^0 + \lambda_n^0 \, \xi_n^1$$

let t = 1 and commence iteration with K = 1

Iteration

$$K: p_{n+1}^{K-1}, \, \xi_r^K, \, r = 1, 2, \ldots, n$$

and t are given.

Step 1: find α to minimize

$$f(p_{n+1}^{K-1} + \alpha C_t)$$

Update by

$$t \leftarrow \begin{cases} t+1 & \text{if } 1 \le t < n \\ 1 & \text{if } t = n. \end{cases}$$

If
$$\alpha \neq \emptyset$$
, let $p_0^K = p_{n+1}^{K-1} + \alpha C_i$.

If $\alpha = \emptyset$, repeat step 1.

Should step 1 be repeated n times in succession then the point P_{n-1}^{k-1} is optimal.

Step 2: For r = 1, ..., n calculate λ_i^{κ} , to minimize

$$f(p_{r-1}^K + \lambda_r^K | \xi_r^K)$$

and define

$$p_r^K = p_{r-1}^K - \lambda_r^K \xi_r^K$$

Let

$$\xi_{n+1}^{K} = (p_n^{K} - p_{n+1}^{K-1}) / \| p_n^{K} - p_{n+1}^{K-1} \|$$

Determine
$$\lambda_{n+1}^K$$
 to minimize $f(p_n^K + \lambda_{n+1}^K \xi_{n+1}^K)$

and set
$$p_{n+1}^K = p_n^K + \lambda_{n+1}^K \xi_{n+1}^K$$

Define
$$\xi_r^{K-1} = \xi_{r+1}^K$$
 $r = 1, \ldots, n$

and continue with next iteration.

Some discussion of the procedure may be in order.

Step 1 proceeds cyclically through the coordinate directions. That is, each time we return to step 1 we use the next coordinate direction, repeating C₁ after using C₂. Every n + 1 times step 1 is employed the same coordinate direction is employed. The t indexes the coordinate direction to be used. If step 1 is repeated n times in succession, then all n coordinate directions have been attempted and no change in the point has occurred. Such a situation can only occur if at that point the gradient of the function f is zero. As f is assumed strictly convex and continuously differentiable, that point is optimal.

In general step 1 is repeated until a new point is generated. In step 2 the procedure continues as in the earlier procedures. It is important to observe that after at most n iterations, all coordinate directions have been used. Both in step 1 (where we check if the found point is a minimum) and in step 2; it is necessary to minimize the function along a line. To find the minimum on a line, the following data must be provided:

- 1. A point on the line, p.
- 2. The direction of the line, ξ .
- 3. An upper bound to the length of step along the line, m.
- 4. The length of step along the line, m/10.
- 5. The accuracy to which the minimum is required, e.

The method of minimization must be such as to find the minimum of a quadratic form, so it is primarily based on the quadratic defined by three function values.

Initially f(p) and f(p+q ξ) are calculated, and then either f(p-q ξ) or f(p+2q ξ) is evaluated depending on whether f(p) is less than or greater than f(p+q ξ).

These three function values are now used in the general formula which predicts the turning value of the quadratic defined by a, $f(p+a \xi)$, b, $f(p+b\xi)$, c and $f(p+c\xi)$ to be at $(p+d\xi)$, where

$$d = rac{1}{2} \cdot rac{(b^2-c^2)f_a + (c^2-a^2)f_b + (a_2-b_2)f_c}{(b-c)f_a + (c-a)f_b + (a-b)f_c}$$

It is a minimum if:

$$\frac{(b-c)f_a + (c-a)f_b + (a-b)f_c}{(a-b)(b-c)(c-a)} < 0$$

If the turning value is predicted to be a maximum, or if the value of d is such that to calculate $f(p+d\,\xi)$ a step greater than m must be taken, the maximum allowed step is taken in the direction of decreasing f, and the function value at the point which is furthest from $(p+d\,\xi)$ is discarded, so that the prediction may be repeated. Otherwise d is compared with a, b and c, if it is within the required accuracy of one of them, that point is chosen as the minimum. If not, $f(p+d\,\xi)$ is calculated so that the quadratic prediction may be repeated; the function value which is discarded out of $f(p-a\,\xi)$, $f(p+b\,\xi)$ and $f(p+c\,\xi)$ is normally the greatest, but only if rejecting a smaller one cannot yield a definite bracket on a minimum, which would not be otherwise obtained.

SLFSYT.

The Forsythe polynomials are a set of orthogonal polynomials over a discrete set of N weighted data points (Xi,Yi,Wi) $1 \le i \le N$. The algorithm for generating these polynomials is as follows

$$P_{-1}(x) = 0$$

$$P_0(x) = 1$$

$$P_1(x) = (x - U_1) P_0(x)$$

$$P_2(x) = (x - U_2) P_1(x) - V_1 P_0(x)$$

.

$$P_m(x) = (x - U_m) P_{m-1}(x) - V_m P_{m-2}(x)$$

where

$$U_{m} = \frac{\sum_{i=1}^{N} x_{i} [P_{m-1}(x_{i})]^{2} w_{i}}{D_{m-1}}$$

$$N_{m-1} = \frac{\sum_{i=1}^{N} x_i P_{m-1}(x_i) P_{m-2}(x_i) w_i}{D_{m-2}}$$

$$D_m = \sum_{i=1}^{N} [P_m(x_i)]^2 w_i$$

The aim is to approximate the function f(x) by a linear combination of the polynomials i.e.

$$y(x) = \sum_{m=0}^{M} a_m P_m(x)$$

y(x) is the desired approximation. The coefficients are given by:

$$a_m = \frac{\sum\limits_{i=1}^{N} w_i y_i P_m(x_i)}{D_m}$$

It is possible to rewrite the equation in terms of x as follows:

$$y(x) = \sum_{m=0}^{M} a_m P_m(x) = \sum_{K=0}^{M} c_k^M x^K$$

where

$$c^{M}_{K} = \sum_{m=K}^{M} a_{m} b_{r}^{m}$$

and

$$b_k^m = \begin{cases} 0 & k < 0 & , & \text{or} & k > m \\ 1 & k = m \\ b_{K-1}^{m-1} - u_m & b_k^{m-1} - v_{m-1} & b_k^{m-x} \end{cases} \quad 0 \le k < m$$

The standard deviation is given by

$$\vartheta_m = \sqrt{\frac{\left(\sum\limits_{i=1}^{N}y_i^2\right) - \sum\limits_{k=1}^{m}a_k^2 D_k}{\sum\limits_{i=1}^{N}w(x_i)}}$$

If $\sigma_{\!\!_{m}}$ becomes less than a specified tolerance or $|\sigma_{\!\!_{m,1}}-\sigma_{\!\!_{m}}|\!\!<\!\!10^6$ then the routine terminates.

The subroutine computes the coefficients $C_{\mathbf{K}}$.

This polynomial may then be evaluated using SLPLRR.

SLFTRP.

If a function f(x) is defined at a set of 2N equally spaced points:

$$x_0, x_0 + h, x_0 + 2h, \dots$$

The transformation:

$$x' = \left(rac{\pi}{N}
ight)y$$
 where $y = \left(rac{x-x_0}{h}
ight)$

gives the unit spacing and an approximation to the function is given by the sum of the first M harmonics of the Fourier expansion:

$$f_M(y) = \frac{a_0}{2} + \sum_{m=1}^{M} \left(a_m \cos \frac{\pi}{N} \, m \, y \, + \, b_m \sin \frac{\pi}{N} \, m \, y \right)$$

where

 $0 \le M \le N-1$ for an even number of observations and

 $0 \le M \le N$ for an odd number of observations

The user enters the maximum number of harmonics to be computed and the tolerance used to control the least squares error. The a and b coefficients are calculated using Goertzel's algorithm. It is necessary to distinguish between two cases:

1. Odd number of observations (2N+1)

Let:

$$C_0=1 \qquad S_0=0$$

$$C_1=\cos\left(\frac{2\,\pi}{2\,N+1}\right) \qquad S_1=\sin\left(\frac{2\,\pi}{2\,N+1}\right)$$

$$C_{K+1}=C_1\,C_K-S_1\,S_K \qquad S_{K+1}=C_1\,S_K+S_1\,C_K$$
 (Law of cosines)

The routine calculates:

$$\begin{split} &U_{2N+2} = \, U_{2N+1} = \, 0 \\ &U_m = f(m) \, - \, 2 \, C_K \, U_{m-1} - \, U_{m-2} \\ &m = \, 2 \, N, \, 2 \, N - 1, \, \dots, \, 1 \\ & \text{then:} \end{split}$$

$$a_{K} = \frac{2}{2N+1} [f(0) + C_{K} U_{1} - U_{2}]$$

$$b_{K} = \frac{2}{2N+1} S_{K} U_{1} \qquad K = 0, 1, \dots, N$$

2. Even number of observations (2N)

Let:

$$C_0=1 \qquad S_0=0$$

$$C_1=C_0\frac{\pi}{N} \qquad S_1=\sin\frac{\pi}{N}$$

$$C_{K+1}=C_1C_K-S_1S_K \qquad S_{K+1}=C_1S_K+S_1C_K$$
 (Law of cosines) (Law of sines) The routine calculates:

$$\begin{split} U_{2N} &= U_{2N+1} = 0 \\ U_m &= f(m) \, + \, 2 \, C_K \, U_{m+1} - \, U_{m+2} \\ m &= \, 2 \, N - 1, \, 2 \, N - 2, \, \dots, \, 1 \end{split}$$

then:

$$a_K = \frac{1}{N} [f(0) + C_K U_1 - U_2]$$

$$b_K = \frac{1}{N} S_K U_1 \qquad K = 0, 1, \dots, N$$

The least squares error E_M is computed for each M, where $0 \le M \le N-1$ for an even number of observations and $0 \le M \le N$ for an odd number of observations. Using only terms up to M, the least squares error or standard deviation is given by:

$$E_{M} = \frac{V}{y} f^{2}(y) - N \left[\frac{a_{0}^{2}}{2} + \frac{N}{\sum_{m=1}^{N}} (a_{m}^{2} + b_{m}^{2}) \right]$$

By observing the behaviour of \dot{E}_{m} as M increases it is possible to estimate the necessity of taking additional terms in the Fourier expansion. The coefficients are computed to order M or until the least squares error is less than the given tolerance.

SLFOUI. may then be used for interpolation using the found coefficients.

SLFOUI.

Given the coefficients of the Fourier expansion approximating a function (see SLFTRP.), this expansion is evaluated for a given argument. The argument may be entered in radians, degrees, original units or with unit spacing. The relationship between the various scales may be seen as follows:

1. Odd number (2N+1) of observations over $(\emptyset, 2\pi)$

original scale:

$$x = \frac{x}{x_0} + \frac{x}{x_0 + h} + \frac{x}{x_0 + 2h} + \frac{x}{x_0 + 3h} + \frac{x}{x_0 + 2Nh} + \frac{x}{x_0 + (2N + 1)h}$$

where h = space between the observations (see SLFTRP)

unit spacing:

$$\frac{y}{0} = \frac{1}{1} = \frac{2}{2} \frac{N}{N} = \frac{2N}{N} + 1$$

radians:

$$0 \qquad \frac{2\,\pi}{2\,N+1} \qquad \frac{4\,\pi}{2\,N+1} \qquad \qquad \frac{4\,N\,\pi}{2\,N+1} \qquad \qquad 2\,\pi$$

degrees:

$$\frac{\vartheta}{0} = \frac{360}{2N+1} = \frac{2(360)}{2N+1} = \frac{2N \cdot 360}{2N+1} = 360$$

2. Even number (2N) of observations over $(\emptyset, 2\pi)$ original scale:

$$x = x_0 = x_0 + h = x_0 + 2h$$
 $x_0 + (2N - 1)h = x_0 + 2N \cdot h$

unit spacing:

$$y$$
 0 1 2 2 $N-1$ 2 N

radians:

degrees:

$$\frac{\vartheta}{0} = \frac{360}{2N} = \frac{2(360)}{2N} = \frac{(2N-1)360}{2N} = 360$$

SLPLYF.

Let

$$p(x) = a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$
 (1)

The Lagrange interpolating polynomial $p\ (x)$ is the following:

$$p(x) = \frac{(x - x_2) (x - x_3) \cdots (x - x_n)}{(x_1 - x_2) (x_1 - x_3) \cdots (x_1 - x_n)} \cdot y_1$$

$$+ \frac{(x - x_2) (x - x_3) \cdots (x - x_n)}{(x_2 - x_1) (x_2 - x_3) \cdots (x_2 - x_n)} \cdot y_2$$

$$\vdots$$

$$+ \frac{(x - x_1) (x - x_2) (x - x_{n-1})}{(x_n - x_1) (x_n - x_2) \cdots (x_n - x_{n-1})} \cdot y_n \qquad (2)$$

Each term on the right-hand side of equation (2) can be expanded in a recursive manner into a polynomial of degree (n-1) in the same form as equation (1). If one defines:

$$A_i = \prod_{\substack{j=i\\j\neq i}}^n , (x_i - x_j)$$

the i-th term on the right-hand side of equation (2) becomes:

$$\frac{\left[\prod\limits_{\substack{j=1\\j\neq i}}^{n}(x-x_{j})\right]\cdot y_{i}}{A_{i}}$$

Let

$$\prod_{\substack{j=1\\j\neq i}}^{n} (x-x_{j}) = b_{i, n-1} x^{n-1} + b_{i, n-2} x^{n-2} + \cdots + b_{i, 1} x + b_{i0}$$

these bij can be computed in a recursive fashion by successively multiplying one or more terms. In particular, suppose for simplicity i>k+1 and 1<K+1< n, then:

$$B_{n-1} = B_{n-2} = \dots = B_{k+1} = \emptyset, B_k \dots, B_1, B_0$$

are the coefficients of

$$B = \prod_{\substack{j=1\\j \neq j}}^{K} (x - x_j)$$

which is the product of the first K-factors of

$$\prod_{\substack{j=1\\j\neq i}}^{K} (x - x_j)$$

When B is multiplied by the factor $(x - x_{K+1})$, a new polynomial B' with the following coefficients is obtained:

$$B'_{n-1} = 0$$

$$B'_{n-2} = 0$$

$$B'_{K+1} = B_K$$

$$B_K' = B_{K-1} - x_{K+1} B_K$$

$$B'_{K-1} = B_{K-2} - x_{K+1} B_{K-1}$$

$$\dot{B}_{1}' = B_{0} - x_{K+1} B_{1}$$

$$B_0' = -x_{K-1} B_0$$

In this way, each term in equation (2) is expanded and the coefficients gathered

$$a_{j} = \sum_{i=1}^{n} \frac{b_{ij}}{A} y_{i} \qquad 0 \leq i \leq n-1.$$

This polynomial may then be evaluated using SLPLRR., remembering that evaluation is strictly valid only in the interval defined by the n base points, x_1, \ldots, x_n .

SLCSPC.

Given the set of data (x_i, y_i) i = 1, 2, ..., N where the x_i points are, in general, not evenly spaced, the aim is to find the interpolatory cubics $f_i(x)$, defined on (x_i, x_{i+1}) :

$$f_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i$$

where the f.'s satisfy given "smoothness" conditions. Then it is necessary to calculate 4 (N-1) coefficients A_i , B_i , C_i , D_i $i=1,2,\ldots,(N-1)$.

The function f(x) on the entire interval x, x consists of the functions $f_{\cdot}(x)$ satisfying the conditions:

- exact-fit condition : $f_i(x_i) = y_i$
- continuity condition: $f_{i+1}(x_i) = y_{i+1}$
- first derivative (slope) of $f_{\hat{1}}(\textbf{x})$ and $f_{i+1}(\textbf{x})$ agree at \textbf{x}_{i+1}
- 2nd derivative (curvature) of $f_{\underline{i}}\left(x\right)$ and $f_{\underline{i+1}}(x)$ are at $x_{\underline{i+1}}$.

At the end points, it is necessary to specify the 2nd derivative only.

The method used to determine these coefficients is due to Akima.

The cubic spline may be evaluated using SLCSPI.

SLCSPI.

For discussion of how to generate the interpolatory cubics see SLCSPC.

SLPADE.

The degree of both the numerator and denominator are specified by the calling program and must be less than 10. Given a function f(x), the routine finds polynomials $P_m(x)$ and $Q_n(x)$ so that $\frac{P_m(x)}{Q_n(x)}$ approximates f(x) near $x = x_0$, where x_0 is the center of the interval (m and n denote the degree of respective polynomials).

The conditions used to determine the coefficients are that the two functions $\frac{P_m(x)}{Q_n(x)}$ and f(x) agree at x₀ and so do the first (m+n) derivatives.

The coefficients of the Taylor series expansion of f(x) centered at x_{\circ} will be used to find $P_{m}(x)$ and $Q_{n}(x)$. Since the polynomials depend only on the Taylor Series coefficients and not directly on the value x_{\circ} , a change of variable making $x_{\circ} = \emptyset$ will have the effect that the a's and the b's may be computed directly from the coefficients.

With the necessary assumptions of convergence, let $\sum\limits_{j=0}^{\infty}c_{j}(x-x_{0})^{j}$

be the Taylor series expansion for f(x):

$$P_m(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_m x^m = \sum_{j=0}^m a_j x^j$$

and

$$Q_n(x) = b_0 + b_1 x + b_2 x^2 + \cdots + b_n x^n = \sum_{j=0}^n b_j x^j$$

so that

$$rac{P_{m}(x)}{Q_{n}(x)}$$
, approximates $\sum\limits_{j=0}^{\infty}c_{j}\,x^{j}$ near $x=0$

$$\frac{P_n(x-x_0)}{Q_n(x-x_0)}$$
 will approximate $f(x)=\sum\limits_{j=0}^{\infty}c_j(x-x_0)^j$ near $x=x_0$

Since it is possible to divide both P and Q by a common factor, assume that they have no common factor and also that $b_{\rm o}=1$. To approximate

$$\label{eq:condition} \tfrac{\sum\limits_{j=0}^{\infty}c_j\,x^j}{\sum\limits_{j=0}^{\infty}c_j\,x^j}\,\,\mathrm{by}\,\,\frac{P_m(x)}{Q_n(x)}\,\,\mathrm{near}\,x=0,$$

consider

$$E(x) = \sum_{j=0}^{\infty} c_j x^j - \frac{P_m(x)}{Q_n(x)}.$$

and choose the a's and b's so that E(x) and its first several derivatives are equal to zero at $x = \emptyset$. There are (m+n+1) unknown a's and b's; thus the first (m+n) derivates of E(x) can be made equal to zero.

$$E(x) = \sum_{j=0}^{\infty} c_j x^j - \frac{P_m(x)}{Q_n(x)} = \frac{\left(\sum_{j=0}^{\infty} c_j x^j\right) \left(\sum_{j=0}^{n} b_j x^j\right) - \sum_{j=0}^{m} a_j x^j}{\sum_{j=0}^{n} b_j x^j}$$

$$= \frac{\sum_{j=0}^{\infty} \sum_{k=0}^{j} c_{j-k} b_k x^j - \sum_{j=0}^{m} a_j x^j}{\sum_{j=0}^{n} b_j x^j}$$

$$= \frac{\sum\limits_{j=0}^{m}\sum\limits_{k=0}^{j}\left(c_{j-k}\,b_{k}-a_{j}\right)x^{j}+\sum\limits_{j=m+1}^{\infty}\sum\limits_{k=0}^{j}c_{j-k}\,b_{k}\,x^{j}}{\sum\limits_{j=0}^{n}b_{j}\,x^{j}}$$

Since the numerator and denominator are assumed to have no common factor, the vanishing of the first (m+n) derivatives of E(x) at \emptyset is equivalent to the vanishing of the first (m+n+1) terms of the numerator:

$$\sum_{K=0}^{j} \left(c_{j-K} \, b_K - a_j \right) = 0 \qquad \text{for } 0 \le j \le m \tag{1}$$

$$\sum_{K=0}^{j} c_{j-K} b_K = 0 \qquad \text{for } m+1 \le j \le m+n \qquad (2)$$

The set (2) of n equations may be solved for the n unknown b's. Then the set (1) of equations can be used to compute the a's:

$$a_j = \sum_{K=0}^{j} c_{j-K} b_K$$

The accuracy of the approximation improves as the sum of the degrees of the numerator and denominator increases. Also the best approximations occur when the degrees of the numerator and denominator are nearly equal.

The user may supply either the Taylor coefficients or the derivatives at the centre of the interval. In the latter case, the routine calculates the corresponding Taylor coefficients

The polynomials may be evaluated using SLPLRR. with argument \times - \times .

NUMERICAL INTEGRATION AND DIFFERENTIATION

SLITEQ.

A Newton-Cotes interpolatory method for orders 1 to 8 is used. An order p quadrature fits a polynomial of degree p to p+1 points of the data base. This polynomial is then integrated. The formulae for each quadrature and truncation error term are given below.

$$P = 1 \int_{x_{i-1}}^{x_i} f(x) \, dx = \frac{h}{2} \left(f_i + f_{i-1} \right) - \frac{h^3}{12} f^{(2)}(\xi) \qquad \qquad x_{i-1} \le \xi \le x_i$$

$$P = 2 \int_{x_{i-2}}^{x_i} f(x) \, dx = \frac{h}{3} \left(f_i + 4 f_i + f_{i-2} \right) - \frac{h^5}{90} f^{(4)}(\xi) \qquad \qquad x_{i-2} \le \xi \le x_i$$

$$P = 3 \int_{x_{i-3}}^{x_i} f(x) dx = \frac{3h}{8} (f_i + 3f_{i-1} + 3f_{i-2} + f_{i-3}) \qquad \frac{3h^5 f^{(4)}(\xi)}{80} \qquad x_{i-3} \le \xi \le x_i$$

$$\begin{split} P &= 4 \int_{x_{i-4}}^{x_i} f(x) \, dx = \frac{2 \, h}{45} \, (7 \, f_i \, + \, 32 \, f_{i-1} \, + \, 12 \, f_{i-2} \, + \, 32 \, f_{i-3} \, + \, 7 \, f_{i-1}) - \\ &- \frac{8}{945} \, h^7 \, f^{(6)}(\xi) \end{split}$$

$$\begin{split} P &= 5 \int_{x_{i-5}}^{x_i} f(x) \, dx = \frac{5 \, h}{288} \, (19 \, f_i + 75 \, f_{i-1} + 50 \, f_{i-2} + 50 \, f_{i-3} + 75 \, f_{i-1} + 19 \, f_{i-5}) - \\ &- \frac{275}{12096} \, h^7 \, f^{(6)}(\xi) \end{split}$$

$$P = 6 \int_{x_{i-6}}^{x_i} f(x) dx = \frac{h}{140} (41f_i + 216f_{i-1} + 27f_{i-2} + 272f_{i-3} + 27f_{i-1} + 216f_{i-5} + 41f_{i-6}) - \frac{9}{1400} h^9 f^{(8)}(\xi)$$

$$x_{i-6} \le \xi \le x_i$$

$$\begin{split} P &= 7 \int_{x_{i-7}}^{x_i} f(x) \, dx = \frac{7 \, h}{17280} \, (751 \, f_i + \, 3577 \, f_{i-2} + \, 2989 \, f_{i-3} + \, 2989 \, f_{i-1} + \, 1323 \, f_{i-5} + \, 3577 \, f_{i-6} + \\ &+ \, 751 \, f_{i-7}) - \frac{8183}{518400} \, h^9 f^{(8)}(\xi) \end{split}$$

$$\begin{split} P &= 8 \int_{x_{i-8}}^{x_{i}} f(x) \, dx = \frac{4 \, h}{14175} \left(989 \, f_{i} + \, 5888 \, f_{i-1} - 928 \, f_{i-2} \, + \, 10496 \, f_{i-3} - \, 4540 \, f_{i-1} + \\ &+ \, 10496 \, f_{i-5} \, - \, 928 \, f_{i-6} - \, 5888 \, f_{i-7} + \, 989 \, f_{i-8} \right) - \alpha \, h^{11} \, f^{(16)}(\xi) \\ \end{split}$$

SLDTEQ.

Let (xi, yi) i = 1,...,N, $N \ge 6$, be the data table. For each point, 4 other points in the neighbourhood are selected. A 5 point difference formula is used for both the first and second derivative.

Forward Difference (For i = 1 and 2)

$$f'\left(x_i\right) = \frac{1}{12\,h}\left[-25\,f(x_i) + 48\,f(x_i+h) - 36\,f(x_i+2\,h) + 16\,f(x_i+3\,h) - 3\,f(x_i+4\,h)\right]$$

$$\varepsilon_T \ (\text{truncation error}) \ \text{is proportional to} \ h^4f^{(5)}(\xi)$$

$$x_i \leq \xi \leq x_i+4\,h$$

$$f''(x_i) = \frac{1}{12\,h^2} \left[35\,f(x_i) - 104\,f(x_i+h) + 114\,f(x_i+2\,h) - 56\,f(x_i+3\,h) + 11\,f(x_i+4\,h) \right]$$

$$\varepsilon_T \left(\text{truncation error} \right) \text{ is proportional to } h^3\,f^{(5)}(\xi)$$

$$x_i \le \xi \le x_i - 4h$$

Central Difference

$$(For i = 3, ..., N-2)$$

$$f'(x_i) = \frac{1}{12\,h} \left[f(x_i-2\,h) - 8\,f(x_i-h) + 8\,f(x_i+h) - f(x_i+2\,h) \right]$$

$$\varepsilon_T(\text{truncation error}) \text{ is proportional to } h^4 f^{(5)}(\xi)$$

$$x_i-2\,h \leq \xi \leq x_i+2\,h$$

$$f''(x_i) = \frac{1}{12\,h^2} \left[-f(x_i-2\,h) \,+\, 16\,f(x_i-h) - 30\,f(x_i) \,\,\div\, 16\,f(x_i-h) - f(x_i+2\,h) \right]$$

$$\varepsilon_T \, (\, \text{truncation error}) \,\, \text{is proportional to} \,\, h^3 f^{(5)}(\xi)$$

$$x_i-2\,h \, \leq \, \xi \, \leq \, x_i+2\,h$$

Backward Difference

(For
$$i = N-1, N$$
)

$$f'(x_i) = \frac{1}{12\,h} \left[3\,f(x_i-4\,h) - 16\,f(x_i-3\,h) \,+\, 36\,f(x_i-2\,h) - 48\,f(x_i-h) \,+\, 25\,f(x_i) \right]$$

$$\varepsilon_T \; (\, \text{truncation error}) \; \text{is proportional to} \; h^4 f^{(5)}(\xi)$$

$$x_i-4\,h \, \leq \, \xi \, \leq \, x_i$$

$$f''(x_i) = \frac{1}{12\,h^2} \left[11\,f(x_i-4) - 56\,f(x_i-3\,h) + 114\,f(x_i-2\,h) - 104\,f(x_i-h) + 35\,f(x_i) \right]$$

$$\varepsilon_T \, (\, \text{truncation error}) \, \text{ is proportional to } h^3\,f^{(5)}(\xi)$$

$$x_i-4\,h \leq \xi \leq x_i$$

These formulae are exact for polynomials of degree less than or equal to 4.

SLDIFF.

The first and second derivatives are computed using a 5 point central difference formula.

$$\begin{split} f'(x_0) &= \frac{1}{12\,h} \left[f(x_0-2\,h) - 8\,f(x_0-h) + 8\,f(x_0-h) - f(x_0+2\,h) \right] \\ &\quad \varepsilon_T \left(\text{truncation error} \right) \text{ is proportional to } h^4 f^5(\xi) \\ &\quad x_0-2\,h \leq \xi \leq x_0+2\,h \end{split}$$

and

$$f''(x_0) = \frac{1}{12\,h^2} \left[-f(x_0-2\,h) \,+\, 16\,(f(x_0-h)\,+\,f(x_0+h)] - 30\,f(x_0) - f(x_0+2\,h) \right]$$

$$\varepsilon_T \,(\, {\rm truncation \,\, error}) \,\, {\rm is \,\, proportional \,\, to} \,\, h^3 f^5(\xi)$$

$$x_0-2\,h \, \leq \, \xi \, \leq \, x_0\,+\, 2\,h$$

The increment h is set by the user and the following will give accurate results:

 $h \geqslant \emptyset.\emptyset\emptyset5$ to evaluate the 1st derivative only $h \geqslant \emptyset.\emptyset6$ (minumum) to evaluate both derivatives.

SLROMB.

Romberg quadrature is a combination of the composite trapezoidal rule for successively smaller mesh size and a Richardson type extrapolation.

A triangular scheme is generated

$$T_1^1 T_1^2 T_1^3 T_1^4 \dots$$

$$T^1_{2} \qquad T^2_{2} \qquad T^3_{3} \; \ldots$$

$$T_3^1 \qquad T_3^2 \ldots$$

The first row is the result of the composite trapezoidal rule for successively finer meshes (i.e. more subdivisions). The other elements of the scheme are the result of extrapolating the two entries directly above. In particular,

$$T_{I}^{k} = \frac{4^{I-1} T_{I-1}^{(k+1)} - T_{I-1}^{(k)}}{4^{I-1} - 1} \qquad I = 2, 3, \dots$$

$$k = 1, 2, \dots$$

The scheme is computed from the left hand corner downwards. The process stops if, for some \boldsymbol{k}

1.
$$T_{k+1}^1 - T_k^1 < E$$

for some tolerance E, or

2.
$$T_{k+1}^1 - T_k^1/T_{k+1}^1 < E$$

Otherwise, the program halts after a specified number of lines have been calculated.

SLGAUS.

Let

$$I = \int_{A}^{B} f(x) \, dx$$

be the integral to be evaluated by an order n quadrature. A transformation of variables is performed

$$X = \frac{B-A}{2} \, \xi + \frac{B+A}{2}$$

Then

$$\int_{-1}^{1} f(\xi) \, d\xi = \sum_{i=1}^{n} W_{i} \, f(\xi_{i})$$

that is, a weighted sum of function values at the zero $\boldsymbol{\xi}_i$ of the Legendre

polynomials Pn(x) of order n, with weights

$$W_{i} = \frac{2}{(1 - \xi_{i}) [P_{n}(\xi_{i})]^{2}}$$

The zeros and weights are stored on the external sequential data file WEIGH1.

SLLAGU.

For an order n quadrature

$$\int_{0}^{\infty} e^{-x} f(x) dx = \sum_{i=1}^{n} w_i f(\xi_i)$$

and

$$\int_{0}^{\infty} f(x) dx = \sum_{i=1}^{n} W'_{i} f(\xi_{i})$$

where

$$W_i = e^{-\xi_i} w_i$$

i.e., a weighted sum of function values at the zeros ξ_i of the Laguerre polynomials L (x) of degreee n and with weights,

$$w_i = \frac{-[(n-1)!]^2}{L_n(\xi_i) L_{n-1}(\xi_i)}$$

The zeros ξ_i and weights w. and w' are stored on the external data file WEIGH2.

ORDINARY DIFFERENTIAL EQUATIONS

SLEROM.

An N-th order equation can be rewritten as a system of N first order ordinary differential equations by using the substitution:

$$y_1 = y, \ y_2 = \frac{dy}{dx}, \dots, y_{N-1} = \frac{d^{N-2}y}{dx^{N-2}}, \ y_N = \frac{d^{N-1}}{dx^{N-1}}$$

This transformation is automatically performed by the routine. The

following algorithm can then be used for either a system of first order equations or a single, higher order equation. The case of one equation on $[x_i, x_{i+1}]$ is described, i.e.

$$y' = f(x, y)$$
 ; $y_0 = y(x_0)$

The modified Euler or improved polygon method is used as a quickly computed first approximation using step size $h = x_{i+1} - x_i$

$$y_{i+1} = y_i - h f(x_i + h_{/2}, \bar{y}_{i+1/2})$$

$$\bar{y}_{i+1/2} = y_i + \frac{h}{2} f(x_i, y_i)$$

The step from x. to x_{i+1} is taken using successively smaller step sizes i.e. h, $h/_2$, $h/_4$, $h/_6$,... An extrapolation to zero step size is performed at each stage yielding the triangular array:

$$A_{1.0}$$
 $A_{1.1}$

where

$$A_{m,0} = y\left(x_{i-1}, \frac{h}{2m}\right)$$
 $m = 0, 1, \dots$

$$A_{m,n+1} = \frac{2^{p+n} A_{m,n} - A_{m-1,n}}{2^{p+n} - 1} \qquad n = 0, 1, \dots, m-1$$

where p = order of the method used to compute $A_{m,0}$. In this case p = 2. The doubling and halving of the step size is decided by the measure of convergence of this extrapolation to a solution.

$$|A_{j+1,j+1} - A_{j,j}| / |A_{jj}|$$

is the measure. If this term is larger than a pre-assigned tolerance, the step size is halved and the step is repeated. If this term is smaller than the tolerance by a factor of .Ø1 sufficiently often, the step size is doubled. At most six lines of the triangular array are generated. The tolerance and the maximum number of halvings are function parameters.

B. SUBROUTINES AND RELATED TEST PROGRAMS

ABOUT THIS CHAPTER

This chapter contains a table of the Subroutines and their related Test Programs.

CONTENTS

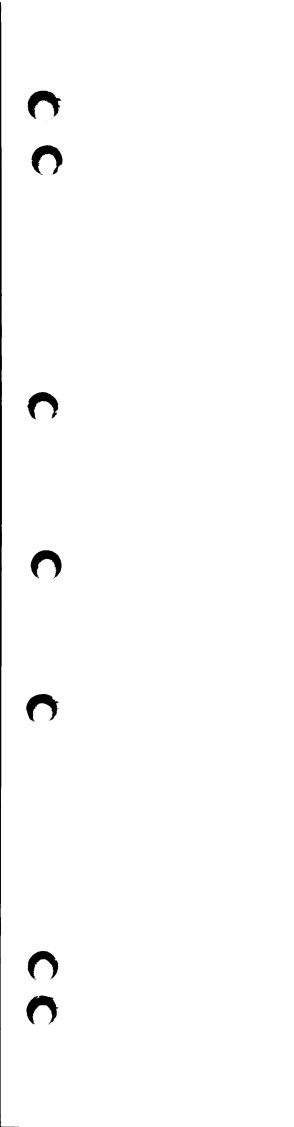
SUBROUTINES AND RELATED
TEST PROGRAMS

B-1

SUBROUTINES AND RELATED TEST PROGRAMS

NAME	ADDRESS	TEST PROGRAM	
SLCONN.	3Ø4Ø1	SLCONN	
SLPRIM.	3Ø6Ø1	SLPRIM	
SLEUCL.	3Ø8Ø1	SLEUCL	
SLRFCO.	31ØØ1	SLRFC0	
SLSUCO.	312Ø1	SLSUCO	
SLCFCO.	314Ø1	SLCFCO	
SLFACT.	316Ø1	SLFACT	
SLBINO.	318Ø1	SLBINO	
SLMULT.	32001	SLMULT	
SLDUPL.	322Ø1	SLDUPL	
SLATN2.	324Ø1	SLATN2	
SLCONV.	326Ø1	SLCONV	
SLRPCC.	328Ø1	SLRPCC	
SLPRCC.	33ØØ1	SLPRCC	
SLCSIN.	332Ø1	SLCSIN	
SLCCOS.	334Ø1	SLCCOS	
SLCTAN.	336Ø1	SLCATN	
SLCASN.	338Ø1	SLCASN	
SLCACS.	34ØØ1	SLCACS	
SLCATN.	342Ø1	SLCATN	
SLCLN.	344Ø1	SLCLN	
SLCEXP.	346Ø1	SLCEXP	
SLCRZ.	348Ø1	SLCRZ	
SLCZMZ.	35ØØ1	SLCZMZ	
SLCZDZ.	352Ø1	SLCZDZ	
SLCSQR.	354Ø1	SLCSQR	
SLCZN.	356Ø1	SLCZN	
SLCZA.	358Ø1	SLCZA	
SLPLRC.	36ØØ1	SLPLRC	
SLPLRR.	362Ø1	SLPLRR	
SLPRRR.	364Ø1	SLPRRR	
SLPLYM.	366Ø1	SLPLYM	
SLPLYD.	368Ø1	SLPLYD	
SLPTRA.	37ØØ1	SLPTRA	
SLKMF.	372Ø1	SLKMF	
SLEMF.	374Ø1	SLEMF	
SLLAGG.	376Ø1	SLLAGG	
SLHNF.	378Ø1	SLHNF	
SLHEN.	38ØØ1	SLHEN	
SLFOUR.	382Ø1	SLFOUR	
SLGAMA.	384Ø1	SLGAMA	
SLERF.	386Ø1	SLERF	
SLBJN.	388Ø1	BJN	

NAME ADDRESS		DRESS	TEST PROGRAM	
SLI	IØX. 3	9øø1	INT	
SLS		92Ø1	SFR	
SLC		94Ø1	CFR	
SLC		96Ø1	CHYF	
SLG		98Ø1	GHYP	
SLS		øøø1	SIF	
SLC		Ø2Ø1	CINF	
SLE		Ø4Ø1	EIF	
SLE		7ØØ1	EINF	
SLB		Ø6Ø1	BAIR	
SLR		Ø8Ø1	BISEL	
SLN		1ØØ1	NLIN	
SLC	RO. 4	12Ø1	SLCR02	
SLC	10. 4	1 4Ø1	SLCH02	
SLJ	AC. 4	16Ø1	SLJAC2	
SLH		18Ø1	SLHES2	
SLH	EV. 4	6ØØ1	SLHES2	
SLC	HA. 4	22Ø1	SLCHA2	
SLJ	CB. 4	24Ø1	SLJCB2	
SLL	_SQ. 4	26Ø1	RRLLSQ	
SLN	LS. 4	64Ø1	RRNLLA	
SLF	SYT. 4	3ØØ1	RRFSYT	
SLF	TRP. 4	32Ø1	RRFTRP	
SLF	OUI. 4	34Ø1	RRFTRP	
SLP	YF. 4	36Ø1	RRPLYF	
SLC	SPC. 4	38Ø1	RRSPC	
SLC	SPI. 4	4ØØ1	RRSPC	
SLP	ADE.	42Ø1	RRPADE	
SLI	TEQ. 4	44Ø1	SLITEQ	
SLD	TEQ.	46Ø1	SLDTEQ	
SLD	IFF. 4	48Ø1	SLDIFF	
SLR	OMB.	5øø1	SLROMB	
SLG	AUS. 4	52Ø1	SLGAUS	
SLL	AGU. 4	54Ø1	SLLAGU	
SLE	ROM 4	56Ø1	SLEROM	


NOTICE

Ing. C. Olivetti & C. S.p.A. reserves the right to make improvements in the product described in this manual at any time and without notice.

This material was prepared for the benefit of Olivetti customers. It is recommended that the package be test run before actual use.

Anything in the standard form of the Olivetti Sales Contract to the contrary not withstanding, all software being licensed to Customer is licensed "as is". THERE ARE NO WARRANTIES EXPRESS OR IMPLIED INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTY OF FITNESS FOR PURPOSE AND OLIVETTI SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES IN CONNECTION WITH SUCH SOFTWARE.

The enclosed programs are protected by Copyright and may be used only by the Customer. Copying for use by third parties without the express written consent of Olivetti is prohibited. GU Code 3987570 J (0) Printed in Italy

GU Code 3987570 J (0)
Printed in Italy